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Abstract

It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate

potential movements in the presence of random noise. Here we test this idea in the context

of both error-based and reinforcement-based learning. In a reaching task, we laterally

shifted a cursor relative to true hand position using a skewed probability distribution. This

skewed probability distribution had its mean and mode separated, allowing us to dissociate

the optimal predictions of an error-based loss function (corresponding to the mean of the lat-

eral shifts) and a reinforcement-based loss function (corresponding to the mode). We then

examined how the sensorimotor system uses error feedback and reinforcement feedback,

in isolation and combination, when deciding where to aim the hand during a reach. We

found that participants compensated differently to the same skewed lateral shift distribution

depending on the form of feedback they received. When provided with error feedback, par-

ticipants compensated based on the mean of the skewed noise. When provided with rein-

forcement feedback, participants compensated based on the mode. Participants receiving

both error and reinforcement feedback continued to compensate based on the mean while

repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement

feedback that rewarded hitting the target. Our work shows that reinforcement-based and

error-based learning are separable and can occur independently. Further, when error and

reinforcement feedback are in conflict, the sensorimotor system heavily weights error feed-

back over reinforcement feedback.

Author Summary

Whether serving a tennis ball on a gusty day or walking over an unpredictable surface, the

human nervous system has a remarkable ability to account for uncertainty when perform-

ing goal-directed actions. Here we address how different types of feedback, error and rein-

forcement, are used to guide such behavior during sensorimotor learning. Using a task
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that dissociates the optimal predictions of error-based and reinforcement-based learning,

we show that the human sensorimotor system uses two distinct loss functions when decid-

ing where to aim the hand during a reach—one that minimizes error and another that

maximizes success. Interestingly, when both of these forms of feedback are available our

nervous system heavily weights error feedback over reinforcement feedback.

Introduction

Error feedback and reinforcement feedback can each guide motor adaptation in a visuomotor

rotation task [1]. It has been proposed that error feedback and reinforcement feedback engage

different neural mechanisms [2]. Indeed, depending on the form of feedback used during

adaptation, newly acquired motor commands differ in terms of generalizability [1] and reten-

tion [3]. For error-based learning, it is suggested that adaptation occurs by minimizing error

to update an internal model [4]. For reinforcement-based learning, it is proposed that adapta-

tion is model-free and occurs by sampling motor outputs to find a set that maximizes the prob-

ability of task success [5]. Importantly, both these forms of learning can occur in the presence

of internally [6, 7] and externally [8, 9] generated random variability (noise).

Loss functions are central to several current computational theories of sensorimotor control

[10]. An error-based loss function describes the relationship between potential movements

and the associated costs of error [9]. In other words, an error-based loss function describes

how errors of different magnitudes are penalized. A reinforcement-based loss function

describes the relationship between potential movements and the associated probabilities of

reward (or punishment) [7]. The idea that the sensorimotor system uses a loss function to

select a statistically optimal movement in the presence of noise has been examined in tasks

involving error feedback [9, 11], reinforcement feedback [1], and both error and reinforce-

ment feedback together [1, 3, 7, 12].

In tasks involving error feedback, it has been proposed that the sensorimotor system may

use an error-based loss function to select movements [9]. As an example, here we will describe

how an absolute error loss function and a squared error loss function can be used to select aim

location during a game of darts. In this context, error refers to the distance of an individual

dart to the bullseye. Let us assume that, after several throws, when attempting to aim the darts

at a particular location that there is some spread, or distribution, of darts on a board. If the

chosen strategy is to minimize absolute error around the bulls-eye, one should adjust their aim

until the sum of the absolute distances of the darts is at its lowest possible value. This strategy

corresponds to selecting a single aim location that minimizes the cost (output) of an absolute

error loss function (i.e., ∑|errori|1). This absolute error loss function linearly weights individual

error magnitudes and would result in the median of the dart distribution being directly over

the bullseye. Similarly, if the chosen strategy is to minimize squared error around the bullseye,

one should adjust their aim such that the sum of the squared distances of the darts is at its low-

est possible value. This strategy corresponds to selecting a single aim location that minimizes

the cost of a squared error loss function (i.e., ∑|errori|2). The squared error loss function places

a heavier emphasis on minimizing large errors relative to smaller errors, in a quadratic fashion,

and would result in the mean of the dart distribution being directly over the bullseye.

Using tasks that involve noisy error feedback, some researchers have reported that senso-

rimotor behavior is best represented with an error-based loss function where the exponent

on the error term is between 1 (absolute error) and 2 (squared error) [9, 13], while others

report that an exponent of 2 best fits behavior [11, 14, 15]. Based on these works, it is possible
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that the error-based loss function that most aligns with behavior may to some extent be task

dependent.

The concept of loss functions also extends to sensorimotor tasks involving reinforcement

feedback, where the goal is maximize task success [5]. The optimal movement that maximizes

the probability of success can be found by minimizing the 0-1 loss function [9, 16]. Again, we

can describe this reinforcement-based loss function using a distribution of darts on a board.

With the 0-1 loss function, every dart that hits the bulls-eye is assigned a value of 0 and each

dart that misses the bulls-eye is assigned a value of 1. To minimize this loss function, one

should adjust their aim such that the greatest number of darts hit the bulls-eye. This strategy

maximizes the probability of success (by minimizing failure) and corresponds to placing the

mode of the distribution of darts directly over the bullseye. This loss function can easily be

extended to account for graded reinforcement feedback, where either the magnitude [7, 17] or

probability [18] of reinforcement feedback varies according to some function that is externally

imposed by the experimenter.

It has recently been shown that the sensorimotor system can maximize task success when

using only binary reinforcement feedback. Shadmehr and colleagues used a visuomotor rota-

tion task, where the true target was displaced from the displayed target by some small amount

[1, 18]. In line with a reinforcement-based loss function and without any error feedback, they

found that participants were able to adapt where they aimed their hand using only reinforce-

ment feedback that signaled whether or not the true target had been hit.

Researchers have also explored how reinforcement feedback and error feedback are used

when provided simultaneously [1, 3, 7, 12, 17, 19]. This has been done for a range of tasks and

has yielded mixed results. In studies reported by Trommershäuser and colleagues [7; 20–23],

participants performed rapid reaches with continuous visual feedback of their hand (visual

error feedback) to a large rewarding target (positive reinforcement) with an overlapping pun-

ishment region (negative reinforcement). Participants learned to aim to a location that maxi-

mized reward. Conversely, others have provided evidence that continuous error feedback

dominates over, or perhaps suppresses, reinforcement feedback during a visuomotor rotation

task [3, 12, 24]. Izawa and Shadmehr (2011) suggested that with a decrease in error feedback

quality, the sensorimotor system might increase its reliance on reinforcement feedback. How-

ever, a feature of these experiments is that they did not separate the predictions for where par-

ticipants should aim their hand when receiving reinforcement feedback or error feedback.

Such separation would provide a powerful way to investigate how the sensorimotor system

weights the relative influence of error feedback and reinforcement feedback when they are pro-

vided in combination.

Here, we designed two experimental reaching tasks that separate the predictions of error-

based and reinforcement-based loss functions on where to aim the hand. In doing so, we pro-

moted dissociation in behavior simply by manipulating the form of feedback provided to par-

ticipants. Participants reached to visual targets without vision of their arm. Unbeknownst to

participants, visual feedback of their hand (represented by a cursor) was laterally shifted from

trial to trial by an amount drawn from a skewed probability distribution. Skewed lateral shift

probability distributions allowed us to separate the predictions of error-based and reinforce-

ment-based loss functions on where to aim the hand. For example, a squared error loss func-

tion would predict that we should aim our hand to a location that corresponds to the mean of

the skewed lateral shift probability distribution. Conversely, a reinforcement loss function

would predict that we should aim our hand to a location that corresponds to the mode. Criti-

cally, skewed distributions separate several statistics, such as the mean and mode, that align

with the optimal predictions of error-based and reinforcement based loss functions. Thus, by

laterally shifting feedback using skewed noise and observing where participants reached, we
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were able to directly test how the sensorimotor system weights the relative influence of rein-

forcement feedback and error feedback when deciding where to aim the hand.

In Experiment 1 we tested how reinforcement feedback and error feedback influence where

participants aimed their hand. We predicted that participants receiving only error feedback

would minimize some form of error. We also predicted that participants receiving both error

and reinforcement feedback would increasing rely on reinforcement feedback with a decrease

in error feedback quality. Such a strategy predicts a different pattern of compensation for par-

ticipants who received both forms of feedback when compared to those who only received

error feedback. Surprisingly, we found that both error-only feedback and error plus reinforce-

ment feedback resulted in participants minimizing approximately squared error. In Experi-

ment 2 we used a modified task to verify that reinforcement feedback alone was capable of

influencing where to aim the hand. Indeed, we found that participants who received only rein-

forcement feedback maximized the probability of hitting the target. However, we again found

that participants minimized approximately squared error when both error and reinforcement

feedback were present. Taken together, our results describe how the sensorimotor system

uses error feedback and reinforcement feedback, in isolation and combination, when deciding

where to aim the hand.

Results

Experiment 1

Participants performed 2000 reaching movements in a horizontal plane (Fig 1). They were

instructed to “hit the target”. A cursor that represented the true hand position disappeared once

the hand left the home position. On each trial, the unseen cursor was then laterally shifted by an

amount drawn from a skewed probability distribution. Participants were randomly assigned to

one of three groups (n = 10 per group). The ErrorSR group and ErrorSL group both received

error feedback that was laterally shifted by a right-skewed (RS; Fig 2A) or left-skewed (SL)

probability distribution, respectively. The third group, Reinforcement + ErrorSR, received error

feedback and reinforcement feedback that were both laterally shifted by a SR probability distri-

bution. Importantly, the skewed lateral shift probability distributions were designed to separate

the mean and the mode, corresponding with the optimal solutions of error-based and reinforce-

ment-based loss functions, respectively. This separation allowed us to investigate how the senso-

rimotor system weights the relative influence of reinforcement feedback and error feedback

when deciding where to aim the hand. We hypothesized that with a decrease in error feedback

quality the sensorimotor system would increase its reliance on reinforcement feedback.

To manipulate error feedback quality, halfway through each reach the laterally shifted cur-

sor was either not presented (B1) or briefly presented (for 100ms) as a single dot (B0mm), a

medium cloud of dots (B15mm) or a large cloud of dots (B30mm), before disappearing once again

(Figs 1 and 2). The medium and large clouds were composed of 25 dots, such that the dots

were distributed according to a bivariate normal distribution with a standard deviation of

15mm and 30mm, respectively. Participants then attempted to hit the target by accounting for

the laterally shifted error feedback (B0mm, B15mm, B30mm, B1) they had experienced mid-reach.

All participants received additional error feedback (also a single dot) at the end of the reach on

trials in which single dot (B0mm) error feedback was presented mid-reach [8].

Participants in the Reinforcement + ErrorSR group were presented with reinforcement feed-

back only on trials in which the error feedback was presented as a single dot (B0mm). The rein-

forcement feedback was binary (the target doubled in size, a pleasant sound was played over a

loudspeaker, and participants received 2¢ CAD) and was presented when the laterally shifted

cursor hit the target.

Dissociating error-based and reinforcement-based loss functions
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On each trial, we estimated how a participant compensated for the lateral shift by recording

their hand location relative to the displayed target (see Fig 1). This was done for the four differ-

ent levels of error feedback quality and lateral shift magnitudes. The average compensatory

behavior of each group is shown in Fig 3. It can be seen that, with very little visual uncertainty

about the magnitude of a lateral shift (B0mm), all groups had a pattern of compensation that

Fig 1. Experiments 1 and 2: Participants held the handle of a robotic arm with their right hand. A semi-

silvered mirror reflected the image (visual targets, visual feedback) from an LCD screen (not shown) onto a

horizontal plane aligned with the shoulder. Participants made forward reaches from a home position, attempted to

move through a visual target and stopped once their hand passed over a horizontal line that disappeared when

crossed. Error (visual) feedback and reinforcement (target expands, pleasant sound and monetary reward)

feedback was laterally shifted relative to true hand position. The magnitude of any particular lateral shift was drawn

from a skewed probability distribution. Participants had to compensate for the lateral shifts to hit the target.

Compensation represents how laterally displaced their hand was relative to the displayed target. Experiment 1:

Laterally shifted error feedback was flashed halfway through each reach as a single dot (ς0mm), a medium cloud of

dots (ς15mm), a large cloud of dots (ς30mm), or withheld (ς1). The cursor and hand (not visible) paths shown above

illustrate compensation that depended on the amount of visual uncertainty (ς0mm and ς15mm conditions shown). In

the single dot (ς0mm) condition, participants received additional feedback (error or error + reinforcement) at the

target. Experiment 2: Participants were provided with error feedback and or reinforcement feedback only at the

target.

https://doi.org/10.1371/journal.pcbi.1005623.g001
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Fig 2. Experiment 1: By multiplying A) the probability of a lateral shift (prior probability) with B) the visually sensed lateral shift (likelihood

probability) we obtain C) an estimate of the lateral shift (posterior probability) given current evidence and previous experience. The different

colors in B-E represent the different amounts of visual uncertainty (ς0mm = single dot; ς15mm = medium cloud of dots; ς30mm = large cloud of

dots; or ς1 = feedback withheld). For a lateral shift of 22.5mm, D) shows the optimal compensation for three different loss functions that

either: i) minimize squared error, ii) minimize absolute error, or iii) maximize target hits, which is found by taking the mean (solid vertical line),

Dissociating error-based and reinforcement-based loss functions
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median (dashed vertical line), or mode (dotted line) of a posterior, respectively. Differences between these strategies become more

apparent with greater visual uncertainty. E) Optimal compensation for any lateral shift, given some level of visual uncertainty and a particular

loss function. Note that the optimal compensation is equal to but in the opposite direction of the estimated lateral shift, representing a

movement that counteracts a given lateral shift.

https://doi.org/10.1371/journal.pcbi.1005623.g002

Fig 3. Average pattern of compensation (filled circles) in Experiment 1 to different magnitudes of lateral shift (x-axes) and visual uncertainty (separate lines)

of participants receiving A) error feedback laterally shifted by skewed-right probability distribution, B) error feedback laterally shifted by a skewed-left

probability distribution (note: these data are ‘flipped’ to visually align with the other groups), and C) both reinforcement and error feedback laterally shifted by

a skewed-right probability distribution. A darker shade of blue signifies greater visual uncertainty. D) The best-fit power loss-function exponent (αopt) of a

Bayesian model that, in addition to characterizing how error was minimized, was also a sensitive metric to whether participants were influenced by

reinforcement feedback (see Methods). An exponent of 2.0 corresponds to minimizing squared error (upper dashed line), while an exponent of 1.0

corresponds to minimizing absolute error (lower dashed line). We found no significant differences in either the compensation (p = 0.956) or αopt (p = 0.187)

between groups. These findings suggest that all groups minimized approximately squared error, and that the sensorimotor system heavily weights error

feedback over reinforcement feedback when both forms of feedback are available. Error bars represent ±1 standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1005623.g003
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was well matched to the true magnitude of the shift. As error feedback quality decreased from

little uncertainty (B0mm) to some uncertainty (B15mm and B30mm) to complete uncertainty (B1),

participants’ pattern of compensation became increasingly less sensitive to the true magnitude

of the lateral shift. This is consistent with Bayesian inference in that participants were increas-

ing their reliance on their prior with a decrease in error feedback quality. Interestingly, the

average compensation of each group, even for participants who received both reinforcement

and error feedback, corresponded quite closely to the predictions made by a Bayesian model

whose loss function minimized squared error (compare Figs 3A–3C to 2E).

To quantify the extent to which reinforcement feedback had an influence on behavior, we

performed three separate analyses. First, we compared the average compensatory behavior

between groups. Second, we used a Bayesian model to characterize how error feedback is

used to guide behavior, and the extent to which reinforcement feedback influenced compen-

sation. Finally, we used a simple linear model to characterize how the relationship between

compensation and lateral shift is modulated by error signal quality, and the extent to which

reinforcement feedback influenced compensation. All three analyses supported the idea

that reinforcement feedback did not influence behavior when it was presented in combina-

tion with error feedback. Below, we describe each group’s compensatory behavior and the

results of the Bayesian model. For brevity, detailed results of the linear model are presented

in S2 Data.

Compensatory analysis. We compared average compensatory behavior between groups

for the condition in which error feedback quality was lowest (B1). In this condition, there was

the greatest separation between the predictions of a strategy that minimizes error and one that

maximizes the probability of hitting the target (Fig 2E; see dark blue lines). Based on previous

work [11, 14, 15], we expected participants that only received error feedback would minimize

approximately squared error. Thus, we expected the ErrorSR and ErrorSL groups to show a

pattern of compensation that corresponded closely to the mean of the skewed lateral shift

probability distribution. Based on the hypothesis that there would be increased reliance on

reinforcement feedback with a decrease in error feedback quality, we expected that when the

error feedback quality was lowest, the Reinforcement + ErrorSR participants would maximize

target hits. Thus we expected these participants to approach a pattern of compensation that

corresponded to the mode of the skewed lateral shift probability distribution. In summary,

given the separation between the mean and mode of the skewed lateral shift probability distri-

butions, we expected the Reinforcement + ErrorSR group to have a significantly different pattern

of compensation compared to the ErrorSR and ErrorSL groups.

Unexpectedly, we found no difference in the pattern of compensation between groups

[F(2, 27) = 0.045, p = 0.956, ô2
G < 0:001]. The average compensation magnitude across groups

was only *1mm away from the compensation location (−10mm) that minimized squared

error (Fig 3A–3C, dark blue lines). This finding contradicts the hypothesis that the sensorimo-

tor system would increase its reliance on reinforcement feedback with a decrease in error feed-

back quality. Rather, it suggests that the sensorimotor system heavily weights error feedback

over reinforcement feedback when both are presented in combination.

Bayesian model. To model participant behavior and further assess the original hypothe-

sis, we fit a Bayesian model to each participant’s data (Eqs 1–6). The model follows current

putative theories of sensorimotor control and allows us to simultaneously consider all error

feedback quality conditions (B0mm, B15mm, B30mm, B1). Briefly, the model describes how partici-

pants combine previously acquired information about lateral shifts (prior) with sensed visual

feedback (likelihood) to generate an estimate of the lateral shift (posterior). This lateral shift

estimate is then used to determine the magnitude of compensation that counteracts a lateral

Dissociating error-based and reinforcement-based loss functions
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shift. The model involves fitting four parameters. One parameter, αopt, describes how partici-

pants weight different magnitudes of error. The three remaining parameters, s
opt
sensedð1Þ, s

opt
sensedð2Þ,

s
opt
sensedð3Þ, characterize how participants integrate different levels of error feedback uncertainty

(single dot, medium cloud and large cloud of dots) when deciding where to aim the hand.

Briefly, αopt represents the exponent of a power loss function (Eq 3) that relates how errors

of different magnitudes influence subsequent movements. Larger values of αopt correspond to

placing a greater emphasis on reducing large errors relative to small errors. Here, we used αopt

to characterize how error was minimized and also as a metric to test if reinforcement feedback

influenced behavior. Given the distinct predictions for minimizing error and maximizing tar-

get hits (Fig 2E), αopt becomes sensitive to whether reinforcement feedback had an influence

on behaviour. Specifically, αopt would have a lower value if reinforcement feedback had an

influence on behavior. In this case, the pattern of compensation would correspond more

closely to the mode of the skewed lateral shift probability distribution. This would signify that

with a decrease in error feedback quality, participants’ compensation becomes increasingly

driven by reinforcement feedback and less by error feedback.

We found that there were no significant differences in αopt between groups [F(2, 27) =

1.786, p = 0.187, ô2
G ¼ 0:050; Fig 3D]. Again, this contradicts the hypothesis that with

decreases in error feedback quality the sensorimotor system increases its reliance on reinforce-

ment feedback. The average αopt across groups was 1.99 ± 0.11SE, which was significantly dif-

ferent from 1.0 (p< 0.001, two-tailed, ŷ ¼ 100:0%) and not significantly different from 2.0

(p = 0.961, two-tailed, ŷ ¼ 60:0%). An αopt equal to 1.0 or 2.0 represents minimizing absolute

error or minimizing squared error, respectively. Further, our αopt estimate was not signifi-

cantly different from the power-loss function with an exponent of 1.72 ± 0.008SD (p = 0.215,

two-tailed; ŷ ¼ 60:0%) reported by Körding and Wolpert (2004b). We refer the reader to

S1 Data for further details about the Bayesian model fits.

Linear model. We used a simple linear model to characterize the relationship between lat-

eral shift magnitude and compensation (hand position relative to the target). A separate fit was

made for each level of error feedback quality (B0mm, B15mm, B30mm, B1). For the intercepts and

slopes of the linear model, we found that there were no statistically reliable differences between

groups. As with the analyses described above, this is consistent with the idea that the sensori-

motor system heavily weights error feedback over reinforcement feedback when both forms of

feedback are available. S2 Data describes full details of this linear model.

Taken together, the three analyses reported above do not support the hypothesis that the

sensorimotor system increases its reliance on reinforcement feedback with a decrease in error

feedback quality. We found that participants minimized approximately squared error, even in

the presence of reinforcement feedback that promoted maximizing the probability of hitting

the target. This led to participants consistently missing the target when visual feedback was

withheld. Moreover, it suggests that the sensorimotor system heavily weights error feedback

over reinforcement feedback when guiding reaching movements.

Experiment 2

In Experiment 1 we found that when both error feedback and reinforcement feedback were

presented in combination, participant behavior seemed only driven by error feedback. There

is a possibility that the reinforcement feedback we used was not capable of influencing behav-

ior. To test this, in Experiment 2 some participants only received reinforcement feedback,

without error feedback. It is important to note that these participants only received reinforce-

ment feedback at the end of each movement. This represents a difference in experimental
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design from Experiment 1, whose participants (ErrorSR, ErrorSL, Reinforcement + ErrorSR)

often received feedback twice in a single movement—mid-reach and as they passed by the tar-

get. To properly control for this, in Experiment 2 we tested two additional groups that received

only error feedback, or error plus reinforcement feedback. Importantly, however, all partici-

pants in Experiment 2 only received feedback once per trial, at the end of movement. This

ensured that the frequency and location of feedback received by the three groups was the

same.

As a consequence of not providing error feedback mid-reach and only providing feedback

at the target, compensation to the skewed lateral shift probability distribution in Experiment 2

reflects a trial-by-trial updating of where to aim the hand. This differs from Experiment 1 in

which compensation reflects both online (via mid-reach feedback) and trial-by-trial (via target

feedback) updating of where to aim the hand. In the context of a Bayesian framework, this

would indicate in Experiment 2 that the prior representation of lateral shifts is updated after a

trial is completed, instead of both during and after a trial is complete as in Experiment 1.

One group of participants only received reinforcement feedback (Reinforcement), a second

group received only error feedback (Error), and a third group received both error and rein-

forcement feedback (Reinforcement + Error). In total, there were ninety participants (30 per

group). All participants performed 500 reaching movements in a horizontal plane. They were

instructed to “hit the target”. On every trial, a cursor that represented the true hand position

disappeared once the hand left the home position. The unseen cursor was laterally shifted by

an amount drawn from a skewed-right (SR; n = 15 per group; Fig 4A) or skewed-left (SL,

n = 15 per group) probability distribution.

Binary reinforcement feedback occurred when the laterally shifted cursor hit the target

(the target doubled in size, a pleasant sound was played over a loudspeaker, and participants

received 2 ¢ CAD). Error feedback was presented as a single dot at the end of the reach, at the

location where the laterally shifted cursor passed by or through the target.

For each reach we recorded each participant’s pattern of compensation, that is, how lat-

erally displaced his or her hand was relative to the displayed target (Fig 1). We calculated the

compensation location that would maximize the probability of hitting the target (xmaxðhitsÞ
aim ; Eqs

7, 8 and 12 and Fig 4C). This calculation incorporated a measure of movement variability at

the target, which was larger in this experiment, relative to Experiment 1, given that there

was no mid-reach error feedback (see Methods for further details). We also calculated the

compensation location that would minimize squared error of cursor positions about the target

(xminðerror2Þ
aim ; Eqs 7–11 and Fig 4B).

Fig 5 shows the pattern of compensation of a participant from each group. In response to

the skewed lateral shift probability distribution, it can be seen that the Reinforcement partici-

pant learned to compensate by an amount that was on average close to maximizing the

probability of hitting the target. Conversely, both the Error and the Reinforcement + Error
participants had an average compensation that corresponded to minimizing approximately

squared error.

Fig 6A shows the average group compensatory behavior in response to the skewed lateral

shift probability distribution. Compensation reached an asymptotic level after approximately

100 reaches (bin 10). Thus, for each participant, we averaged their last 400 trials to obtain a sta-

ble estimate of their behavior (Fig 6B). However, the results reported below were robust to

whether we averaged the last 100, 200, 300 or 400 trials (Table 1).

To test whether the form of feedback and skew direction influenced behavior, we compared

the average pattern of compensation between the three groups. We found that there was a

significant main effect of group [F(2, 84) = 8.928, p< 0.001, ô2
G ¼ 0:150]. There was no
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Fig 4. A) In Experiment 2 we used skewed probability distributions (black line, skewed-right distribution

shown) to laterally shift the cursor from the true hand position. These lateral shifts were experienced by

participants receiving error feedback, reinforcement feedback, or both forms of feedback. A, B, C) The x-axes

represent the distance from the displayed target and the solid grey curve represents the probability of cursor

position (y-axes) given intended aim of the hand, movement variability, and the skewed lateral shift probability

Dissociating error-based and reinforcement-based loss functions
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significant main effect of skew direction [F(1, 84) = 0.164, p = 0.687, ô2
G < 0:001] nor an inter-

action between group and skew direction [F(2, 84) = 0.498, p = 0.61, ô2
G < 0:001]. Thus,

under the influence of the same skewed lateral shift probability distribution, we found that

different forms of feedback resulted in significantly different compensatory behavior. Specifi-

cally, we found a statistically reliable difference between the Reinforcement and Error groups

(p< 0.001, one-tailed; ŷ ¼ 77:7%).

The Reinforcement group approached a compensatory position that would maximize their

probability of hitting the target [xmaxðhitsÞ
aim ] (p = 0.081, two-tailed; ŷ ¼ 63:3%; CI[7.1, 10.8mm]).

Further, the Reinforcement group’s pattern of compensation was significantly different from

one that corresponded to the minimization of squared error [xminðerror2Þ
aim ](p< 0.001, one-tailed;

ŷ ¼ 83:3%). These two findings suggest that the reinforcement feedback used in Experiments

1 and 2 is capable of influencing behavior in a way that aligns with a reinforcement-based loss

function.

One prediction in the context of reinforcement-based learning is that an individual’s move-

ment variability should influence their pattern of compensation to the lateral shifts. We tested

this for the Reinforcement participants in Experiment 2. We characterized movement variabil-

ity as the standard deviation of final hand position during the asymptotic phase of learning

(the last 400 trials). While at the group level, participants appeared to compensate by an

amount that approached an optimal strategy (see above), on an individual basis we did not

find a statistically reliable relationship between movement variability and compensation

(R2 = 0.003). This finding appears to differ from that reported by Trommershäuser et al.

(2003a). However, as expanded on in the Discussion, there are many differences between their

task and ours, and such findings are not uncommon [16, 25]. Nevertheless, the group level

data suggests the existence of a reinforcement-based loss function that maximizes the probabil-

ity of hitting the target.

As expected, the Error group minimized squared error (Fig 6B). Their pattern of compensa-

tion was aligned with one that, on average, minimized squared error (p = 0.795, two-tailed;

ŷ ¼ 50:0%). It was also significantly different from one that maximized their probability of

hitting the target (p< 0.001, one-tailed; ŷ ¼ 100:0%).

The results of Experiment 2 support the idea that the human sensorimotor system can

update where to aim the hand during a reach by using only reinforcement-based feedback (to

maximize the probability of hitting the target) or only error-based feedback (to minimize

approximately squared error). As in Experiment 1, we again found that participants in the

Reinforcement + Error group minimized squared error, and that reinforcement feedback did

not influence behavior. Participants in the Reinforcement + Error group exhibited a pattern of

compensation that was significantly different from the Reinforcement group (p = 0.004, two-

tailed; ŷ ¼ 76:7%), but was indistinguishable from participants in the Error group (p = 0.922,

two-tailed; ŷ ¼ 52:2%).

distribution. The orange, dashed lines represent the mean of the cursor position probability distribution and

corresponds to minimizing error [min(error2)]. The dark red, dashed lines represent the mode of the cursor

position probability distribution and corresponds to maximizing target hits [max(hits)]. A) The probability of

cursor position when the intended aim of the hand is aligned with the displayed target [xtargetaim ¼ 0mm]. B) The

probability of cursor position when the aim of the hand minimizes square error [xminðerror
2Þ

aim ¼ 5:4mm]. Notice that

the mean (orange, dashed line) of the cursor position probability distribution is directly aligned with the

displayed target. C) The probability of cursor position when the aim of the hand maximizes target hits

[xmaxðhitsÞaim ¼ 10:7mm]. Here, the mode (dark red, dashed line) of the cursor position probability distribution is

aligned with the displayed target.

https://doi.org/10.1371/journal.pcbi.1005623.g004
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Fig 5. Pattern of compensation of a typical participant in the: A) reinforcement group, B)

reinforcement + error group, and C) error group. All experimental trials are represented in the line graph

(bins 1–50), where each point represents the average of 10 trials. The circles at bin 0 represent the average of

the first three trials and show each participant’s behaviour immediately after perturbation onset, which was

similar across groups (see Fig 6). For each group, the upper dashed line represents the optimal compensation
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Taken together, the results from both Experiment 1 and 2 support the idea that the sensori-

motor system heavily weights error feedback over reinforcement feedback when updating

where to aim the hand during a reaching task.

Discussion

A key aspect of this study was the use of skewed noise to separate the optimal aim locations

predicted by reinforcement-based and error-based loss functions. This allowed us to probe

how the sensorimotor system uses reinforcement feedback and error feedback, in isolation

and combination, to update where to aim the hand during a reaching task. We found that

participants minimized approximately squared error when they received only error feedback.

Participants maximized the probability of hitting the target when they received only reinforce-

ment feedback. When both forms of feedback were presented in combination, participants

minimized approximately squared error at the expense of maximizing the probability of hit-

ting the target. This finding suggests that the sensorimotor system heavily weights error feed-

back over reinforcement feedback when deciding to aim the hand.

(location to aim the hand) that maximizes the probability of hitting the target [xmaxðhitsÞaim ]. The lower dashed line

represents the optimal compensation (location to aim the hand) that minimizes squared error [xminðerror
2Þ

aim ]. It can

be seen that the Reinforcement participant had a pattern of compensation that on average maximized target

hits. Conversely, both the Error participant and the Reinforcement + Error participant learned a compensation

that on average minimized approximately squared error. This behavior was consistent across participants.

Error bars represent ±1 standard deviation.

https://doi.org/10.1371/journal.pcbi.1005623.g005

Fig 6. Average pattern of compensation of each group to the skewed lateral shift probability distribution for A) separate bins of trials and B)

averaged across the last 400 trials. In A), all experimental trials are represented in the line graph (bins 1–50), where each point represents the average

of 10 trials. The circles at bin 0 represent the average of trials 1–3 and are displayed to show the similarity between groups immediately after perturbation

onset. In both A) and B), the upper dashed line represents the optimal compensation (location to aim the hand) that maximizes the probability of hitting the

target xmaxðhitsÞaim , based on the movement variability of the Reinforcement group. The lower dashed line represents the optimal compensation (location to aim

the hand) that minimizes squared error xminðerror
2Þ

aim . These findings suggest that the sensorimotor system heavily weights error feedback over reinforcement

feedback when both forms of feedback are available. Error bars represent ±1 standard error of the mean. � p < 0.05.

https://doi.org/10.1371/journal.pcbi.1005623.g006
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In both Experiments, we found that the sensorimotor system minimized approximately

squared error when using error feedback to guide reaching movements. This agrees well with

previous work that examined how humans adapt to a small range of asymmetrical or multi-

modal noise during proprioceptive [11, 14] and visual [15] tasks. In Experiment 1 and 2, we

also used small ranges of asymmetrical noise that respectively spanned 3cm and 2.8cm of the

workspace. There is some evidence that as noise exceeds this range, the sensorimotor system is

less sensitive to large errors [9, 26].

While in the present study our data points to an error-based loss function based on squared

error, other studies have focused on other mathematical forms. Another commonly examined

loss function is the inverted-Gaussian [9, 13, 16], which places greater emphasis on penalizing

smaller errors and less emphasis on penalizing larger errors. Sensinger and colleagues (2015)

used a biofeedback task that involved controlling a myoelectric signal corrupted with skewed

noise similar to that used by Körding and Wolpert (2004b). They then examined several differ-

ent loss functions and their corresponding best-fit parameters given the data. The parameters

of a loss function define how errors of different sizes are weighted relative to one another. For

the inverted-Gaussian loss function they found its best-fit parameter was much larger (9

times) than that found by Körding and Wolpert (2004b). They suggest that the inverted Gauss-

ian loss function may not be generalizable across different motor tasks. They did, however,

estimate a best-fit power loss function exponent of 1.69, a value that was quite close to the fig-

ure of 1.72 estimated by Körding and Wolpert (2004b). In the present study we estimated an

average best-fit power loss function exponent closer to 2.0, which was not significantly differ-

ent from 1.72. These differences may be due to the range of noise and possibility the shape of

the skewed noise. Nevertheless, and similar to others [11, 14, 15], we were able to explain 80%

to 89% of the variability in our data (see S1 Data) using a power loss function that minimized

approximately squared error (i.e., αopt� 2.0).

In the current paper, we use a Bayesian framework to interpret and model how the sensori-

motor system uses error feedback and reinforcement feedback when deciding where to aim

the hand. This framework combines prior experience and current sensory information, such

as sensory cues [27] and sensory uncertainty [8], in a statistically optimal fashion. By account-

ing for both prior and current information, the Bayesian framework has successfully explained

a broad range of phenomena, such as reduced movement variability [8, 28], perceptual illu-

sions [29] and online feedback control [30].

An alternative computational framework for error-based learning has been instrumental to

our understanding of how the sensorimotor system learns to adapt on a trial-by-trial basis

[31–35]. Of these models, the ones that account for sensorimotor noise [32, 33, 35] have been

termed, ‘aim point correction’ models [36]. van Beers (2009) extended upon this framework

with the ‘planned aim point correction’ model. This model separates central movement plan-

ning noise and peripheral movement execution noise. This model was able to explain reach

adaptation patterns in a naturalistic task while demonstrating that the sensorimotor rate of

Table 1. Group comparisons, p-values and effect sizes (ŷ), were robust to whether the last 100, 200, 300 and 400 trials were averaged together.

Group Comparisons: p-value and effect size (ŷ)

Binned Trials Last 100 trials Last 200 trials Last 300 trials Last 400 trials

Reinforcement vs. Error p = 0.024, ŷ ¼ 66:3 p = 0.006, ŷ ¼ 72:0 p = 0.007, ŷ ¼ 73:0 p = 0.001, ŷ ¼ 77:7

Reinforcement vs. Reinforcement + Error p = 0.023, ŷ ¼ 66:3 p = 0.005, ŷ ¼ 73:1 p = 0.010, ŷ ¼ 73:0 p = 0.004, ŷ ¼ 76:7

Error vs. Reinforcement + Error p = 0.580, ŷ ¼ 53:7 p = 0.753, ŷ ¼ 51:2 p = 0.910, ŷ ¼ 51:0 p = 0.922, ŷ ¼ 52:2

https://doi.org/10.1371/journal.pcbi.1005623.t001
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learning was optimal given the properties of planning and execution noise. It has been success-

fully applied to explain differences in novice and expert dart throwers [37], and can account

for both learning in task-relevant dimensions and exploratory (random walk) behaviour in

task-irrelevant dimensions [38]. Aim point correction models, which can be derived from a

Bayesian framework, are attractive because they are computationally tractable and learning is

modeled using terms and constructs from sensorimotor control, such as planning noise,

motor commands, efference copies, and execution noise [36]. In their current formulation,

however, these models do not incorporate how the sensorimotor system responds to errors of

differing magnitudes and different amounts of sensory uncertainty. We accounted for both of

these factors with our Bayesian model, which was essential for testing our hypotheses. To fur-

ther study how the sensorimotor system adapts on a trial-by-trial basis in experiments such as

the ones used in this paper, a useful future direction would be incorporating the effects of sen-

sory uncertainty and how errors of differing magnitudes are penalized.

While it is most common to study adaptation while providing only error feedback,

researchers have also examined adaptation in the context of both reinforcement and error

feedback [1, 3, 7, 12, 20–23, 39, 40]. Using a visuomotor rotation task, Izawa and Shadmehr

(2011) examined how the sensorimotor system uses both a reinforcement and error feedback

when deciding where to aim the hand during a reach. They manipulated the quality of error

feedback presented on each trial in the following three ways: first, by displaying the cursor

both at mid-reach and also at the target (mid-reach and target error-feedback condition); sec-

ond, by displaying the cursor only at the target (target error-feedback condition); and thirdly,

by withholding visual feedback of the cursor completely (no error-feedback condition). In

each of these conditions, participants received reinforcement feedback for hitting the target

(the target expanded and a pleasant sound was played over a loudspeaker). They modeled par-

ticipants’ aiming behavior using a modified Kalman filter, which increasingly relied on rein-

forcement feedback as the quality of error feedback decreased. However, in the Izawa and

Shadmehr (2011) experiment, the predicted aim location for minimizing error and maximiz-

ing the probability of hitting the target overlapped, making it difficult to determine the extent

to which participants’ adaptation was driven by error feedback versus reinforcement feedback.

Izawa and Shadmehr (2011) found greater movement variability in trials that provided

feedback only at the target when compared to trials that provided feedback both mid-reach

and at the target. Their model attributed a greater proportion of adaptation due to reinforce-

ment feedback on trials in which error feedback was provided at the target, compared to trials

in which error feedback was provided both mid-reach and at the target. While this is certainly

a possibility, an alternative explanation for these behavioral differences is that the participants

receiving feedback both mid-reach and at the target, unlike those receiving feedback only at

the target, were able to compensate for accumulated sensorimotor noise error they sensed

mid-reach. That is, it is difficult to determine whether behavioral differences between condi-

tions were a result of reinforcement feedback, differences in the amount of (or location of)

feedback, or both.

In the present study we designed experiments aimed at resolving both of these potential

issues. First, we were able to separate the optimal aim location of error-based and reinforce-

ment-based loss functions. Second, for each group in Experiment 2 we equated the amount of

and location of feedback by providing it only at the target. We found no differences in com-

pensation between participants who received error feedback and participants who received

both error and reinforcement feedback. This finding aligns with the work of Vaswani et al.

(2015), who similarly found that reinforcement feedback did not influence behaviour when it

was combined with error feedback. This suggests that the sensorimotor system heavily weights

error feedback, when available, over competing reinforcement feedback.
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Trommershäuser and colleagues (2003a) provided evidence that humans can use reinforce-

ment feedback to adjust where they aim their hand during a reaching task. In their study,

participants reached to a screen displaying a rewarding target area (positive reinforcement:

monetary gain) and an overlapping penalty area (negative reinforcement: monetary loss).

Thus, participants received both reinforcement feedback for hitting the target, and error feed-

back that indicated where they touched the screen relative to the target. The reward and pen-

alty for hitting these respective areas were held constant for a given block of trials. In their

task, internal sensorimotor noise created a smooth and differentiable reinforcement landscape

within and surrounding the reward and penalty areas. They found participants accounted for

their internal sensorimotor noise and aimed towards the peak of this reinforcement landscape

to maximize the probability of hitting the target. In our task, we found that participants receiv-

ing only reinforcement feedback maximized the probability of hitting the target, but partici-

pants who received both reinforcement and error feedback minimized squared error.

Here, we suggest two potential reasons why participants receiving both reinforcement and

error feedback continued to minimize error in our task, and appeared not to be driven by rein-

forcement feedback. First, it may be related to how the reinforcement region was spatially

defined [10]. Second, the finding may only be present during implicit learning [41]. In the

Trommershäuser et al. (2003a) experiments, the reinforcement regions were static and clearly

defined in the workplace by the bounds of the penalty and reward areas. Thus, participants

may have used error feedback to guide their aim towards the location they explicitly learned

would maximize the probability of hitting the target. In our task, a stationary target was dis-

played on the screen. However, due to the lateral shifts, this target did not always represent the

true reinforcement region. Moreover, similar to other experiments that used a small range of

external noise and in which participants were unaware of their average change in reaching aim

direction [8], our task was most likely implicitly learned [41]. Thus, unlike Trommershäuser

et al. (2003a), our participants may have had to implicitly build a representation of the proba-

bilistically varying reinforcement regions.

In the absence of any error feedback, we found that participants receiving only reinforce-

ment feedback compensated by an amount that approached the optimal compensation that

maximized the probability of hitting the target. In accordance with a loss function that maxi-

mizes the probability of hitting the target, this suggests that the sensorimotor system was able

to learn and compensate for the probabilistically provided reinforcement feedback. Despite an

average compensation across participants that did not differ from the optimal solution, we did

not find a correlation between final compensation and movement variability on an individual

basis. This differs from Trommershäuser et al. (2003a), but as mentioned above there are

many differences in experiment design between their task and ours. However, optimal perfor-

mance across participants with suboptimal performance on an individual basis has been previ-

ously reported when using complex distributions (i.e., skewed or bimodal distributions) to

perturb feedback [16, 25]. From a probabilistic viewpoint, suboptimal performance on an indi-

vidual basis may partially be explained by individual differences in exploratory movement var-

iability [42], as well as inaccurate [10], approximate [15] or stochastic [16] representations of

the prior, likelihood and posterior.

To produce accurate goal-directed movements, our nervous system must account for

uncertainty and nonlinearities present in our environment [8, 9, 11], in the biomechanics of

our body [43, 44], and in our nervous system [6, 45–47]. By using skewed probability distribu-

tions, we were able to separate the optimal aim locations predicted by reinforcement-based

and error-based loss functions. The results of our experiments demonstrate that by changing

the form of feedback provided to participants, reinforcement-based and error-based learning

are dissociable and can occur independently. Further, we also found that when both a
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reinforcement and error feedback are available, the sensorimotor system relies heavily, perhaps

exclusively, on error feedback when deciding where to aim the hand during targeted reaching.

Our work consolidates and builds upon previous research to provide insight into how the sen-

sorimotor system performs model-based and model-free learning.

Methods

Participants

30 individuals (20.2 ± 2.7 years) participated in Experiment 1 and 90 individuals (20.6 ± 2.4

years) participated in Experiment 2. All participants were healthy, right-handed and provided

informed consent to procedures approved by Western University’s Ethics Board.

Apparatus

In both experiments, participants performed right-handed reaching movements in a horizon-

tal plane while grasping the handle of a robotic arm (InMotion2, Interactive Motion Technolo-

gies, Massachusetts, United States; Fig 1). A semi-silvered mirror occluded vision of the arm

and projected images from an LCD screen onto a horizontal plane aligned with the shoulder.

These images included visual targets and, in certain conditions, real-time visual feedback of

either the true or laterally shifted hand position. The workspace was calibrated such that the

centroid of unperturbed visual feedback matched the center of the robotic handle. An air-sled

supported each participant’s right arm and provided minimal friction with the desk surface.

An algorithm controlled the robot’s torque motors and compensated for the dynamical prop-

erties of the robotic arm. Hand position was recorded at 600Hz and stored for offline analysis.

Protocol

Experiment 1. On each trial, participants either received error feedback, or both error

and reinforcement feedback. Participants were randomly assigned to one of the following

three groups: 1) error, skewed-right group (ErrorSR), 2) error, skewed-left group (ErrorSL), and

3) reinforcement plus error, skewed-right group (Reinforcement + ErrorSR). Superscripts indi-

cate the skewed lateral shift probability distribution from which laterally shifts were drawn on

a trial-to-trial basis. Skew direction was skewed-right (SR) or skewed-left (SL).

Each participant performed 2000 reaching movements. For each trial, participants started

from a home position, reached through a target, and stopped once the robot handle passed

over a horizontal line that disappeared when crossed (Fig 1). The diameter of both the home

position and the target was 0.5cm. We instructed participants to “hit the target”. To ensure

that participants able to adequately adjust for error feedback received mid-reach, we instructed

participants to move at a comfortable pace that was greater than 0.5sec per reach. If partici-

pants moved too quickly, the home position, target and horizontal line all turned from blue to

red and they were instructed to slow down their movement.

When participants left the home position the cursor representing their true hand position

disappeared. Once the cursor disappeared, its location was laterally shifted along the x-axis

(Fig 1) using a magnitude drawn from a skewed probability distribution (SR or SL). After par-

ticipants had moved forward 10cm, halfway between the home position and target, the laterally

shifted cursor briefly reappeared for 100ms and then disappeared again (as in [8]). To experi-

mentally manipulate visual uncertainty (error feedback quality), this mid-reach error feedback

was presented on any given trial either as a single dot (B0mm), a medium cloud of 25 dot

(B15mm), a large (B30mm) cloud of 25 dots, or withheld (B1). The bivariate normally distributed

x- and y-coordinates of the 25 dots used for the medium and large clouds had a standard
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deviation of 15 and 30mm, respectively, and were generated using the Box-Muller transforma-

tion [48]. The presentation of these 4 types of error feedback was randomized across trials.

The relative presentation frequency of the four types of error feedback, B0mm, B15mm, B30mm, B1,

followed a 3: 1: 1: 1 ratio, respectively. For each trial, the centroid of the laterally shifted cursor

represented true hand position plus a lateral shift drawn from one of the skewed probability

distributions described above.

In Experiment 1, the SR (mean = 10.0mm, median = 5mm, mode = 0.0mm, range = 0.0 to

30mm; Fig 2A) and SL (mean = 10mm, median = 15mm, mode = 20.0mm, range = −10 to

20mm) probability distributions were designed so that the mean was the same (10mm) and

the modes were on the opposite sides of the mean (0.0 and 20mm, respectively). Further, we

designed these probability distributions such that the modal lateral shift occurred with a much

higher relative frequency (42.8%) than the other six lateral shifts (9.5%). This difference in fre-

quency increased the possibility of the sensorimotor system being able to distinguish the mode

from the other lateral shifts. Lateral shift magnitude was randomly sampled from a skewed

probability distribution with replacement [8]. Opposite skew directions (left versus right)

assured that biomechanical (e.g., joint comfort, interaction torques, control effort, etc.) or

other potential factors did not influence the results by causing a systemic left or right bias in

reaches. That is, we controlled for spurious biases to be assured that participants were on aver-

age compensating for a lateral shift estimate that lay somewhere close to or within the bounds

of the mean and mode of the skewed lateral shift probability distributions, regardless of skew

direction.

For the full vision condition (B0mm), participants from all groups received error feedback

(single dot) as their hand passed by the target. This error feedback was provided along the x-

axis that passed through the target and was presented using the same lateral shift as the error

feedback provided mid-reach. By using only x-position feedback at the target, we reduced the

task goal and subsequent analysis to one dimension. In addition to the target error feedback,

the Reinforcement + ErrorSR group also received binary reinforcement feedback when the lat-

erally shifted cursor hit the target [1]. This feedback included visual (target briefly doubled in

size), auditory (pleasant sound) and monetary (2 ¢ CAD) components.

By providing error and reinforcement feedback at the target only in the full vision condi-

tion, we were able to assess whether participants were: a) learning a mapping between visual

feedback to an estimate of a lateral shift or b) building a representation of the skewed lateral

shift noise distribution (i.e., a prior) [8]. If participants were simply using a mapping between

visual feedback and lateral shifts, they could only do so for the full vision condition (B0mm) and

apply this same mapping to the medium (B15mm) and large (B30mm) cloud conditions. In Exper-

iment 1, such a mapping would cause participants to compensate similarly for all three condi-

tions (B0mm, B15mm, B30mm), despite varying levels of error feedback uncertainty. In other

words, they would not combine previous experience with current evidence, making them

unable to produce a statistically optimal estimate of any given lateral shift. Alternatively, par-

ticipants could build up a representation of the underlying probability distribution used to

specify lateral shifts, and compensate in a way that aligns with a Bayesian inference. That is,

they would combine previous experience (prior) with current information (likelihood) to pro-

duce a statistically optimal estimate (posterior) of any given lateral shift. In Experiment 1, this

would be behaviorally expressed as a different pattern of compensation for each of the three

conditions (B0mm, B15mm, B30mm), which are characterized by different levels of error feedback

uncertainty.

Once a participant’s hand stopped past the horizontal line, this line disappeared. The robot

then moved their hand from its stopped position back to the home position in one second,
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using a minimum jerk (3rd derivative of position) trajectory [49]. We scheduled 1min breaks

every 250 trials to reduce fatigue.

Experiment 2. Here we used a modified version of the task used in Experiment 1 that

allowed us to 1) verify that the sensorimotor system can update where to aim the hand when

using only probabilistically provided reinforcement feedback, 2) to control for the frequency

and location of feedback across groups, and 3) replicate the finding that the sensorimotor sys-

tem heavily weights error feedback over reinforcement feedback.

90 participants either received reinforcement feedback, error feedback, or both. They were

randomly assigned to and equally divided among the following three groups: 1) reinforcement

group (Reinforcement), 2) error group (Error), and 3) reinforcement plus error group (Rein-
forcement + Error). For each group, an equal number of participants received error and or

reinforcement feedback that were laterally shifted with a skewed-right (SR) or skewed-left (SL)

probability distribution.

Each participant performed 500 forward reaches to a target. Participants started from a

home position, attempted to reach through a target 20cm away, continued 2 more cm and

stopped once they passed over a horizontal line that disappeared once crossed. We instructed

all participants, “to hit the target, to move at a comfortable pace, and that it is a very difficult

task and impossible to hit the target every time”.

Cursor position, whether visible (error feedback) or not visible (pure reinforcement feed-

back), was again laterally shifted from the true hand position from trial to trial by an amount

drawn from a skewed probability distribution (i.e., cursor position = true hand position + ran-

dom lateral shift). In Experiment 2, the two skewed lateral shift probability distributions, SR (Fig

4; mean = −5.6mm, median = −14.0mm, mode = −14.0mm, range = −14.0 to 14.0mm) and SL

(mean = 5.6mm, median = 14.0mm, mode = 14.0mm, range = −14.0 to 14.0mm), had the same

shape but opposite skew. These distributions each contained 500 lateral shifts that were randomly

sampled until depletion. The modal lateral shift was presented with a frequency of 60% (300 tri-

als) and the remaining two lateral shifts were presented on 20% of trials (100 trials each). Both

distributions were characterized by three lateral shift values of −14.0mm, 0.0mm, and 14.0mm.

The spacing between the three lateral shifts was determined by considering the average

movement variability of ten pilot participants who made reaches void of any feedback. By

matching the spacing between lateral shifts to movement variability, we were able to ensure

that participants were naturally exposed to the different regions of the workspace that provided

positive reinforcement. This design was critical for participants in the Reinforcement group,

since they did not have the aid of error feedback to help guide their reaches. The target diame-

ter (14mm) matched the spacing between adjacent lateral shifts.

In Experiment 2, feedback was only provided along a lateral axis that passed through the

target (Fig 1). For the Error and Reinforcement + Error groups, error feedback was a single dot

that appeared along the x-axis where the laterally shifted cursor passed by or through the tar-

get. The Reinforcement and Reinforcement + Error groups received reinforcement feedback

when the displaced cursor hit the target (within 14mm). This reinforcement feedback included

visual (target briefly doubled in size), auditory (pleasant sound) and monetary (2 ¢ CAD) com-

ponents [1, 17, 50]. At the end of each movement, the robot moved their hand back to the

home position using a minimum jerk trajectory [49].

Data analysis

We performed all offline analyses with custom Python (2.7.9) scripts.

Experiment 1. For each of the 2000 trials, we recorded how participants compensated,

that is, their x-coordinate position where the hand passed through or by the target (Fig 1),
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given the error feedback quality and the magnitude of the lateral shifted feedback. We analyzed

the last 1000 reaches to ensure that participants had sufficient training to learn the underlying

lateral shift distribution. For each participant, we found their average compensation for all 28

combinations of the seven different lateral shifts (i) and four different levels of visual uncer-

tainty (j).
To make visual and statistical comparisons regardless of skew, the recorded compensation

data for participants in the ErrorSL were ‘flipped’ about the aligned position (here, the mean) of

the two skewed lateral shift probability distributions [16]. In Experiment 1, if the SL distribu-

tion were rotated about this position it would be identical to the SR distrubtion.

We used a Bayesian model to calculate participant’s estimate of their lateral shift halfway

through a reach (Eq 1). By multiplying the probability of a true lateral shift [prior probability =

p(xshift(i))] with the probability of a participant’s visually sensed lateral shift [likelihood proba-

bility = p(xsensed(i)|xshift(i), σsensed(j))] that is based on their mid-reach error feedback, we

obtained the probability of their estimated lateral shift along the x-axis [posterior probability =

p(xshift(i)|xsensed(i), σsensed(j))]. This is summarized by

pðxshiftðiÞjxsensedðiÞ; ssensedðjÞÞ / pðxsensedðiÞjxshiftðiÞ; ssensedðjÞÞ � pðxshiftðiÞÞ; ð1Þ

where/ represents proportionality between both sides of the equation, � indicates a point-

wise multiplication between probability distributions, i represents some lateral shift, and j rep-

resents some amount of visual uncertainty. xsensed(i) and σsensed(j) are a participant’s estimate of

the visual feedback centroid and the uncertainty associated with some lateral shift, respectively.

Like Körding and Wolpert (2004a), we assumed that xsensed(i) matched the centroid of the lat-

eral shift and that p(xsensed(i)|xshift(i), σsensed(j)) was normally distributed:

pðxsensedðiÞjxshiftðiÞ; ssensedðjÞÞ ¼
1

ssensedðjÞ

ffiffiffiffiffiffi
2p
p e

�
ðxshiftðiÞ � xsensedðiÞÞ

2

2s2
sensedðjÞ : ð2Þ

Eq 1 was calculated numerically.

The posterior represents the probability of all possible lateral shifts halfway through the

reach. The nervous system must select one action while considering many possible lateral

shifts, weighted by their probability. The optimal action selection depends on the posterior

and some strategy reflecting the goal(s) of the nervous system. For example, participants could

compensate by an amount that aligns with the mode of the posterior (maximum a posteriori)

if the sensorimotor system was maximizing the probability of hitting the target. Alternatively,

participants could compensate by an amount that aligns with the median or mean of the poste-

rior to minimize absolute or squared error, respectively. Thus, given previous experience, cur-

rent information and a given strategy, we can find the “point estimate” from the posterior that

aligns with the statistically optimal compensation (compopt
i;j ) (Eq 5).

We used a Bayesian model (Eqs 1 and 2) to predict what participants’ compensation would

be if they attempted to maximize success (number of target hits), minimize absolute error or

minimize squared error by finding the mode, median and mean of the posteriors, respectively.

The results of this simulation are shown in Fig 2.

Upon visually examining the data, we found that all groups appeared to be minimizing

some form of error (e.g., compare Figs 2E to 3A–3C). To test for differences between groups,

we used the following power loss function to model each participant’s behavior [9]:

LðxshiftðiÞ; xcomp; aÞ ¼ jxshiftðiÞ � xcompj
a
; ð3Þ

where || takes the absolute value of the operations contained within. The exponent α is free to
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vary and defines how a participant minimizes error. The cost of compensating for any particu-

lar amount (xcomp) given some lateral shift can be calculated with the expected loss function,

ELðxcomp; a; xsensedðiÞ; ssensedðjÞÞ ¼

Z 1

� 1

LðxshiftðiÞ; xcomp; aÞpðxshiftðiÞjxsensedðiÞ; ssensedðjÞÞdxshiftðiÞ: ð4Þ

The statistically optimal compensation (compopt
i;j ) is found by minimizing the expected loss

function,

compopt
i;j ¼ � arg min

xcomp

½ELðxcomp; a; xsensedðiÞ; ssensedðjÞÞ�: ð5Þ

The negative sign indicates that the optimal compensation is equal to but in the opposite direc-

tion of the estimated amount to compensate for (i.e., the estimated lateral shift). In the special

cases where α equals 1 or 2, compopt
i;j corresponds to a lateral shift estimate that is precisely

aligned with the median or mean of the posterior distribution, respectively.

We fit the Bayesian model to each participant’s behavioral data. Model inputs for each

participant were their compensation at the target (compopt
i;j ), the centroid of visual feedback

(xsensed(i)), and a weighting factor (wi,j). The weighting term allowed us to equally weight the

four different conditions during the fitting procedure, while placing proportional emphasis on

behavioral data according to the associated frequency of a particular lateral shift. The four

model parameters provided an estimate of each participant’s error minimization strategy

(αopt) and their uncertainty (s
opt
sensedð1Þ, s

opt
sensedð2Þ, s

opt
sensedð3Þ) for the single dot, medium cloud and

large cloud of dots, respectively. It was assumed that participants’ uncertainty with visual feed-

back withheld approached infinity (s
opt
sensedð4Þ ! 1), which would be physically represented as

no changes in compensation with different lateral shifts (see the dark blue, horizontal lines in

Fig 2E). We estimated the four model parameters using a Nelder-Mead optimization routine

contained in the SciPy module (optimize, minimization) in Python [51]. We used least abso-

lute error to find the four best-fit model parameters, which is a more robust fitting procedure

than least squared error [52]. This procedure is summarized by

aopt; s
opt
sensedð1Þ; s

opt
sensedð2Þ; s

opt
sensedð3Þ ¼ arg min

a;ssensedðjÞ

X7

i¼1

X4

j¼1

wi;j � jcompdata
i;j � compopt

i;j j

" #

: ð6Þ

When visual error feedback was withheld (B1), we would expect the Reinforcement +

ErrorSR group to have an average compensation that corresponded closely to the mode of the

skewed lateral shift probability distribution, and to be significantly different from the ErrorSR
and ErrorSL groups. We used αopt to characterize how error was minimized and also as a metric

to test if reinforcement feedback influenced behavior. Given the distinct optimal compensa-

tions that correspond to minimizing error and maximizing the probability of success (Fig 2E),

αopt is a sensitive metric to whether the reinforcement feedback had an influence on behaviour.

Specifically, if the reinforcement feedback had an influence on behavior, we would find a

lower αopt for the Reinforcement + ErrorSR group, relative to the ErrorSR and ErrorSL groups, as

their average compensation would correspond more closely to the mode of the skewed lateral

shift probability distribution (i.e., the mode of the posterior probability distribution). This

would signify that, with a decrease in error feedback quality, participants’ compensation was

becoming increasingly driven by reinforcement feedback and less by error feedback.

Experiment 2. For each reach we recorded how a participant compensated, that is, how

laterally displaced their hand was when they passed by or through the displayed target, in

response to the skewed lateral shift probability distribution (Fig 1). We also characterized each
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participant’s hand movement variability as the standard deviation of their final hand position

during the asymptotic phase of learning (the last 400 trials). As in Experiment 1, we ‘flipped’

the recorded compensation data about the aligned position of the two skewed lateral shift

probability distributions (here, 0mm) for any participant for whom feedback was shifted by

the SL distribution.

For each group, we estimated the optimal location to aim the hand that minimized squared

error and the optimal location to aim the hand that maximized target hits (Fig 6). To do this,

we first modeled the probability of cursor position along the x-axis [p(xcursor)] by considering

uncertainty in hand position [p(xhand)] and the skewed lateral shift probability distribution

[p(xshift(i)) = SR or SL]. As a reminder, cursor position was not visible for the Reinforcement
group and visible for both the Error and Reinforcement + Error Groups. Since p(xhand) and

p(xshift(i)) are independent random processes, we numerically convolved (�) these two proba-

bility distributions to find their additive effect on cursor position [p(xcursor)] as follows:

pðxcursorjxaim; smvÞ ¼ pðxhandjxaim; smvÞ � pðxshiftðiÞÞ: ð7Þ

Hand position [p(xhand)] was modeled with a Normal probability distribution [7, 21, 53],

pðxhandjxaim; smvÞ ¼
1

smv

ffiffiffiffiffiffi
2p
p e

�
ðxhand � xaimÞ

2

2s2
mv ; ð8Þ

where xaim represents an unbiased hand aim location and σmv(mm) is the average hand move-

ment variability of participants in a group (Reinforcement = 10.6mm, Error = 9.2mm, Reinforce-
ment + Error = 8.8mm). Movement variability for all three groups was slightly greater than

that of a pilot group (7.0mm) who reached to the displayed target with no feedback whatsoever.

Relative to the pilot group, the increase in variability for participants receiving error feedback

is likely related to them compensating to some extent for error feedback on a trial by trial

basis. For participants receiving only reinforcement feedback, their increase in movement var-

iability may be attributed to exploration [54]. Additional exploration has been suggested as a

way to increase the rate of learning [42, 55]. We refer the reader to Fig 4A, which shows the

skewed lateral shift probability distribution and the probability of cursor position when the

hand is aimed at the displayed target.

With our model of cursor position, using Eqs 9–11 we then calculated the optimal location

to aim the hand that minimizes the squared error of possible cursor positions relative to the

displayed target (xtarget; set to 0 for all simulations). First, we define the squared error loss func-

tion,

Lðxcursor; xtargetÞ ¼ jxcursor � xtargetj
2
: ð9Þ

Then, the squared error cost of any cursor position relative to the displayed target can be calcu-

lated by the following expected loss function:

ELðxaim; smv; xtargetÞ ¼
Z 1

� 1

Lðxcursor; xtargetÞpðxcursorjxaim; smvÞdxcursor: ð10Þ

Finally, the statistically optimal location to aim the hand that minimizes squared error [xminðerror2Þ
aim ]

is found by,

xminðerror2Þ
aim ¼ � arg min

xaim

½ELðxaim; smv; xtargetÞ�: ð11Þ

The negative sign in front of this equation accounts for xminðerror2Þ
aim being a compensation equal to
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and in the opposite direction of the average shift in cursor position caused by the skewed lateral

shift probability distribution. Further, it should be noted that xminðerror2Þ
aim is invariant to differences

in movement variability and corresponds to the mean of p(xcursor|xaim, σmv). Thus, for each

group, xminðerror2Þ
aim is equal to 5.4mm. Please refer to Fig 4B for a visual example of where one would

aim their hand to minimize the sum of squared cursor errors around the displayed target.

We also calculated the optimal location to aim the hand that maximizes the probability of

hitting the target ½xmaxðhitsÞ
aim �. To do this, we found the location to aim the hand that placed the

mode of p(xcursor|xaim, σmv) directly over the displayed target (Fig 4C) by minimizing their dis-

tance from one another. This is equivalent to minimizing the 0-1 loss function and can be

summarized as

xmaxðhitsÞ
aim ¼ � arg min

xaim

arg max
xcursor

½pðxcursorjxaim; smvÞ� � xtarget

�
�
�
�
�

�
�
�
�
�

( )

; ð12Þ

where the mode location of p(xcursor|xaim, σmv) was found numerically using an arg max func-

tion. We found the estimated values of xmaxðhitsÞ
aim for each group: Reinforcement = 10.7mm,

Error = 11.5mm, and Reinforcement + Error = 11.7mm. Slight differences between groups

occur because the mode location of p(xcursor|xaim, σmv) is influenced by movement variability

(unlike Eq 11). The negative sign in the front of this equation represents a compensation to the

additive effects of movement variability and the skewed lateral shift probability distribution on

cursor position.

For the three experimental groups, compensation reached the average asymptotic level by

trial 100 (Fig 6A). Thus, for each participant, we averaged their last 400 trials to obtain a stable

estimate of their adapted behavior (Fig 6B). The results were robust to whether we averaged

the last 100, 200, 300 or 400 trials.

Based on the result of Experiment 1, we expected both the Error and Reinforcement + Error
groups in Experiment 2 to minimize approximately squared error and compensate for the

imposed lateral shifts by an amount that corresponds closely to the mean of the skewed lateral

shift probability distribution. Thus, we expected no significant differences in compensation

between these groups.

We expected that the Reinforcement group would aim towards xmaxðhitsÞ
aim . We hypothesized

that their average aim location would be significantly different from both the Error and Rein-
forcement + Error groups.

If the patterns of compensation associated with the Reinforcement group and Error group

were significantly different, this would support the idea that the sensorimotor system can use

at least two dissociable loss functions to update where to aim the hand during a reach—one

that minimizes error and another that maximizes the probability of hitting the target.

Further, based on the results of Experiment 1, we expected the Reinforcement + Error group

would compensate in the same manner as the Error group but differently from the Reinforce-
ment group. This would support the idea that, providing the behavior of the Error and Rein-
forcement groups was dissociable, the sensorimotor system heavily weights error feedback over

reinforcement.

Statistical analysis

SPSS (version 21.0; IBM, Armond, NY) was used for analysis of variance (ANOVA) tests. We

used Greenhouse-Geisser adjustments to correct for violations of sphericity. Effect sizes for

each ANOVA were calculated using generalized omega squared (ô2
G), where values of ô2

G

equal to 0.02, 0.13, and 0.26 were considered small, medium and large effects [56, 57]. Follow-
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up comparisons (one-sampled, two-sampled or paired) were computed using nonparametric

bootstrap hypothesis tests (n = 1,000,000). These tests provide more reliable p-value estimates

than traditional comparison tests (e.g., t-tests). Briefly, they make no parameter assumptions

(e.g., normality) and are less sensitive to unequal sample sizes or unequal variances. One-tailed

tests were used when we had a priori predictions based on our Bayesian model, such as when

we predicted significantly different compensation between participants only receiving error

feedback and those receiving only reinforcement feedback. For all other comparisons we used

two-tailed tests. Holm-Bonferroni corrections were used to allow for multiple comparisons

[58]. 95th percentile confidence intervals (CI) were calculated by bootstrapping. Effect sizes for

follow-up comparisons were made using the common language effect size statistic (ŷ), where

values of ŷ equal to 56.0%, 64.0% and 71.0% were respectively considered small, medium and

large effects [59, 60]. Significance was set to p< 0.05.

Experiment 1. A one-way ANOVA, with group as the independent variable (ErrorSR,

ErrorSL, Reinforcement + ErrorSR), was used to assess the average compensation when visual

error feedback was withheld. We also performed a one-way ANOVA on the dependent vari-

able αopt with group (ErrorSR, ErrorSL, Reinforcement + ErrorSR) as the independent variable.

Bootstrap tests were used to compare αopt values to 1.0 and 2.0, which corresponded to mini-

mizing absolute and squared error, respectively. We also compared αopt to 1.72 (±0.008SE),

which was the power-loss function exponent reported by Körding and Wolpert (2004b).

Experiment 2. We performed a two-way, factorial ANOVA on participants’ average

compensation over the last 400 trials with group (Reinforcement, Error, Reinforcement + Error)
and skew direction (SR, SL) as the independent variables. For participants who only received

reinforcement feedback, we calculated the coefficient of determination (R2) between their

movement variability and final compensation. Bootstrap tests were used to compare the com-

pensation of each group to their calculated xmaxðhitsÞ
aim and xminðerror2Þ

aim .
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