
RESEARCH ARTICLE

Target Uncertainty Mediates Sensorimotor

Error Correction

Luigi Acerbi1,2¤*, Sethu Vijayakumar1, Daniel M. Wolpert3

1 Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh,

United Kingdom, 2 Doctoral Training Centre in Neuroinformatics and Computational Neuroscience, School of

Informatics, University of Edinburgh, Edinburgh, United Kingdom, 3 Computational and Biological Learning

Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom

¤ Current address: Center for Neural Science, New York University, New York, NY, United States of America

* luigi.acerbi@nyu.edu

Abstract

Human movements are prone to errors that arise from inaccuracies in both our perceptual

processing and execution of motor commands. We can reduce such errors by both improv-

ing our estimates of the state of the world and through online error correction of the ongoing

action. Two prominent frameworks that explain how humans solve these problems are

Bayesian estimation and stochastic optimal feedback control. Here we examine the interac-

tion between estimation and control by asking if uncertainty in estimates affects how sub-

jects correct for errors that may arise during the movement. Unbeknownst to participants,

we randomly shifted the visual feedback of their finger position as they reached to indicate

the center of mass of an object. Even though participants were given ample time to compen-

sate for this perturbation, they only fully corrected for the induced error on trials with low

uncertainty about center of mass, with correction only partial in trials involving more uncer-

tainty. The analysis of subjects’ scores revealed that participants corrected for errors just

enough to avoid significant decrease in their overall scores, in agreement with the minimal

intervention principle of optimal feedback control. We explain this behavior with a term in the

loss function that accounts for the additional effort of adjusting one’s response. By suggest-

ing that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major

factor in determining how their sensorimotor system responds to error, our findings support

theoretical models in which the decision making and control processes are fully integrated.

Introduction

Sensorimotor tasks typically involve both estimating the state of the world (e.g., target and

limb positions) and controlling actions so as to achieve goals. Two major frameworks, Bayes-

ian estimation and stochastic optimal feedback control (OFC), have emerged to explain how

the sensorimotor system estimates uncertain states and controls its actions. Together these

frameworks have provided a normative account of human motor coordination which is able

to account for a range of behavioral phenomena, including how humans correct for
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perturbations of various kind in fast directed movements. Here we will investigate the relation

between estimation and online control.

Estimation is a nontrivial task due to sensory noise [1] and the ambiguity of the stimuli [2].

Optimal estimates need to take into account the statistics of the stimuli, the currently available

information, and the cost associated with errors in the estimate [3, 4]. Humans have been

shown to combine prior information with sensory data in a manner broadly consistent with

Bayesian integration in a variety of sensorimotor tasks, such as reaching [5], interval timing [6,

7], pointing to hidden targets [8–10], speed estimation [11, 12], orientation estimation [13],

and motion estimation [14]. Humans are also sensitive to the reward/loss structure imposed

by the task [15]. Within the framework of Bayesian Decision Theory (BDT), this means that

probabilistic ‘posterior’ estimates are combined with a cost function so as to maximize the

expected gain [16]. Estimation performance compatible with BDT, with an explicitly imposed

loss function, has been observed, for example, in visual ‘offset’ estimation [17], orientation esti-

mation [18], motor planning [19], and sensorimotor timing [7]. These studies suggest that

people keep track of the uncertainty, and possibly build a full probabilistic representation [20],

of perceptual and sensorimotor variables of interest, and use it to compute optimal estimates.

Optimal feedback control (OFC) is a prominent theory of motor control whereby optimal

feedback gains are computed by minimizing the cost of movement over the space of all possi-

ble feedback control strategies [21–23]. The ability of the sensorimotor system to make online

corrections in OFC is crucial in the presence of errors that can arise from both the inaccuracies

in internal models that are involved in generating the commands [24, 25] and from the noise

and variability inherent in sensory inputs and motor outputs [1, 26]. The cost function in OFC

takes into account various factors, with a trade-off between task goals (accuracy) and effort

(energy, movement time, computation); see, e.g., [27]. A prediction of OFC is the minimal

intervention principle, according to which errors are corrected and movement variability is

minimized only along task-relevant dimensions [21]. OFC also suggests how the motor system

should react to perturbations throughout the movement. For example, for fast directed reach-

ing, late perturbations afford a lesser correction gain due to a trade-off between accuracy and

stability [28]. A few studies have investigated online control of movement in the presence of

uncertain targets, finding agreement with the optimal solution given by a Kalman filter, which

describes iterative Bayesian integration of sensory information according to its reliability [29–

31]. Recent work on the interaction between uncertainty and control has also found that

human sensorimotor behavior exhibits risk-sensitivity, that is sensitivity to the uncertainty in

the reward [32, 33], which may stem from target variability [34]. In sum, there are both theo-

retical and empirical reasons to suggest that uncertainty in the estimate may interfere with the

way in which humans correct online for their sensorimotor errors.

Online error correction during reaching has typically been studied by observing how sub-

jects react to either mechanical perturbations or explicit or subliminal alterations of visual

feedback of the hand (e.g., [35, 36]) or of the target (see [37] for a review). Measured correction

gains have been shown to change across the movement [38] and according to task demands, in

agreement with OFC [28]. Also, as mentioned before, subjects do not correct indiscriminately

for all perturbations, but mostly only for those along task-relevant dimensions [21]. For exam-

ple, a recent study has shown that subjects used a flexible control strategy that adapted to task

demands (target shape) according to the minimal intervention principle on a trial-by-trial

basis [39]. These studies, however, mostly examine feedback control in the presence of well-

defined, visible targets and with fast movements (duration under 1 second). Here we investi-

gate the relation between estimation and control, by asking if uncertainty in the estimation

influences the process of online error correction even when sufficient time is available to fully

correct for any errors, here represented by a late visual perturbation.
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In our experiment, subjects performed a center of mass estimation task in which they were

presented with a visual dumbbell (a bar with disks on each end) and were required to place

their finger on the bar to balance the dumbbell. The task was designed so that the estimation

would have low variability on some trials (same size disks requiring a simple line bisection to

balance) or high variability (unequal sized disks). During the reaching movement to indicate

the balance point the location of the finger was occluded and on some trials, unbeknownst to

participants, when the finger reappeared its position had been visually shifted so that we could

then examine the extent to which subjects corrected for the shift.

We can consider three scenarios. If subjects estimate the center of mass position as a point

estimate and then simply report this with a reach, then we would expect that they should cor-

rect for the entire perturbation to be as accurate as possible—or, if there is a cost of correction,

they should correct just as much for the high and low uncertainty conditions. If subjects repre-

sent the full posterior of the position but have no cost on corrections then we would expect

that they should correct for the entire perturbation to be as accurate as possible. However, if

subjects represent their uncertainty in the center of mass location, as reflected in their poste-

rior distribution, they may be less willing to correct in the high-uncertainty condition as the

cost of correction (e.g., energy, movement time, computation) may outweigh the potential

increases in accuracy that can be achieved through correction.

Even though participants were given enough time to compensate for the perturbation, they

only fully corrected for the induced error on trials with low uncertainty about target location

and corrected partially in conditions with more uncertainty (where partial correction was just

enough to make their performance practically indistinguishable from the unperturbed trials).

Our findings suggest that subjects’ decision uncertainty, as reflected in the width of the poste-

rior, is a factor in determining how their sensorimotor system responds to errors, providing

new evidence for the link between decision making and control processes.

Materials and Methods

Participants

Sixteen naïve subjects (8 male and 8 female; age range 19–27 years) participated in the study.

All participants were right-handed [40], with normal or corrected-to-normal vision and

reported no neurological disorder. The Cambridge Psychology Research Ethics Committee

approved the experimental procedures and all subjects gave written informed consent.

Behavioral task

Subjects performed a center of mass estimation task, designed to probe subject’s behavior in a

natural sensorimotor task. We used an Optotrak 3020 (Northern Digital Inc, Ontario, Canada)

to track the tip of a subject’s right index finger at 500 Hz. The visual image from a LCD moni-

tor (Apple Cinema HD, 64 cm × 40 cm, 60 Hz refresh rate) was projected into the plane of the

hand via a mirror that prevented the subjects from seeing their arm (Fig 1A). The workspace

origin, coordinates (0, 0), was *20 cm in front of the subject’s torso in the mid-sagittal plane,

with positive axes towards the right (‘horizontal’ x axis) and away from the subject (‘vertical’ y
axis). The workspace showed a home position (1.5 cm radius circle) at the origin and a cursor

(0.25 cm radius circle) could be displayed that tracked the finger position.

On each trial a virtual object consisting of two filled circles (disks) and a thin horizontal

line (target line) connecting the centers of the two disks [41] was displayed on the screen (Fig

1B). The centers of the disks were ℓ = 24 cm apart (length of the target line) and at vertical posi-

tion y = 20 cm. To prevent subjects from responding to a stereotypical location in the work-

space, on each trial the object was horizontally displaced with a uniformly random jitter *
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[−3, 3] cm from the center of the screen. The radius of one of the disks was drawn from a log-

normal distribution with mean log 1 cm and SD 0.1 in log space. The radius of the other disk

was chosen so that on 1/3 of the trials the disks were of equal size, making the task equivalent

to a simple line bisection, and on 2/3 of the trials the ratio of the disk radii was drawn from a

log-normal distribution with mean log 1.5 and SD 0.1 in log space, leading to a trimodal distri-

bution of center of mass locations (Fig 1C). The bulk of the distribution over locations was far

(�2 cm) from the largest disks’ edges, so as to avoid edge effects [41]. The position (left or

right) of the larger disk in unequal-size trials was chosen randomly and counterbalanced

within each experimental block. We expected that the uncertainty in the center of mass loca-

tion would be low for the equal-disk trials (‘Low-uncertainty’), when the task was equivalent to

line bisection, but would be high for the unequal-disk trials (‘High-uncertainty’) due to both

the spread of the experimental distribution and the nonlinear mapping between the disks’

ratio and center of mass, see below.

Fig 1. Experimental setup. A: Subjects wore an Optotrak marker on the tip of their right index finger. The

visual scene from a CRT monitor, including a virtual cursor that tracked the finger position, was projected into

the plane of the hand via a mirror. B: The screen showed a home position at the bottom (grey circle), the

cursor (red circle), here at the start of a trial, and the object at top (green dumbbell). The task consisted of

locating the center of mass of the object, here indicated by the dashed line. Visual feedback of the cursor was

removed in the region between the home position and the target line (here shaded for visualization purposes).

C: The two disks were separated by 24 cm and, depending on the disks size ratio, the target (center of mass)

was either exactly halfway between the two disks (p = 1/3; low uncertainty; blue distribution) or to the right

(p = 1/3) or left (p = 1/3) of the midpoint (high uncertainty; red distributions), leading to a trimodal distribution of

center of mass.

doi:10.1371/journal.pone.0170466.g001
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After a ‘go’ tone, participants were required to reach from the home position to the center

of mass of the disks (the target) on the target line, thereby balancing the object on their finger.

Subjects were explicitly told in the instructions that the circles were to be interpreted as disks

in the center of mass estimation. Importantly, during the reaching movement, visual feedback

of the cursor was removed in the region y 2 [2, 19] cm (shaded area in Fig 1B). Subjects were

given 1.5 s to arrive in the proximity of the target line (y> 19.5 cm). After reaching the target

line, subjects were allowed 3 seconds to adjust their endpoint position to correct for any errors

that might have arisen during the movement when the cursor was hidden. The remaining time

for adjustment was indicated by a pie-chart animation of the cursor, which gradually turned

from red to yellow. The cursor’s horizontal position at the end of the adjustment phase consti-

tuted the subject’s response for that trial. If participants were still moving at the end of the

adjustment phase (velocity of the finger greater than 0.5 cm/s), the trial was terminated with

an error message. Such missed trials were presented again later during the session.

Experimental sessions

Participants performed a preliminary training session (120 trials) in which they received per-

formance feedback at the end of each trial. Performance feedback consisted of displaying the

correct location of the center of mass, an integer score and, if the error was greater than 1 cm,

a tilted dumbbell in the appropriate direction. The score depended on the (horizontal) distance

of the cursor from the center of mass, Δs, according to a squared exponential formula:

ScoreðDsÞ ¼ Round 10 � exp �
Ds2

2s2
score

� �� �

; ð1Þ

where σscore is the score length scale and Round(z) denotes the value of z rounded to the near-

est integer. We chose the numerical constants in Eq (1) (σScore� 0.41 cm) such that the score

had a maximum of 10 and was nonzero up to 1 cm away from the center of mass. A new trial

started 500 ms after the subject had returned to the home position.

Subjects then performed a test session (576 trials) which included standard trials (192 trials)

identical to the training session, and ‘perturbation’ trials in which, unbeknownst to the sub-

jects, the visual feedback of the cursor was displaced horizontally from the finger when the cur-

sor reappeared at the end of the movement (y> 19 cm), near the target line. Cursor

displacement could either be small (drawn from a Gaussian distribution with mean ±0.5 cm

and SD 0.2 cm; 192 trials), or large (mean ±1.5 cm and SD 0.2 cm; 192 trials). To avoid overlap

between distinct perturbation levels, the Gaussian distributions were truncated at 2.5 SDs (0.5

cm away from the mean). All trials were presented in a pseudorandom order and left and right

perturbations were counterbalanced within the session. To keep subjects motivated through-

out the test session while minimizing the chances that subjects would either adapt their behav-

ior or become aware of the shifts, we only provided participants with performance feedback

on unperturbed trials [5]. We also provided the sum of the scores for all trials in blocks of 36

trials [17]. All participants answered a short debriefing questionnaire at the end of the session,

the results of which showed that they were unaware of the perturbations or of any other differ-

ence between trials with or without performance feedback (see S1 Appendix for details).

Data analysis

For all analyses the criterion for statistical significance was p< .05, and we report uncorrected

p-values. Even after applying a conservative Bonferroni correction for multiple comparisons

withm = 20 (for the about twenty different analyses we conducted) all of our main findings
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remain statistically significant. Unless specified otherwise, summary statistics are reported in

the text as mean ± SE between subjects.

Trial response data

For each trial, we recorded the final horizontal position r of the visual cursor, the horizontal

position of the hidden cursor at the time of exiting the no visual feedback zone xexit, and the

effective adjustment time (time before the subject stopped moving during the adjustment

phase). We computed the response error Δs as the signed difference between the final position

of the visual cursor and position of the center of mass of the current stimulus.

Variation of mean residual error and SD of the error

We analyzed how the mean residual error (or ‘bias’) and SD of the error depended on the class

of stimuli presented (Low-uncertainty and High-uncertainty) and on the mean perturbation

level (−1.5, −0.5, 0, 0.5, 1.5). For the High-uncertainty trials we had counterbalanced whether

the larger disk was on the right or left. An examination of the mean residual error and SD of

the error with factor of side (Left, Right) and perturbation mean level showed no significant

difference and we therefore pooled data from Left trials with Right trials.

Statistical differences between conditions in these analyses were assessed using repeated-

measures ANOVA (rm-ANOVA) with Greenhouse-Geisser correction of the degrees of free-

dom in order to account for deviations from sphericity [42]. A logarithmic transformation was

applied to the SDs before performing rm-ANOVA, in order to improve normality of the data

(results were qualitatively similar for non-transformed data). We report effect sizes as partial

eta squared, denoted with Z2
p.

Slope of the mean residual error

For each subject, we performed linear regression of the mean residual error as a function of

perturbation size (a continuous variable from −2 to 2 cm) for the Low and High uncertainty

conditions. The slope of the regression fit is a measure of the fraction of the applied perturba-

tion that was not corrected for. In the plots, we remove the mean residual error for the 0 per-

turbation condition from each subject’s data to allow a direct comparison between subjects;

this has no effect on the estimation of the slope. The difference in slope between conditions

was assessed with a paired Student’s t-test on the individual slope coefficients.

Observer model

We built a Bayesian observer model to investigate whether our subjects’ correction biases

could be explained as the interaction of probabilistic inference and the correction cost. In

order to account for the residual errors (lack of correction) in the perturbation condition, we

introduced a modification to the structure of the loss function that takes effort into account. As

described below, subjects’ datasets were fit individually and model fits were averaged to obtain

the group prediction. To limit model complexity and avoid overfitting, some model parame-

ters were either estimated from the individual training datasets or fixed to theoretically moti-

vated values.

Perception stage

We assume that the observer estimates the log ratio of the radii of the two disks, whose true

value is ρ = log(r2/r1), where ri with i = 1, 2 is the radius of the two disks (left and right) pre-

sented on a trial. This logarithmic representation was chosen as it naturally embodies Weber’s
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law. It also unifies different possible transformations of radius to weight for each disk that the

subject might use. For example if subjects use the radius to calculate the area or volume (as

though the object was a sphere) then the log ratio can be simply expressed as log ðr2
2
=r2

1
Þ ¼ 2r

and log ðr3
2
=r3

1
Þ ¼ 3r, respectively.

In the estimation process, the true ratio is corrupted by normally distributed noise with

magnitude σρ in log space, which yields a noisy measurement ρm. The parameter σρ represents

both log-normally distributed sensory noise in estimating the radii of the disks and additional

independent sources of error in computing the ratio (see Discussion). The conditional mea-

surement probability takes the form:

pmeasðrmjrÞ ¼ N ðrmjr; s2
r
Þ; ð2Þ

where N ðxjm; s2Þ is a normal distribution with mean μ and variance σ2.

The experimental distribution of log ratios is a mixture of three components: two Gaussians

centered at ±log 1.5� ±0.405 with SD 0.1 and a delta function at ρ = 0 (Fig 1B). For simplicity,

we assume the observer’s prior in log-ratios space, qprior(s), corresponds to the experimental

distribution:

qpriorðrÞ ¼
1

3

X3

i¼1

N rjm
ðiÞ
prior; s

ðiÞ
prior

2
� �

; ð3Þ

with μprior = (−log 1.5, 0, log 1.5) and σprior = (0.1, 0, 0.1), using the formal definition

N ðxjm; 0Þ � dðx � mÞ.

Combining Eqs (2) and (3), after some algebraic manipulations, the posterior can be

expressed as a mixture of Gaussians [10]:

qpostðrjrmÞ ¼
1

Z

X3

i¼1

ZðiÞN r

�
�
�mðiÞpost; s

ðiÞ
post

2
� �

; ð4Þ

where the normalization factor Z, the posterior mixing weights, means, and variances have all

a closed-form expression (see S1 Appendix).

The observer uses the inferred values of ρ to compute the location of the center of mass of

the two-disk object (here measured with respect to the midpoint between the two disks). We

denote with fD(ρ) the generally nonlinear mapping that identifies the location of the center of

mass s of twoD-dimensional spheres with radii of log ratio ρ (see S1 Appendix). We assume

that the observer computes the center of mass using this mapping fD with some fixed value of

D> 0, although not necessarily the correct value D = 2 for two-dimensional disks, nor we

restrict D to be an integer. Knowing the expression for fD(ρ), we can compute the posterior dis-

tribution of the location of the estimated center of mass, qpost(s|ρm) (see S1 Appendix for the

derivation). Due to the generally nonlinear form of fD, this posterior is a mixture of non-Gauss-

ian distributions. However, we find that it is well approximated by a mixture of Gaussians:

qpostðsjrmÞ �
1

Z

X3

i¼1

ZðiÞN s
�
�
�mðiÞpost; s

ðiÞ
post

2
� �

; ð5Þ

wheremðiÞpost and sðiÞpost are respectively the mean and SD of the mixture components of the poste-

rior (see S1 Appendix for details).
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Decision-making stage

According to Bayesian Decision Theory (BDT), the observer chooses the final cursor position

that minimizes his or her expected loss [16]. The typical loss functions used in perceptual and

even sensorimotor tasks take into account only the error (distance between response and tar-

get). However, although the explicit goal of our task consists of minimizing endpoint error,

subjects appeared to be influenced by other considerations.

We assume that the subjects’ full loss function depends on an error-dependent cost term,

Lerrðr � sÞ, which assesses the deviation of the response (r) from the target (s), and a second

adjustment cost, Ladjðr � r0Þ, which expresses the cost of moving from the perturbed endpoint

position r0 (originally planned endpoint position plus perturbation b). The rationale is that

there is an additional cost in moving from the initially planned endpoint position, possibly

due to the effort involved in an additional unplanned movement (e.g., for replanning the

action).

In a preliminary motor planning stage, the endpoint s�pre is chosen by minimizing the error

loss:

s�preðrmÞ ¼ arg min
ŝ

Z ‘=2

� ‘=2

qpostðsjrmÞLerrðŝ � sÞds
� �

¼ arg min
ŝ
�
X3

i¼1

ZðiÞN ð̂sjmðiÞpost; s
ðiÞ
post

2 þ s2

errÞ

" #

;

ð6Þ

where we assumed for the loss function a continuous approximation of the discrete scoring

system (Eq (1)), that is a (rescaled) inverted Gaussian, Lerrð̂s � sÞ ¼ � expf� ð̂s � sÞ2=2s2
errg.

In addition to being both in agreement with the reward structure of the task and a loss that

well describes human sensorimotor behavior [43], this loss allowed us to derive an analytic

solution for the expected loss (Eq (6)). To limit model complexity, we assumed subjects con-

formed to the error length scale of the performance feedback, that is σerr = σscore (Eq (1)).

After the initial movement, subjects are allowed plenty of time to adjust their endpoint posi-

tion. Due to the applied perturbation b, the (average) endpoint position after movement will

be r0 � s�preðrmÞ þ b. We introduce, therefore, the adjustment cost in the final loss function:

Lðr; s; r0Þ ¼ Lerrðr � sÞ þ aLadjðr � r0Þ; ð7Þ

where α� 0 specifies the relative weight of the adjustment loss with respect to the error term.

In Eq (7), r0 represents the (average) end point before adjustment and r the endpoint after

adjustment, so that the adjustment loss is a function of the distance covered in the adjustment

phase, r − r0. The key characteristic of this loss function is that for Low-uncertainty trials the

first term can be significantly reduced by adjustments, whereas for High-uncertainty trials there

is less to be gained through adjustments (as the location of the center of mass has high variance)

and the second term can become dominant leading to partial correction, with α controlling this

trade-off. The ‘optimal’ final position s� that minimizes the expected loss in Eq (7) is:

s�ðrm; r0Þ ¼ arg min
ŝ

aLadjðŝ � r0Þ þ

Z ‘=2

� ‘=2

qpostðsjrmÞLerrð̂s � sÞds
� �

: ð8Þ

For simplicity, for Ladjðŝ � r0Þ we also assume the shape of an inverted Gaussian loss with length

scale σadj, a free parameter of the model representing the scale of the cost of moving away from

the originally planned target. For the chosen loss functions, Eq (8) can be further simplified (see

S1 Appendix for details), but still only admits numerical solution. In section ‘Alternative
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observer models’, we will see how the solution of Eq (8) changes depending on the shape of the

loss functions.

Full observer model

In each trial, the decision-making process is simulated in two stages. First, the observer com-

putes the preliminary endpoint position s�preðrmÞ for a given internal measurement ρm (Eq (6)).

For simplicity, we assume that the endpoint position is systematically altered only by the exter-

nal perturbation b, so that (on average) the arrival position is r0 ¼ s�preðrmÞ þ b. In the second

step, the observer adjusts his or her endpoint position, moving to the optimal target as per

Eq (8). Gaussian noise with variance s2
motor is added to the final choice s� to simulate any resid-

ual noise in the response.

According to this model, the response probability of observing response r in a trial with per-

turbation b and disks’ ratio ρ is:

Pr ðrjr; b; θÞ ¼
Z 1

� 1

N ðrmjr; s
2

r
ÞN ðrjs�ðrm; x

�

preðrmÞ þ bÞ;s
2

motorÞdrm; ð9Þ

where we marginalized over the internal measurement ρm which is not directly accessible in

our experiment, and θ = {σρ, D, α, σadj, σmotor} is the vector of model parameters.

We estimated the model parameters for each subject via maximum-likelihood (see S1

Appendix for details). To limit the possibility of overfitting, the sensory variability parameter

of each subject, σρ, was estimated from a separate model fit of the training datasets. The

observer model fit to the individual test datasets had, therefore, effectively 3 free parameters:

D, α and σadj representing the dimensionality of the transformation from disk radius to weight,

the trade-off between error and effort and the length-scale of the loss function for adjustments,

respectively. The parameter s2
motor represents the mean square of the residuals and is not typi-

cally counted as a free parameter.

Results

Human performance

Subjects found the task natural and straightforward to perform and the debriefing question-

naire at the end of the session showed that they were unaware of the perturbations on the trials.

On unperturbed Low-uncertainty trials they received on average 7.36 ± 0.43 points and bal-

anced the object on 97.4% of trials. In contrast on High-uncertainty trials they received on

average 3.35 ± 0.15 points and balanced the object on 60.2% of trails. Example subject trajecto-

ries and velocity profiles are shown in S1 Fig.

Mean residual error and variability

We analyzed the participants’ response (visual location of cursor at the end of the adjustment

phase) as a function of trial uncertainty (Low, High) and mean perturbation level (−1.5, −0.5,

0, 0.5, 1.5). To confirm that the trials with equal-sized and unequal-sized disks correspond to

low and high-uncertainty we examined the variability (SD) of subjects’ response. As expected,

we found that the variability was significantly affected only by trial uncertainty (main effect:

Low, High; F(1,15) = 297, p< .001, Z2
p ¼ 0:94) with average SD of 0.40 ± 0.06 cm and

1.02 ± 0.05 cm for the Low and High-uncertainty trials, respectively. We found no significant

effect of perturbation and no interaction

(p> .40 and Z2
p < 0:04 for both). This confirms that subjects were more variable in their judg-

ments of the center of mass in ‘High-uncertainty’ trials.

Target Uncertainty Mediates Sensorimotor Error Correction
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We also examined the subjects’ mean residual error (mean difference between cursor end-

point and center of mass). The mean residual error was not significantly affected by trial

uncertainty (main effect: Low, High; F(1,15) = 0.69, p> .40, Z2
p ¼ 0:04) but was significantly

affected by the perturbation level (main effect: perturbation level; F(3.88,58.1) = 25.7, � = 0.969,

p< .001, Z2
p ¼ 0:63) and in particular by the interaction between the two (interaction:

perturbation × uncertainty; F(3.64,54.7) = 15.1, � = 0.91, p< .001, Z2
p ¼ 0:50). This suggests that

uncertainty modulates the effect of the perturbation on subjects’ biases.

To assess the proportion of the perturbation which subjects corrected for, we performed a

linear regression of their mean residual error as a function of the perturbation size for Low

and High uncertainty trials (after subtracting the baseline mean residual error from unper-

turbed trials, Fig 2). A slope of zero would correspond to no residual error and hence a full cor-

rection, whereas a positive slope correspond to a smaller fraction of the perturbation that

subjects correct for, with a slope of 1 corresponding to no correction at all. The regression

slopes were small (0.03 ± 0.01) for Low uncertainty trials but large (0.16 ± 0.02) for High

uncertainty trials, both significantly different than zero (t-test Low: t(15) = 3.61, p = .003,

d = 0.90; High: t(15) = 8.15, p< .001, d = 2.04) and significantly different from each other

(paired t-test t(15) = 6.80, p< .001, d = 1.70). These results show that subjects corrected almost

entirely for the perturbation in the Low-uncertainty condition and left sizeable errors in the

High-uncertainty trials by only correcting on average for 84% of the perturbation.

Fig 2. Mean residual error against mean perturbation size, for Low-uncertainty (blue) and High-uncertainty (red) trials. A: Group mean residual error

against mean perturbation size. Error bars are SEM between subjects. Fits are are linear regressions to the mean data. B: Each panel reports the mean

residual error against mean perturbation size for a single subject, for Low-uncertainty (blue) and High-uncertainty (red) trials. Error bars are SEM between

trials. Fits are linear regressions to the individual data. For both panels each subject’s data have been shifted so as to remove the mean residual error for the 0

perturbation condition for that subject.

doi:10.1371/journal.pone.0170466.g002
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Exit position

On each trial we also recorded the hidden cursor horizontal position when it crossed the end

of the no-feedback zone (y = 19 cm), before applying visual perturbations, as exit position xexit.

As a sanity check, we verified that subjects’ behavior in perturbation trials before applying the

perturbation was identical to no-perturbation trials. In particular, we examined the empirical

distribution of xexit relative to the position of the center of mass for three different levels of per-

turbation (-1.5, 0, 1.5) and distinct target locations (left, center, and right). The empirical

cumulative distribution functions were well overlapping, meaning that indeed there was no

systematic difference between perturbation vs. no-perturbation trials.

Then, we examined the variability (SD) of exit position to investigate subjects’ reaching

behavior. The SD of xexit was respectively 0.89 ± 0.05 cm (Low uncertainty trials) and

1.70 ± 0.07 cm (High uncertainty). We found a statistically significant correlation between the

target position and the exit position in the High uncertainty trials (considering Left and Right

separately), with a correlation coefficient of r = .36 ± 0.02 (t-test t(15) = 15.0, p< .001, d = 3.76).

Accordingly, the variability of exit position when considered with respect to target position

was statistically significantly lower than the variability of xexit itself, although not very different

in practice (1.64 ± 0.08 cm; paired t-test t(15) = 3.8, p = .002, d = 0.96). Also, note that the vari-

ability of exit position in Low and High uncertainty trials was substantially higher than the cor-

responding endpoint variability (p< .001 for both). Together, these findings suggest that the

subjects’ strategy consisted of aiming at a general area depending on the target broad location

(left, center, or right), and then refined their endpoint position in the adjustment phase.

Effective adjustment time

We assessed the time subjects spent in the adjustment phase before they stopped making cor-

rections as a function of trial uncertainty (Low, High) and absolute perturbation size (0, 0.5,

1.5). The mean effective adjustment time (1.60 ± 0.06 s) was not affected by trial uncertainty

per se (main effect: Low, High; F(1,15) = 0.2, p = .66, Z2
p ¼ 0:01), but was significantly influenced

by perturbation size (main effect: perturbation size; F(1.93,28.9) = 20.9, � = 0.96, p< .001,

Z2
p ¼ 0:58) with no interaction (interaction: uncertainty × perturbation size; F(2,30) = 0.74, ��

1, p> .40, Z2
p ¼ 0:05). On average, there was no difference in adjustment time between base-

line and small (0.5) perturbation trials (time difference 1 ± 16 ms, p = .95, d = 0.01). However,

subjects spent significantly more time adjusting their endpoint position in large (1.5) perturba-

tion trials than baseline trials (time difference 93 ± 14 ms, paired t-test t(15) = 6.89, p< .001,

d = 1.72). Effective adjustment times were broadly scattered in the range 0–3 s and approxi-

mately symmetric around the mean (skewness 0.03 ± 0.08), with no sign of an accumulation

near 3 s. We found qualitatively similar results by defining as ‘effective ajustment time’ the

fraction of time that subjects spent moving in the adjustment phase, instead of the time elapsed

before they stopped moving. Velocity profiles during the adjustment phase show that subjects

performed a rapid, large correction for perturbations in perturbation trials, followed by occa-

sional small adjustments that become less frequent with time (panel B in S1 Fig). Together,

these results suggest that subjects had ample time to make the needed corrections in both Low

and High uncertainty trials.

Analysis of performance

Overall, subjects showed significant mean absolute residual errors (Fig 3A) that depended on

the uncertainty level (Low, High) and perturbation size (0, 0.5, 1.5). To determine how these

biases affected performance, we analyzed their mean score per trial as a function of trial
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uncertainty and perturbation size (Fig 3B). Interestingly, the mean score was significantly

influenced only by trial uncertainty (Low: 7.36 ± 0.38, High: 3.32 ± 0.14; main effect: F(1,15) =

177, p< .001, Z2
p ¼ 0:92), with no significant effect of perturbation size nor interaction

(p> 0.60 and Z2
p < 0:03 for both). Analogous results hold if we split the High-uncertainty tri-

als in left and right, depending on their location (having, thus, three levels of trial uncertainty:

High-Left, Low-Middle, High-Right), and five levels of perturbations (−1.5, −0.5, 0, 0.5, 1.5),

suggesting that differences are not hidden by the pooling procedure. These findings suggest

that subjects’ partial lack of correction did not significantly affect their performance.

We compared subjects’ average score with that of optimal Bayesian observers (see Methods)

which shared the same disks’ ratio estimation noise σρ as the subjects but correctly computed

the location of the center of mass (D = 2) and fully compensated for any movement error in

the adjustment phase (α = 0). The mean score expected from the ideal observer was 9.88 ± 0.12

for Low uncertainty trials and 6.03 ± 0.26 for High uncertainty ones (mean ± SD computed via

bootstrap). Overall, subjects’ average score was significantly lower (paired t-test p< .001 for

both conditions), with a relative efficiency of about *0.75 and *0.55 for respectively Low

and High uncertainty trials.

Our previous analysis (‘Mean residual error and variability’) showed that subjects’ correc-

tive strategy differed between the two levels of uncertainty, with an ‘almost-full’ correction for

Low uncertainty trial (*3% uncorrected perturbation) and a ‘partial’ correction for High

uncertainty trials (*16% uncorrected perturbation). We estimated what would have been the

score in the perturbed Low uncertainty conditions, had the participants adopted the partial

amount of correction as in the High uncertainty trials. To estimate subjects’ score in this hypo-

thetical case we considered their baseline, unperturbed responses and added the mean residual

Fig 3. Participants’ mean absolute residual errors and mean scores. A: Mean absolute residual error

(mean ± SE across subjects; residual errors are computed after removing the residual error for the 0

perturbation condition) by perturbation size (0, ±0.5, ±1.5 cm) and trial uncertainty (Low, High). These data

are the same as in Fig 2A, here shown in absolute value and aggregated by perturbation size. B: Participants’

mean scores (mean ± SE between subjects) by perturbation size and trial uncertainty. Even though the

residual errors (panel A) are significantly different from zero and significantly modulated by perturbation size

(p < .001) and the interaction between the uncertainty and perturbation size (p < .001), the scores (panel B)

are significantly affected only by the trial uncertainty (p < .001).

doi:10.1371/journal.pone.0170466.g003
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error from baseline, which we had previously estimated from both Low and High uncertainty

trials (corresponding respectively to almost-full and partial correction). We simulated also the

almost-full correction strategy as a control, expecting to observe no difference with baseline.

The score in each trial was recomputed through Eq (1). The original mean score in the Low

uncertainty condition, without perturbation, was 7.36 ± 0.43 (see Fig 3B). As expected, hypo-

thetical mean scores under the almost-full correction strategy were not significantly different

from baseline (7.52 ± 0.35 and 7.40 ± 0.39, respectively for small, ±0.5, and large, ±1.5, pertur-

bations; main effect: perturbation size, F(1.96,29.4) = 0.88, � = 0.84, p = .41, Z2
p ¼ 0:06). On the

contrary, hypothetical mean scores under the partial correction strategy were significantly dif-

ferent from baseline (6.59 ± 0.49 and 6.41 ± 0.41; main effect: perturbation size, F(1.99,29.9) =

16.1, �� 1, p< .001, Z2
p ¼ 0:52). These numbers mean that had the participants been equally

sloppy in their correction strategy in the Low uncertainty trials as they were in the High uncer-

tainty trials, the drop in score would have been statistically significant and notable (ΔScore

−0.97 ± 0.18; paired t-test t(15) = −6.31, p< .001, d = 1.58). Conversely, the data show that had

the participants been (almost) fully correcting for perturbations in the High uncertainty trials

as they were in the Low uncertainty trials, the difference in score would have been negligible

(no difference in score between perturbed and unperturbed High uncertainty trials, Fig 3B).

This suggests that participants’ adjustment strategy took into account task demands, even in

the absence of performance feedback in perturbation trials.

Bayesian model fit

We examined subjects’ mean residual errors as a function of the actual center of mass location

relative to the midpoint of the bar and mean perturbation level (Fig 4). Even though individual

participants’ datasets are variable, their mean residual errors exhibited a clear nonlinear pat-

tern as a function of center of mass location, partly driven by the prior over center of mass

locations (Fig 1C). We fit the Bayesian observer model to the individual datasets and obtained

a good qualitative agreement with the group data (Fig 4) and quantitative agreement for the

slope of mean residual error with respect to perturbation for individual subjects (R2 = 0.84; see

Fig 5). Fig 4 shows that there is a separation of biases (vertical shifts) for different amount of

perturbation, indicative of the influence of target uncertainty when making corrections. More-

over, we observe a regression to the means of each prior component (left and right), which

stems from the shape of the prior.

A crucial element of the model is a loss function that takes into account both a final target-

ing error cost and an additional cost of moving in the adjustment phase. Due to the width of

the posterior distribution in the High-uncertainty condition, the expected gain for an adjust-

ment is smaller than in the Low-uncertainty condition and therefore subjects may be less will-

ing to adjust. Our model qualitatively predicts that the lack of correction to external

perturbations should correlate with the trial uncertainty (as measured by the spread of the pos-

terior distribution).

The best fit model parameters to the data were: σρ = 0.063 ± 0.004 (estimated from the train-

ing session), D = 1.94 ± 0.04 (not significantly different from the correct value D = 2; t-test t(15)

= 1.51, p = .15, d = 0.38), σmotor = 0.76 ± 0.06 cm. Fits of the loss-related parameters showed

that for 3 subjects the adjustment loss was almost constant (σadj!1). For the other 13 sub-

jects we found: α = 3.1 ± 0.9, σadj = 2.8 ± 0.5 cm, suggesting that the cost changed slowly, with

a large length scale (at least as large as the largest perturbations of� ±2 cm), and in general

these subjects were giving a sizeable weight to the adjustment term (α> 1; t-test t(12) = 2.19,

p = .049, d = 0.61). Interpreting the adjustment cost as effort, this result is in qualitative agree-

ment with a previous study that found that effort had a considerabily greater relative weight in
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the loss function than the error term (relative weight *7 for the force production task

described in the study; see [44]).

Alternative observer models

We also analyzed the predictions of a number of alternative observer models: (1) a quadratic

loss model for the error term in Eq (7); (2) a power-function loss model for the adjustment

loss; (3) an alternative model which explains lack of correction as a miscalibration of the per-

ceived position of the cursor. Alternative models (1) and (3) are unable to account for the prin-

cipal effect that we observed in the experiment, that is a modulation of the amount of

correction that depends on target uncertainty. We found that model (2) is empirically indistin-

guishable from the inverted Gaussian adjustment loss (as previoulsy reported in another con-

text [43]), meaning that the exact shape that we posited for the adjustment loss is not critical to

explain our results. In conclusion, results from these alternative observer models further vali-

date our modelling choices. Detailed description and analysis of these alternative observer

models can be found in S1 Appendix.

Discussion

We used a task in which we could control the uncertainty of the location of a target (the center

of mass) and examine the extent to which subjects corrected for perturbations of their reach to

indicate the target location. We found that target uncertainty significantly affected subjects’

Fig 4. Mean residual error (bias) as a function of the location of the center of mass. Data points and

error bars are mean data ± SE across subjects in the test session (binned for visualization). Colors

correspond to different mean perturbation levels. Continuous lines are the fits of the Bayesian model to each

individual dataset, averaged over subjects (asymmetries are due to asymmetries in the data). For both data

and model fits, distinct perturbation levels are displayed with a slight offset on the x axis for visualization

purposes. Vertical shifts in residual error for different levels of perturbation correspond to different amounts of

average lack of correction (absolute residual errors shown in Fig 3A).

doi:10.1371/journal.pone.0170466.g004
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error correction strategy for perturbations of the visual feedback on a trial-by-trial basis, but in

such a way that the overall performance would not be hindered. That is, subjects almost fully

corrected for the perturbation when target uncertainty was low but only partially corrected

when the target uncertainty was high.

Effect of uncertainty on reaching behaviour

Our study differs from previous work that examines how uncertainty affects sensorimotor

behavior. Studies which show that subjects can integrate priors with sensory evidence to pro-

duce optimal, yet biased, estimates are consistent with a point estimate being used by the

motor system when enacting a movement [5]. The bias we show here is a bias arising from

error correction which acts in addition to any biases from Bayesian integration, and would not

be predicted if the motor system only had a point estimate of the target location. Moreover,

the partial corrections we see relate to the posterior width within a trial. This is in contrast

with studies which show that the distribution of perturbations can affect the corrections seen

from one trial to the next [45].

Qualitatively similar trial-to-trial, context-dependent responses to perturbations have been

observed when people are required to reach to spatially extended target [39]. In that case, cor-

rections happened during fast reaching movements and were compatible with external task

demands: errors along the larger dimension of the targets required smaller compensations to

still successfully hit the targets (according to the principle of minimal intervention). In our

Fig 5. Slope of mean residual error with respect to perturbation, comparison between data and

model. Each circle represents the slope of the mean residual error (Fig 2B) for a single subject for Low-

uncertainty trials (blue dots) and High-uncertainty trials (red dots). The x axis indicates the slope predicted by

the Bayesian observer model, while the y axis reports the slope measured from the data (slope of linear

regressions in Fig 2B). The model correctly predicts the substantial difference between Low-uncertainty and

High-uncertainty trials and is in good quantitative agreement with individual datasets.

doi:10.1371/journal.pone.0170466.g005
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experiment, however, subjects were sensitive to the implicit posterior width, as opposed to

explicit visual target width. Optimal feedback control predicts that, under time constraints,

subjects should fail to fully correct for errors that arise late in a movement due to additional

requirements of endpoint stability as well as temporal limitations, even if there is no target

uncertainty [28]. However, our bias is unrelated to time constraints or requirements of stabil-

ity as a 3 second adjustment time ensures that sensory delays cannot prevent corrections [29],

and our data show that subjects had ample time to correct for mistakes up to their desired pre-

cision. Also, note that our use of a long, fixed adjustment time window prevented decision

strategies that are available if subjects can choose when to end the adjustment period and

move to the next trial, thereby choosing to skip the more difficult trials [46].

An interaction between target uncertainty and response bias has been previously reported in

motor planning by Grau-Moya et al. [34]. In their task subjects were required to hit a visual tar-

get whose horizontal location uncertainty was manipulated. A robotic interface was used to gen-

erate a resistive force that opposed motion in the outward direction with the force linearly

related to the horizontal location of the hand. They found that on higher uncertainty trials sub-

jects chose to err on the side of the target with the lower resistive force. There are several key dif-

ferences of this previous study to ours. In their study, the ‘effort’ cost is explicit and externally

imposed, hit/miss performance feedback is provided on all trials, and explicit manipulations of

the cost are blocked by session. By contrast, here we showed an implicit, unconscious trade-off

between accuracy and effort in online error correction during a naturalistic task. Moreover, in

our study task-relevant perturbations (i.e., implicit manipulations of the cost) were unbe-

knownst to the subjects and intermixed on a trial-by-trial basis, and we did not provide perfor-

mance feedback on perturbed trials. Critically, their work does not address correction to

ongoing motor commands and shows that subjects can pre-plan a trade-off whereas we show

that the online error correction is affected by target uncertainty. Our work provides, therefore, a

stronger test of the interaction between uncertainty in the estimate and feedback control.

Finally, target uncertainty in our experiment emerged primarily from a complex mapping

from stimulus to target location in a naturalistic task (calculation of the center of mass of a

visual dumbbell). This type of uncertainty may differ from uncertainty arising purely from

sensory estimation noise, such as with visually blurred targets [29]. On the other hand,

‘computational’ uncertainty is a common component of everyday problems the motor system

needs to deal with, such as with object manipulation (see [47] for a review of different types of

sensorimotor uncertainty). In our modelling, for convenience we grouped all sources of noise

under the labels of ‘sensory’ (input) and ‘motor’ (output) noise but other components may

well be present. Our analysis applies here irrespective of the exact nature of uncertainty in tar-

get location.

Uncertainty and lack of correction

A somewhat surprising finding is that subjects did not fully correct for the perturbations, but

in a way that did not significantly affect performance. Clearly, a null effect on score differences

might simply be due to lack of statistical power in our analysis, but we demonstrated that had

subjects used the same partial correction strategy in all trials, their performance would have

dropped by almost one point on average. This means that subjects’ correction strategy for Low

and High uncertainty trials was well adapted to task demands.

A similar finding of partial, yet ‘optimal’, correction has been reported in a recent study by

van Dam and Ernst [48], that looked at subjects’ awareness of their own pointing errors. Par-

ticipants performed a reaching movement to a one-dimensional target, and visual feedback of

both the hand and target position was withheld after the commencement of the movement.
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After movement termination, subjects responded in a 2AFC task whether they had landed to

the left or to the right of the target. In the condition that is most related to our work, subjects

were also allowed to correct for their natural pointing mistakes, with no time limit. Also, at

this point subjects would receive a brief visual feedback (with small or large blur) about their

current endpoint position. The study reports that subjects hardly corrected for their mistakes,

but analysis showed that the applied correction gains were sensible (if not ‘optimal’) when tak-

ing into account the information subjects had about their own pointing errors and their cur-

rent endpoint position [48].

Our study differs from the work by van Dam and Ernst in several fundamental aspects.

Most importantly, their work probes a form of Bayesian integration between (a) the current

knowledge of endpoint position or, equivalently, estimated distance from the target (due to

proprioception and provided noisy visual feedback) and (b) the prior knowledge of the error

distribution (and target position). One of their main findings is that subjects seem to acquire

more detailed information of the endpoint position only after the end of the movement, even

for slow reaches [48]. We showed instead that in our task the lack of correction cannot be

explained by a simple form of Bayesian integration. Even if subjects integrated visual feedback

of the cursor with (conflicting) proprioceptive information, the expected biases would not

yield the observed pattern of uncertainty-dependent corrections.

The cost of effort and alternative explanations

Our data are consistent with an additional term in the loss function that can be interpreted as

‘effort’ (whether energy, time or computation; see [15, 21, 44]). The exact nature of this cost is

left open, as our experiment does not allow us to pinpoint the specific cost. Our model pro-

vides good fits to the subjects’ data, and, moreover, we showed that other common models of

loss used in Bayesian estimation and motor planning, which either ignore the cost of adjust-

ment or use a quadratic error loss term, fail to account for the key features of our datasets.

However, our model hinges on several assumptions, and more targeted experiments may

be needed to completely rule out specific alternative explanations. For example, one assump-

tion of the model is that the observer’s posterior distribution over target location is stable

within a trial and, for instance, unaffected by the reappearance of the cursor. If subjects took

the reappearance of the cursor as an independent piece of evidence, an incorrect belief update

(e.g., via a Kalman filter [49]) might produce effects similar to those that we observe. Such

behavior is sub-optimal and unlikely since the stimulus was always present on the screen and

subjects had plenty of time after the reappearance of the cursor to adjust their endpoint. Our

results are also consistent with an interpetation of subjects’ behavior as a form of risk-sensitiv-

ity [32, 34]. An interesting alternative hypothesis inspired by [48] is that subjects built an inter-

nal expectation of their average error during the trials with performance feedback, and,

therefore, were less willing to correct for large perturbations that were reputed to be unlikely.

This interpretation predicts, among other things, that the length scale of the adjustment cost,

σadj, should correlate with the spread of the errors made by the subject, but we did not find any

evidence for this pattern in the data.

A stronger empirical test for the interaction between effort and cost would consist of a

‘Bayesian transfer’ type of task [50], in which the same observers are tested on different scoring

functions, amounts of required effort [34], and training. In such a task, observers would not

necessarily be able to learn any arbitrary reward function, but we expect them to at least adapt

to qualitative features of the provided cost, such as skewness—as found, for example, in our

previous work on sensorimotor timing [7]. Arguably, the performance (and ‘optimal laziness’)
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will be correlated to the amount of training and inversely related to the complexity of the pro-

vided cost.

In conclusion, our results show that even for simple, naturalistic tasks such as center of

mass estimation, the inertia against additional correction can be noticeable and is significantly

modulated by trial uncertainty. At the same time, somewhat paradoxically, the effects on per-

formance of this lack of correction are negligible, suggesting that subjects’ may have been ‘opti-

mally lazy’ in correcting for their mistakes, according to the minimal intervention principle

[21, 23], even in the absence of performance feedback. Our findings suggest that there is no

clear-cut separation between the decision making and motor component of a task, since per-

ceptual or cognitive uncertainty affects subsequent motor behavior beyond action initiation, as

the posterior distribution is used even in the adjustment period.
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S1 Fig. Trajectory and velocity profiles. Full movement trajectory (A) and velocity profiles in
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mean trajectories and velocity profiles, thin lines are individual trials (subsampled for visuali-

zation). Different colors correspond to different mean perturbation levels (we show here only

-1.5, 0, and 1.5 cm). A: Full movement trajectories. For visualization, we removed from the x
position the random jitter of the dumbbell (linearly from y = 0 to y = 19 cm). B:Velocity pro-

files along the x axis during the 3 s adjustment phase. Subjects quickly reacted to the perturba-

tion in perturbed trials, and then performed minor adjustments.
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rior over center of mass; posterior distribution of estimated center of mass; optimal target after

adjustment with inverted Gaussian loss. Model fitting. Alternative observer models: quadratic
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