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Soft robots (SRs) represent one of the most signi-
ficant recent evolutions in robotics. Designed to 
embody safe and natural behaviors, they rely on 
compliant physical structures purposefully designed 
to embody desirable and sometimes variable 

impedance cha  racteristics. This article discusses the pro -
blem of controlling SRs. We start by observing that most of 
the standard methods of robotic control�e.g., high-gain 
robust control, feedback linearization, backstepping, and 
active impedance control�effectively fight against or even 
completely cancel the physical dynamics of the system, re -
placing them with a desired model. This defeats the purpose 

of introducing physical compliance. After all, what is the 
point of building soft actuators if we then make them 
stiff by control?

An alternative to such approaches can be conceived by 
observing humans, who can obtain good motion accuracy 
and repeatability while maintaining the intrinsic softness 
of their bodies. In this article, we show that an anticipa-
tive model of human motor control, using a feedforward 
action combined with low-gain feedback, can be used to 
achieve human-like behavior. We present an implementa-
tion of such an idea that uses iterative learning control. 
Finally, we present the experimental results of the applica-
tion of such learned anticipative control to a physically com-
pliant robot. The control application achieves the desired 
behavior much better than a classical feedback controller 
used for comparison. 

Balancing Feedback and 
Feedforward Elements 

Digital Object Identifier 10.1109/MRA.2016.2636360
Date of publication: 17 May 2017

Controlling  
Soft Robots



76 �t  IEEE ROBOTICS & AUTOMATION MAGAZINE  �t  SEPTEMBER 2017

Quest for Good SR Performance
The term SR refers to a robotic system that exhibits compliant 
interactions with the external world. SRs are often designed 
to embody natural behaviors, such as smooth movements, 
energy efficiency, resilience, and safety. Often, the design of 
an SR is inspired by natural human or animal models. The 
 development of this new generation of robots explicitly tar-
gets two main problems: 1) guaranteeing optimized perfor-
mance and increased effectiveness in the accomplishment of 
tasks, e.g., very dynamic tasks, and 2) enabling a safe interac-
tion with the environment and with coexisting humans. The 
formal framework for the solution of the latter problem was 
notoriously established by Hogan in [15]. To achieve these 
goals, it is crucial that the robot exhibit a high degree of com-
pliance, elasticity, and damping�i.e., a suitable mechanical 
impedance. This can be achieved actively, e.g., through torque 
control at the joint level, or passively, i.e., via the physical char-
acteristics of the robot�s component materials. The latter 
approach has attracted growing attention in recent years for a 
number of advantages it offers. Examples are serial elastic 
actuators (SEAs) [34] and variable-stiffness actuators (VSAs) 
[40]. Another large class of SRs comprises those that incorpo-
rate continuously deformable mechanical structures, such as 
trunks or tentacles (for an extensive review of these systems, 
see, e.g., [22]).

From a control point of view, much effort has been 
devoted to developing SR control strategies to guarantee 
optimized performance. For instance, in [1] a numerical 
framework for simultaneous optimization of torque and 
stiffness incorporating real-world constraints is proposed. 
In [11], the problem of optimizing motion and stiffness to 
maximize the impact of a VSA-actuated hammer is ana-
lytically addressed and experimentally demonstrated. As 
previously mentioned, physically compliant elements are 
deliberately introduced in SR designs to achieve desirable 
behaviors. This approach can often be regarded as so-called 
intelligence embodying in robots� physical structure. Alterna-

tively, it can be described as providing a degree of morpho-
logical computation [33].

When it comes to compliant control systems, however, it 
turns out that achieving performance is not at all easier. This 
fact is intuitive for such measures of performance as position-
al accuracy, which is the reason industrial robots have tradi-
tionally been built for maximum rigidity. It is also true for 
other tasks, however, including conventional force control, 
as illustrated with great simplicity by the classic results in, 
e.g., [9]. To achieve acceptable SR performance, approaches 
involving higher control authority (e.g., high-gain robust con-
trol) and/or more sophisticated control techniques (such as 
feedback linearization, backstepping, and active impedance 
control) could be used. However, in this article we show how 
these approaches deeply affect the behavior of the robot, 
replacing their natural dynamics with a different desired 
model that makes them stiffer. 

An Elementary Example
Consider one of the simplest soft mechanisms, consisting of 
an elastic element connecting a link of mass m to an actuator 
(Figure 1). Assume for simplicity that the actuator is accu-
rately controlled, so that its reference position i  can be 
assumed to be the actual input to the series elastic connection. 
The dynamic model for the link motion q(t) is thus simply

 ,mq q kq k distb i x+ + = +p o  (1)

where b  and k  are the physical damping and stiffness of the 
elastic element, respectively, while the force distx  represents 
nonmodeled dynamics and external disturbances. To com-
pensate for distx  and regulate the link position q, a basic con-
trol law is ,K q K qp di =- - o  from which directly comes the 
closed-loop dynamics 

 ( ) ( ) .mq k K q k K q1 1d p distb
b

x+ + + + =p o  (2)

As is to be expected from elementary control consider-
ations, the performance of this regulator for promptness and 
disturbance rejection (both at steady state and in H3  norm) 
monotonically increases with gain Kp  (Figure 2). However, 
from (2), it is also clear that with this feedback action the 
natural stiffness and damping are amplified by factors 

K1 p+  and ,/k K1 db+  respectively (compare Figure 2). In 
other words, regulation (and tracking) performance is 
obtained in feedback at the price of stiffening the SR. In the 
following section, we generalize the idea illustrated in this 
elementary example for a nonlinear mechanical system, 
controlled through a generic nonlinear controller.

Feedback Control of SRs
Here, we consider the effect of a generic feedback control 
action on the stiffness of an SR. We first consider algebraic 
state feedback methods, which include, e.g., proportional-
derivative control, linear quadratic regulator (LQR), comput-
ed torque, active impedance control, feedback linearization, 
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Figure 1. An elementary model of an SEA used to illustrate how 
feedback alters designed softness. In an open loop, the interface 
with the environment has the same stiffness k as the physical 
spring. Closed-loop control with proportional feedback action 

,KP  however, is tantamount to introducing a second spring of 
stiffness kKP  in parallel.
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and Lyapunov control. For a general overview of the applica-
tion to robots of many of these control methods, refer to [36]. 
Applications of these techniques to SRs are discussed in, e.g., 
[32] and [38].

It is intuitively clear that many of these control techniques 
strongly modify the mechanical stiffness, since most of them 
operate a cancellation of the system dynamics. However, we 
provide a more detailed analytic argument. Consider a gener-
ic Lagrangian mechanical system, with the simplifying 
assumptions that the motor dynamics are negligible and that 
the spring characteristics depend on the deflection (i.e., the 
difference between the actual position q and the reference 
position i) and possibly on an additional parameter, denoted 
here as ,v  to represent, e.g., the command used in VSAs to set 
joint stiffness.

Let ( , )T q i v-  denote the vector collecting the torques 
due to compliant elements at different joints. Considering that 
stiffness, in a general nonlinear elastic system, can be defined 
only locally, we take stiffness to be the derivative of torque 
with regard to the Lagrangian variables, i.e., / .T q2 2  To for-
malize the idea of minimizing the physical compliance altera-
tion is to require that the stiffness value in closed loop 
remains in a d-neighborhood of the value in the open loop all 
along the nominal system trajectories, i.e., when the deflec-
tion is null ,q i=  as follows: 

( , ) ( ( , , , , ), )
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T q
q
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where ( , , , , )q q t r} vo  is a generic algebraic controller, q�  is a 
fixed point of }  (i.e., ( )q q} =� � ), and the matrix 2-norm is 
used. Note that the considered control can comprehend, 
e.g., any combination of feedback (thanks to the ,q qo  
dependence) and feedforward (thanks to the , ,t rv  depen-
dence). Notice also that the same holds for a more general a 
torque characteristic of type ( , ) ( ),T q r G qv� �  with G q� �  
being a generic function of ,q  e.g., describing gravity effects 
on stiffness [16]. Furthermore, impedance can be consid-
ered instead of stiffness by adding the derivatives with 
regard to , .q q� �

The following sufficient condition to fulfill (3) can be 
derived as
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where ( / )q2 2}  is the proportional component of the control 
action, and ( / ( , ))T q 02 2 v  is the natural stiffness along system 
trajectories, playing the role of a normalization constant.

Inequality (4) means that, to preserve the natural softness 
characteristic, the proportional component of the feedback 
has to be sufficiently small, or even null if we request no stiff-
ness alteration ( ., ).0i.e d =

Condition (4) can be generalized to the class of nonlinear 
dynamical controller, considering a feedback action 

( , , , , , ),q q t r pi } v= o  where p is the state of the dynamic part, 

evolving according to ( , , , , , ) .p q q t r pvP=o o  Similar consider-
ations as those above yield the condition
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where dependence of }  and p is omitted for the sake  
of readability. Therefore, the dynamic feedback of the 
Lagrangian variables q also alters the mechanical stiffness of  
the system.

To clarify the contribution of the term ,/p qi2 2  we refer to 
control systems with linear dynamics. It is worth noticing that 
such a class of controllers includes many typically used in 
robotic control practice, such as proportional integrative 
derivative controller, n-control, and nonlinear output track-
ing [28]. Since these controllers are integrable in closed form, 
the term can be expressed explicitly, obtaining

 ( )
,q

p
e B q
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td( )

i

t A t

i02

2

2
2 x

� x��  (6)

where A is the dynamic matrix of the control system, B is its 
input matrix, and [ , , , , ]u q q t rv= o  is the controller input.

Therefore, in the dynamic case, the resulting closed-loop 
stiffness becomes time varying. Note that ( ) /u qi2 2x  is a vec-
tor with all elements equal to zero, except for the one corre-
sponding to .qi  It follows that /p qi2 2  is the unitary step 
response of the control system.

To summarize, we have shown that there is a fundamen-
tal link between feedback gain, tracking performance, and 
stiffness variation that applies to all feedback controllers.

Control with Limited Feedback
The results derived in the previous section illustrate that to 
obtain good tracking performance, feedback control imposes 
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Figure 2. With the growth of the proportional feedback 
action ,KP  the controlled SEA system improves its regulation 
performance but also increases its stiffness and energy transfer. 
Data are obtained with m = 1 kg, , ,Ns m N mk1 1b = =^ ^h h  
and .K 0 sd =
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of the same action, derived from a statistical model of error 
evolution over iterations:

 ,f ei i i1
i i a= ++  (7)

where ,f a  are two constants, and : [ , )t t Ri
f

m
0 �i  and 

: [ , )e t t Ri
f

m
0 �  are the whole control action and error 

 evolution, respectively, at the ith iteration. In this way, an 

input sequence is iteratively found 
such that the output of the system is as 
close as possible to a desired output. 
Iterative Learning Control [2] (ILC) 
permits embedding this rule in a gen-
eral theory. ILC exploits the error evo-
lution of the whole interval [ , )t t f0  of a 
previous iteration to update a feedfor-
ward command, according to the law

 ( ) ( ),Q R ei i i1
i i= ++  (8)

where the function ( )R ei  identifies the 
ILC algorithm, and ( )Q i

i  is a function 
that maps the old control in the new one 
(typically a smoothing function). It is 
interesting to note that there is evidence 
(e.g., reported in [20]) that in humans 
feedback motor correction plays a cru-
cial role in motor learning. Hence, a 
more general algorithm able to merge all 
these contributions should be consid-
ered. Leveraging this observation, we 
can take advantage of the ILC literature 
rewriting the  control law (8), as in the 
so-called current-iteration ILC [2],

 ( ) ( , ),Q R e ei i i i1 1
i i= ++ +  (9)

where the presence of ei 1+  permits 
incorporating the feedback action in 
the same framework. In this manner, 
ILC can be used to design an appro-
priate algorithm that permits learning 
the feedforward action in a human-
like manner.

To illustrate the application of the 
ILC framework to an SR, we use in the 
following a combination of current-
state ILC and LQR feedback. The con-
trol law [of type (9)] is

( ) ,Q K e K ei i i i1 1
off oni i= + ++ +

 (10)

where ,ei i
i  are the control action and 

the error at the i-th iteration. (·)Q  is a 
suitable average mean filter, and ,Koff  

Konare two linear gains. Figure 4 shows the block diagram of 
the algorithm. For this control law, (4) becomes

 ( , ) .K q
T 0

1
on 2

2# d v
-

 (11)

Hence, it is always possible to choose Kon  such that (4) is sat-
isfied. Here Kon  is the result of an LQR and Koff  is such that 
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Figure 9. The evolution resulting from the application of the ILC algorithm with low 
stiffness: robot positions (without an obstacle) at (a) ,t 0 s=  (b) ,t 1s=  and (c) ,t 2 s=  
and (with an obstacle) at (d) ,t 0 s=  (e) ,t 1s=  and (f) .t 2 s=  With an obstacle present, 
the robot adapts to the external environment (i.e., the mechanical stiffness is preserved by 
the proposed anticipatory control). 

(a) (b) (c)

(d) (e) (f)

Figure 8. The evolution resulting from the application of high gain feedback with low 
stiffness: robot positions (without an obstacle) at (a) ,t 0 s=  (b) ,t 1 s=  and (c) ,t 2 s=  
and (with an obstacle) at (d) ,t 0 s=  (e) ,t 1 s=  and (f) .t 2 s=  With an obstacle 
present, the robot drops the bar, as in the stiff case.








