
Optimal use of limb mechanics distributes control 1 

during bimanual tasks  2 

Abbreviated title: Optimal use of biomechanics during bimanual 3 

control 4 

Authors: 5 

Córdova Bulens D. 1,2, Crevecoeur F. 1,2, Thonnard J-L. 1,3, Lefèvre P. 1,2 6 
 7 

Affiliations : 8 
1 Institute of Neuroscience (IoNS), Université catholique de Louvain, 1050 Brussels, Belgium. 9 
2 Institute of Information and Communication Technologies, Electronics and Applied   10 

Mathematics (ICTEAM), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium. 11 
3 Physical and Rehabilitation Medicine Department, Cliniques Universitaires Saint-Luc, 1050 12 

Brussels, Belgium. 13 
 14 
Corresponding author: 15 
P. Lefèvre,  16 
4 Avenue Georges Lemaître 17 
1348 Louvain-la-Neuve, Belgium 18 
Tel. : +3210472382 19 
philippe.lefevre@uclouvain.be  20 

Articles in PresS. J Neurophysiol (November 8, 2017). doi:10.1152/jn.00371.2017 

 Copyright © 2017 by the American Physiological Society.

mailto:philippe.lefevre@uclouvain.be


Abstract 21 

Bimanual tasks involve the coordination of both arms, which often offers redundancy in the ways 22 

a task can be completed. The distribution of control across limbs is often considered from the 23 

perspective of handedness. In this context, although there are differences across dominant and non-24 

dominant arms during reaching control (Sainburg 2002), previous studies have shown that the brain 25 

tends to favor the dominant arm when performing bimanual tasks (Salimpour and Shadmehr 2014). 26 

However, biomechanical factors known to influence planning and control in unimanual tasks may 27 

also generate limb asymmetries in force generation, but their influence on bimanual control has 28 

remained unexplored. We investigated this issue in a series of experiments in which participants 29 

were instructed to generate a 20-N force with both arms, with or without perturbation of the target 30 

force during the trial. We modeled the task in the framework of optimal feedback control of a two-31 

link model with six human-like muscles groups. The biomechanical model predicted a differential 32 

contribution of each arm dependent on the orientation of the target force and joint configuration 33 

that was quantitatively matched by the participants’ behavior, regardless of handedness. Responses 34 

to visual perturbations were strongly influenced by the perturbation direction, such that online 35 

corrections also reflected an optimal use of limb biomechanics. These results show that the nervous 36 

system takes biomechanical constraints into account when optimizing the distribution of forces 37 

generated across limbs during both movement planning and feedback control of a bimanual task.  38 



New & Noteworthy 39 

Here, we studied a bimanual force production task to examine the effects of biomechanical 40 

constraints on the distribution of control across limbs. Our findings show that the central nervous 41 

system optimizes the distribution of force across the two arms according to the joint configuration of 42 

the upper-limbs. We further show that the underlying mechanisms influence both movement 43 

planning and online corrective responses to sudden changes in the target force.   44 



Introduction 45 

Generally, healthy people are able to perform a wide variety of tasks that require the 46 

coordination of several actuators. For instance, steering an automobile involves a coordinated effort 47 

of two arms, but the effort produced can be distributed across the arms in a variety of ways. During 48 

the performance of bimanual tasks, the central nervous system (CNS) must deal with redundancy 49 

and share control across limbs. An important factor to consider in this sharing is the asymmetry 50 

across flexor and extensor muscles (Kawakami et al. 1994), which may favor an anisotropic 51 

contribution of each arm during bimanual actions. 52 

To date, the main source of limb-use asymmetry that has been considered is hand dominance. 53 

Previous studies have shown that the CNS favors the dominant hand during bimanual tasks (Swinnen 54 

et al. 1996; Salimpour and Shadmehr 2014; Salimpour et al. 2015). Generally, this tendency is 55 

attributed to the lesser variability that is associated with controlling the dominant arm (Kalisch et al. 56 

2006), which may, in principle, impact how the brain coordinates the two arms in bimanual tasks 57 

(O’Sullivan et al. 2009). Compatible with this hypothesis, Salimpour and Shadmehr (2014) reported 58 

that the dominant arm showed less variability during unimanual force production and suggested that 59 

this limb contributed more during a bimanual force-production task. 60 

Beyond handedness, the possibility that biomechanical properties influence how we distribute 61 

control across our limbs has remained largely unexplored. However, in the context of unimanual 62 

tasks, it is clear that the CNS monitors biomechanical constraints arising during movements and 63 

adjusts subsequent motor decisions or trajectories accordingly (Sabes et al. 1998; Cos et al. 2011, 64 

2012, 2013). It has been established that the CNS accounts for torque interactions at the shoulder 65 

and elbow joints during planning and control of reaching movements (Hollerbach and Flash 1982; 66 

Gribble and Ostry 1999; Dounskaia et al. 2011, 2014; Wang et al. 2012). Other parameters such as 67 

expected effort and success affect the arm choice when performing reaching movements 68 



(Schweighofer et al. 2015). Given the strong influence of biomechanics on unimanual control, we 69 

hypothesized that biomechanical factors should also play an important role in bimanual control. 70 

To test this hypothesis, we adopted an isometric force production paradigm for two limbs 71 

(Salimpour and Shadmehr 2014) and modified it for variance of the orientation of target forces and 72 

joint configurations to asses how biomechanical factors influence the contribution of each arm to 73 

overall force generation during both motor planning and online corrective responses. We developed 74 

an optimized control model of two human-inspired two-jointed arms with which to predict optimal 75 

cooperation of the arms across three different joint configurations. We tested how well the model 76 

could predict the way right- and left-handed human participants distribute force across their arms. 77 

The model accounts for optimization of weighting of each limb during both unperturbed movements 78 

and responses to perturbations with visual feedback and was used to predict the influence of 79 

biomechanics on the force distribution across arms. We predicted that the arms’ joint configuration 80 

would be shown to have a strong influence on the participants’ adjustments to the distribution of 81 

forces produced across the limbs. 82 

Materials and Methods 83 

Participants 84 

Ten healthy right-handed participants (6 females, average Oldfield score 95, 9th right decile) and 85 

ten healthy left-handed participants (5 females, average Oldfield score -88.5, 7th left decile) 86 

participated in Experiment 1. Twelve right-handed participants (4 females, average Oldfield score 90, 87 

7th right decile) participated in Experiment 2. The average age of participants was 27 years old. All 88 

participants provided written informed consent before participating in this study. The volunteers had 89 

no known neurological disorders and were naïve to the purpose of the experiment. Handedness was 90 

assessed using the Edinburgh Inventory (Oldfield 1971). The experimental procedures were approved 91 

by the local ethics committee at the Université catholique de Louvain. 92 



Behavioral task 93 

Two different experiments were performed using the same general paradigm. Participants held 94 

the handles of two robotic arms (KINARM, BKIN Technologies, Kingston), one in each hand (Fig. 1A). 95 

Each handle was equipped with a force sensor (Mini-40 F/T sensors, ATI Industrial Automation, NC, 96 

USA). The forces measured by the transducers were mapped onto cursor position on a virtual reality 97 

display. Direct vision of the limbs and of the robotic handles was blocked. The robotic arms 98 

counteracted the forces applied by the subject with a very stiff force field (K = 2000 N/m, B = 50 99 

N·s/m). This force field limited movement of the robotic and participants’ arms to negligible 100 

movements (isometric task). The position of the cursor (radius, 0.5 cm), which was denoted by the 101 

two-dimensional vector 𝑧, was proportional to the sum of the force vectors 𝑓𝐿
⃗⃗⃗⃗  and 𝑓𝑅

⃗⃗ ⃗⃗  produced by 102 

the left and right arm, respectively (see Fig. 1A): 103 

 𝑧 = 𝑏(𝑓𝐿
⃗⃗⃗⃗ + 𝑓𝑅

⃗⃗ ⃗⃗ ) + 𝑧0⃗⃗ ⃗⃗  (1) 
 
 

In eq. (1),  𝑧0⃗⃗ ⃗⃗  is the center of the workspace, corresponding to the initial location of the cursor 104 

with no forces being applied to the handles. The scaling factor 𝑏 was set to 0.5 cm/N. At the 105 

beginning of each trial, a reference target (radius 1 cm) was displayed at the center of the workspace. 106 

After 1 s, the reference target vanished and a goal target appeared in one of 16 possible positions 107 

equally spaced around a circle with a 10-cm radius, centered on the reference target site (see Fig. 108 

1C). The goal of the task was to produce a total force of 20 N in the direction of the target. 109 

Participants were instructed to reach the target within 800 ms, and then to maintain the cursor at 110 

the target site for 1 s. Participants were instructed to perform the task using both arms at the same 111 

time. Trials in which the ratio of forces produced by the two arms exceeded 10:1 were considered to 112 

be unimanual trials and omitted (5.75% of all trials were omitted; participant trial omission range, 0–113 

27%). Participants’ arms were supported against gravity in the horizontal plane by slings, arm joint 114 

configurations were described in terms of elbow and shoulder joint angles (𝜃1 and 𝜃2, respectively, in 115 

Fig. 1B). 116 



In experiment 1, three different joint configurations were tested in three configuration-specified 117 

blocks (Fig. 2A). Joint angles were measured by a goniometer at the start of each block; the means 118 

and standard deviations of the measured joint angles for each configuration are reported in Table 1. 119 

In each configuration, the 16 possible targets were presented in a random order with each target 120 

being presented 10 times, resulting in 160 trials per configuration and a total of 480 trials for each 121 

subject. 122 

In experiment 2, the subjects performed the task with their arms constrained to configuration 3 123 

(Fig. 2A) with eight possible targets (Fig. 2C, red circles). In 80% of the trials, the cursor relocated 124 

perpendicular relative to the target direction midway through the movement (Fig. 1D). The relocated 125 

cursor appeared 3 cm or 5 cm, clockwise (CW) or counterclockwise (CCW), from the cursor’s last 126 

location. We employed an orthonormal definition of location relative to initial reach direction such 127 

that cursor relocations in the CW and CCW direction were termed negative and positive cursor 128 

jumps, respectively. The presentation of these four possible cursor jump amplitudes (-5 cm, -3 cm, -5 129 

cm, and +5 cm) and the unperturbed condition (0 cm, 20% of trials) was random in order, but 130 

balanced in quantity for each subject. To reach the target, subjects had to adapt the forces they were 131 

applying to correct for the cursor’s shift in location which allowed us to study whether biomechanics 132 

has an influence on corrective online responses or not. More precisely, if online corrections use the 133 

same weighting as during the planning phase then we should observe no change in the force 134 

distribution across limbs following a cursor jump, leading to the same force distribution across arms 135 

as during unperturbed trials. In contrast, if CNS considers biomechanical factors during movement, 136 

then the response to a cursor jump should reflect the weighting associated with the new target force 137 

(Fig. 1D).  Subjects performed 10 trials with each cursor jump possibility for each of eight target 138 

locations (Fig. 2C, red circles), yielding a total of 400 trials (10 trials * 5 jump/unperturbed options * 8 139 

locations). 140 

Data analysis 141 



We computed the mean value of force produced by each arm during the 200–400-ms time 142 

period after the target was reached and then projected the computed force amplitude along the 143 

corresponding target direction. An elliptical fit was performed on the computed forces for all targets 144 

and for each arm of all participants. The elliptical fit was performed by direct least square fitting 145 

(Fitzgibbon et al. 1999). A measure of the directionality of the fit was obtained from the ratio of the 146 

ellipse axes. A measure of the dominant direction of force production of each arm was obtained from 147 

the angle formed by the main axis of the ellipse and the x-axis of the horizontal plane. The surface of 148 

the fitted ellipse was used as a measure of the global contribution of each arm for each 149 

configuration, wherein the force produced by each arm was averaged across all target directions. 150 

Experiment 1 151 

To detect significant changes in the preferential direction of force production, we conducted a 152 

repeated-measures analysis of variance (rmANOVA) with main-axis orientation as the dependent 153 

variable, joint configuration and arm as within-subject independent variables, and handedness as a 154 

between-subjects independent variable. To detect significant axis orientation differences across 155 

configurations, we conducted a rmANOVA with axis ratio as the dependent variable and arm and 156 

joint configuration as within-subject variables, and handedness as a between-subjects variable. To 157 

compare the relative contributions of each arm during task performance, we conducted a rmANOVA 158 

with the total contribution of each arm as a dependent variable, arm- and joint-configuration as 159 

within-subject factors, and handedness as a between-subjects factor. For all tests, sphericity was 160 

verified with Mauchly’s test. 161 

Experiment 2 162 

We computed the average force produced by the left arm and the right arm across all 163 

unperturbed trials. These average forces were used as baseline measures for the corresponding left 164 

and right arm forces. The forces measured during the cursor-jump perturbed trials were compared to 165 

these baseline forces to reveal course-corrective force changes induced by each perturbation. For 166 



each trial, we computed the difference between the force produced by the right arm and the left arm 167 

from 10ms prior to cursor jump to 500ms after the cursor jump. 168 

To test whether the forces produced at target reach differed in relation to cursor jump 169 

amplitude, we conducted a rmANOVA with the forces produced by the two arms at target reach as 170 

the dependent variable and with body-side and cursor jump amplitude as within-group independent 171 

variables for each target. Sphericity was verified with Mauchly’s test. To determine the instant at 172 

which the corrective force adjustments started to differ across cursor jump amplitudes, we 173 

conducted a rmANOVA with the derivative of the force difference as the dependent variable and 174 

cursor jump amplitude as the within group variable on every 10-ms window after the cursor jump. To 175 

determine whether the force distribution across arms during rapid online corrections is optimized 176 

based on biomechanics we extrapolated predictions of the force each arm would produce along the 177 

direction of the target force after cursor jump (see Fig. 1D) for each jump amplitude and target from 178 

the elliptical fits of the forces obtained during unperturbed trials. Correlational analysis was 179 

performed between the predicted and measured forces of the perturbed trials. 180 

Mathematical modeling 181 

Biomechanical and physiological model 182 

We used a two-segment upper-limb model as described in detail previously (Li and Todorov 183 

2007). In this model, each limb is actuated by six muscle groups representing mono-articular flexors 184 

(m1 and m3) and extensors (m2 and m4) at the shoulder and elbow joints, respectively, plus a bi-185 

articular flexor (m5) and extensor (m6) spanning both joints (see Fig. 1B). Limb configuration was 186 

defined by the two joint angles 𝜃1 (ventral shoulder flexion) and 𝜃2 (elbow flexion), with the joint 187 

coordinates being mirrored across the two limbs (Fig. 1B). The mechanical model was coupled with a 188 

linear, first-order model of muscle tension as a function of neural command. Both arms were 189 

modeled identically. 190 



The relationship between end-point force 𝐹 and joint torque 𝜏 is given by:  191 

 𝛕 = J(θ)T𝐅, (2) 

where J(θ) is the Jacobian of the system.  192 

 
J(θ) =  [

−L1 sin(θ1) − L2sin (θ1 + θ2) −L2sin (θ1 + θ2)

L1 cos(θ1) + L2sin (θ1 + θ2) L2cos(θ1 + θ2)
] 

 

 
(3) 
 

The joint torques are produced by the contraction of the various muscle groups actuating the limb. 193 

The torque produced by the contraction of a given muscle group depends on the moment arm (i.e., 194 

the distance between the joint’s center of rotation and the line of action of the muscle group): 195 

 𝛕 = M(θ)𝐓 (4) 
 

In eq. (4) 𝐓 = [T1 T2 … T6]T represents muscle group contraction force and M(θ) is the moment 196 

arm (with M1 = [
4.5 −2 0 0 4.5 −2.5
0 0 3.2 −4.5 2.3 −4

] , M2 = [
4.2 −2 0 0 4.2 −2.5
0 0 3.1 −4.5 2.1 −4

] 197 

and M3 = [
3.3 −2 0 0 3.3 −2.5
0 0 3.15 −4.5 2.2 −4

] for configuration 1,2 and 3 respectively, see Li and 198 

Todorov, 2007 for detailed definition of the values of M). Any change in joint configuration (θ) 199 

modifies the Jacobian and the moment arm, impacting, in turn, the relationship between muscle 200 

contraction and end-point force. 201 

The tension of each muscle group depends upon its corresponding activation level, length, and 202 

velocity (Brown et al. 1999). Because we considered the behavioral task to be isometric and because 203 

we focused on forces produced at target reach we neglected changes in muscle length arising from 204 

muscle contraction and the effect of contraction velocity. We modeled muscle tension as a second-205 

order, low-pass response to the control input 𝑢 for the sake of simplicity: 206 

 tmuscṪi = ki ⋅ ai − Ti (5) 
 tactȧi = ui − ai (6) 

 
In the above equations, the index i corresponds to the number of the different muscle groups 207 

(Fig. 1D), such that Ti is the tension of the corresponding group i, ai is the activation level, ui is the 208 

control input, tmusc is the muscle group activation time (set to 90 ms) and tact (set to 50 ms as in Li 209 



and Todorov 2007) is the activation dynamics time. Changing activation dynamics (tact and tmusc) 210 

had no impact on the results. Although these two parameters influenced the force rise time in 211 

accordance with the control input change, they did not affect the steady-state forces reached. ki is 212 

the activation gain of the corresponding muscle group i (k1=0.87, k2=0.67, k3=1.06, k4=0.58, k5=0.24, 213 

k6=0.48) and represents the relative strengths of the corresponding muscle group, with a greater 214 

activation gain leading to a greater contraction force for a given neural input. The activation gains 215 

were estimated from measurements of cross-sectional areas of human cadaver muscles (Crevecoeur 216 

and Scott 2014). It is worth noting that activation gains were greater for the flexor muscles for the 217 

elbow and shoulder muscle pairs (k1 > k2 and k3 > k4) but not for the bi-articular muscle pair 218 

(k5 < k6).  219 

All simulations were based on arms of identical dimensions and strength positioned 220 

symmetrically relative to the body midline (Fig. 1B). Indeed, the forces produced in this task are far 221 

from maximum voluntary contraction forces. Variability was also considered identical across arms in 222 

simulations. To verify this hypothesis we computed the 95% confidence ellipse of the forces 223 

produced by each arm across trials and performed a rmANOVA with this measure. This rmANOVA 224 

revealed no significant main effect of body-side (F(1,18)=2.89, p=0.1), handedness (F(1,18)=0.08, 225 

p=0.78) or target (F(15,270)=1.67, p=0.2) and no significant interaction effect (p>0.16). Joint angles 226 

(θ) were the only parameters modified across simulations, which impacted the Jacobian matrix (J(θ) 227 

in Eq. 3) and the moment arms (M(θ) in Eq. 4, Li and Todorov 2007). Therefore, the biomechanical 228 

factors influencing the predicted force distribution across arms are the asymmetries in strength 229 

across flexors and extensors muscle groups in each arm, the relation between joint torques and end-230 

point force (J(θ)) and the moment arm of each muscle group (M(θ) both of which vary with joint 231 

configuration). 232 

Optimal Control problem 233 



Because the task requires holding the cursor at the target for 1 s, which involves continuous 234 

feedback monitoring to compensate for motor noise, the nominally isometric task becomes 235 

effectively a dynamic task. Hence, the question of whether a static solution of a global minimization 236 

problem can characterize dynamic control faithfully is nontrivial. Thus, we considered a dynamic 237 

control model for the sake of generality. 238 

We employ an optimal feedback control model with a positivity constraint on the neural input, 239 

𝐮 = [u1 u2 … u12]T > 0. The positivity constraint is necessary to avoid negative control input (and 240 

tension) for any muscle group and was applied to represent the physiological property of muscle 241 

force generation being limited to contraction (muscles can only pull on the bones). The state-space 242 

representation of the system dynamics in discrete time is defined as 243 

 𝐱𝐭+𝟏 = A𝐱𝐭 + B𝐮𝐭 + 𝛚𝐭 (7) 
 

where 𝐱𝐭 = [𝐱 𝐲 𝐅𝐱
𝐑 𝐅𝐱

𝐋 𝐅𝐲
𝐑 𝐅𝐲

𝐋 𝐓𝟏
𝐋 … 𝐓𝟔

𝐋 𝐓𝟏
𝐑 … 𝐓𝟔

𝐑 𝐚𝟏
𝐋 … 𝐚𝟔

𝐋  𝐚𝟏
𝐑 … 𝐚𝟔

𝐑 𝐱∗ 𝐲∗] represents the state of the 244 

system at time step t and contains endpoint force, muscle tension, and muscle activation values 245 

respectively. The variable 𝒖𝒕 represents the neural input at time t, with 𝛚𝐭 ~N(0, Ωω) defining the 246 

random Gaussian noise. The covariance of the state noise Ωω(19: 30,19: 30) = I12x12 with 𝐼 being 247 

the identity matrix and Ωω(i, j) = 0 otherwise. With the noise covariance matrix defined in this way, 248 

random noise is applied only to the control command. The matrices A and B are defined using the 249 

equations detailed above. For simplicity, this model does not include signal-dependent noise, 250 

thereby exploiting the separation principle and enabling easy computation of the optimal control and 251 

estimation in a closed loop, as is needed to handle the positivity constraint on the muscles. 252 

Nevertheless, all aspects of the simulations are expected to generalize with the presence of signal-253 

dependent noise. 254 

The available information about the state of the system is given by: 255 

 𝐲𝐭 = C𝐱𝐭 + 𝛈𝐭 (8) 
 



where 𝒚  represents the output of the system, 𝐂 = 𝐈𝟑𝟎  represent the feedback matrix and 256 

𝛈 ~N(0, Ωη) defines the random Gaussian noise applied to the feedback. The covariance of the 257 

feedback noise is Ω𝜂 = [
10−3I30 O30x2

O2x30 10−10I2

]

 

. 258 

Following computation of the optimal input, we used Kalman filtering to get an unbiased 259 

estimate of the state vector that minimizes estimation variance as shown in Eq. (9) 260 

 �̂�𝐭+𝟏 = A�̂�𝐭 + B𝐮𝐭 + Kt(𝐲t − C�̂�𝐭). 
 

(9) 

wherein x̂ represents the estimated state of the system and Kt represents the Kalman filter gain. 261 

To compute the optimal neural input 𝐮, we minimized the cost function given by 262 

 
Vt = ∑ 𝐱(t + i|x̂(t))

T
Q𝐱(t + i|x̂(t))

N

i=0

+ 𝐮(t + i)TR𝐮(t + i) 
 
(10) 

 
 

In Eq. (10), matrices Q and R define the state and input costs, respectively. The matrix Q 263 

penalizes output error and forces differences across the arms. The matrix R penalizes high neural 264 

inputs to prevent excessive muscle activation. In our model R = 10−7I12. Changing this value did not 265 

influence the static end-point forces produced by the two arms in the model, but rather affected the 266 

time necessary to reach these end-point forces. The finite horizon 𝑁 is the predictive horizon that 267 

allows us to handle the positivity constraints on the vector 𝐮. An analytical solution of the 268 

unconstrained problem is generated for each time step. If the analytically computed control input 𝐮 269 

violates any constraint (ui < 0 for some i), quadratic programming is used to find a numerical 270 

solution that does not violate the constraint. The quadratic programming algorithm computes a 271 

numerical solution for the time window defined by N. Because the noise that may perturb the 272 

system during the time window N is unpredictable, we use a receding horizon policy, take the first 273 

element of the computed control vector, and restart the process at the next time step. 274 

Developing the first part of eq. (10) gives the following expression: 275 



 𝐱TQ𝐱 = w1(x − x∗)2 + w2(y − y∗)2 + w3(Fx
L − Fx

R)
2

+ w4(Fy
L − Fy

R)
2

 (11) 
 
 

where x and y represent the coordinates of the cursor location, x∗  and y∗  represent the target 276 

coordinates, and the Fx
L, Fy

L, Fx
R and Fy

R variables represent the x and y forces of the left and right 277 

arm, relative to each coordinate axis, respectively. Force differences across the two arms were 278 

penalized to account for the fact that participants were instructed to use both arms while carrying 279 

out the behavioral task (w3 and w4 in eq. (11)). In our model, w1 = w2 = 1000 and w3 = w4 =280 

10−3. The large difference between w1 and w2 versus w3 and w4 can be explained, in large part, by 281 

the factor b (=0.05), which is introduced between the forces produced by the two arms and the 282 

cursor position. These parameters were adjusted to limit inter-limb force differences while allowing 283 

us to still observe asymmetries in static forces produced by each limb. 284 

The expression of muscle tension in the model was simplified and modeled as a second-order, 285 

low-pass response to the control input u, making the system linear. The input u had to be 286 

constrained to prevent negative muscle tension in the model. This positivity constraint required using 287 

the model predictive control (MPC; Camacho and Bordons, 2007; Rawlings and Mayne, 2012) 288 

framework because standard stochastic optimal control models (LQG see Astrom (1970) for details) 289 

do not deal directly with bounded solution spaces. However, MPC is similar to the standard model 290 

type in principle, with the only difference being that MPC uses quadratic programming to derive a 291 

numerical solution to the control problem that meets a positivity constraint. 292 

Results 293 

Optimal weighting of the left and right arms in isometric force production 294 

In Experiment 1, participants were free to modulate the amount of force produced by each arm 295 

while generating a total force of 20 N. Model simulations performed using the average joint angles 296 

presented in Table 1 predicted that the force produced by each arm would vary depending upon the 297 

direction of the target force in a manner that exploits this redundancy (Fig. 2B). Each arm was 298 



predicted to have a preferential direction in which it would produce a larger force (Fig. 2B), and this 299 

direction changed with joint configuration. In the simulations, control was distributed across the two 300 

arms based on their respective preferential directions. Therefore, changing joint configuration in the 301 

model impacted the force distribution across the limbs in the simulations. For instance, the left arm 302 

produced larger forces in the up-right direction in configuration 1, but produced larger forces in the 303 

up-left and down-right directions in configuration 3. In the model, three factors explain these 304 

differences in preferential direction of force production across configurations. Firstly, the Jacobian of 305 

the system and the moment arm of each muscle group which are both dependent on the joint 306 

configuration are the two factors having the greatest impact on the preferential direction of force 307 

production. Secondly, differences in strength across the various muscle groups, with flexor muscles 308 

being stronger than extensor muscles, also impact the force distribution across arms. The two 309 

extreme configurations, 1 and 3 on Fig. 2, were selected because the preferential directions of the 310 

two arms were inverted between these two configurations. Configuration 2 was chosen as an 311 

intermediate configuration.  312 

The experimental data from right- and left-handed participants followed the same pattern as the 313 

model simulations (Fig. 2C and D). The preferential direction of each arm changed progressively 314 

across configurations in a way that is similar to the changes observed in model simulations. The 315 

preferential direction of the two arms determined the force distribution across limbs. More precisely, 316 

the main-axis orientation of the model simulations are good predictions of the main-axis orientation 317 

observed in the experimental data for configurations 1 and 3, but not for configuration 2 (Fig. 2B, C 318 

and D). A rmANOVA revealed no main effect (p > 0.2 in all cases) of handedness (F(1,18) = 1.425), 319 

body-side (left vs. right arm, F(1,18) = 3.202), or joint configuration (F(2,36) = 1.42) on the 320 

preferential direction of force production. There was a significant interaction between joint-321 

configuration and body-side (F(2,36) = 40.79, p < 0.001), but no other significant interactions (p > 322 

0.1), indicating that joint configuration affected the main-axis orientation differently across the 323 

subjects’ two arms. More precisely, the influence of joint configuration on the main-axis orientation 324 



of the left arm was the inverse of its influence on the main-axis orientation of the right arm (Fig. 2B–325 

D and Fig. 3D). Bonferroni post hoc tests revealed that main-axis orientation differed significantly 326 

across joint configurations for both arms (p < 0.05 in all cases). Moreover, the main-axis orientations 327 

of the left and right arm differed significantly from each other in configurations 1 and 3 (p < 0.001 in 328 

both cases) but not in configuration 2. 329 

To understand how the preferential direction of force production of the two arms transitions 330 

between configuration 1 and configuration 3, we varied the simulated elbow angles of the model 331 

continuously from 35° to 110°, we also varied the shoulder angles linearly across the values 332 

measured for configurations 1, 2 and 3 (see Table 1). We measured the preferential direction of force 333 

production and the overall contribution of each arm using an elliptical fit (see methods). The 334 

directional preference of each arm was measured as the orientation of the main axis of the fitted 335 

ellipses. Data from the simulations (Fig. 3A) and from an exemplar participant (Fig. 3B) in 336 

configuration 1 are shown in Fig. 3, note the elliptical fit performed as well as the main axis of the 337 

ellipse. Simulations across elbow angles showed a progressive transition of the preferential direction 338 

of force production of the two arms relative to the elbow angle (Fig. 3C). In simulations, the 339 

preferential directions of the two arms reversed at the same elbow angle of 86°. More precisely, 340 

when the elbow angle reached 86°, the preferential direction of the left arm changed from lying in 341 

the down-left to up-right direction towards lying in the up-left to down-right direction and vice versa 342 

for the right arm. Experimental results of all participants pooled together showed similar behavior 343 

except that the transition angle was ~76°, corresponding to a smaller elbow angle close to 344 

configuration 2 (Fig. 3D). The gradual transition observed in the simulations (Fig. 3C) is also observed 345 

in our experimental observations (Fig. 3D), however a general shift towards larger elbow angles is 346 

observed in simulations when compared to experimental data. It is possible that no significant 347 

difference in preferential direction was observed in configuration 2 in our experiment because the 348 

elbow angle in configuration 2 (76.51 ±  5.70°) is closer to the reversal point of experimental results 349 

than the elbow angle of configuration 1 (88.53 ± 5.08).  350 



The axis ratio of the fitted ellipse showed a maximum at the switching point in both the 351 

simulation and experimental results (Fig. 3E and F). At the switching point, the elliptical fits were 352 

almost circular, rendering the extraction of the main axis orientation very sensitive to variability in 353 

the data. A rmANOVA revealed a significant main effect of joint configuration (F(2,36) = 4.535, p = 354 

0.0175), but not of body-side (F(1,18) = 2.02, p = 0.173) or handedness (F(1,18) = 0.519, p = 0.48), on 355 

axis ratio and no significant interactions (p > 0.1). A post hoc analysis with adjusted paired t-tests 356 

(Fig. 3F) revealed that the axis ratio of configuration 2 differed significantly from that of configuration 357 

1 for both arms (p < 0.001), as well as from that of configuration 3 for the right arm (p = 0.027), but 358 

not the left arm (p = 0.09). The axis ratio did not differ between configurations 1 and 3 for either arm. 359 

Altogether the model qualitatively predicted the transitions in main axis orientation across 360 

configurations (Fig. 3 C-D), as well as the increase followed by a decrease in the axis ratio (Fig. 3 E-F). 361 

The model quantitatively predicted main axis orientation of configurations 1 and 3 (Fig. 4, A-C). 362 

The measured main-axis orientations in configurations 1 (136.6 ± 21.1° for the right arm and 363 

53.15 ± 13.96° for the left arm) and 3 (66.85 ± 39.54° for the right arm and 123.08 ± 29.2° for the 364 

left arm) were, on average, close to the axis orientations predicted by our model simulations (123.7° 365 

and 56.2° for the right and left arm in configuration 1 and 44.52° and 135.8° for the right and left arm 366 

in configuration 3, Fig. 4A and C). In configuration 2, the measured main-axis orientations (94.42 ±367 

53.24° for the right arm and 83.41 ± 37.87° for the left arm) were found to be highly variable due to 368 

the proximity of this configuration to the elbow angle of reversal (Fig. 3C). In addition, the near-369 

circularity of the elliptical fits reduced the reliability of our ellipse orientation estimates 370 

(Configuration 2, Fig. 4B). The elliptical fits for configurations 1 and 3 had smaller axis ratios than 371 

those of configuration 2, enabling less variable main axis estimates. No differences emerged between 372 

left- and right-handed participants in any of the three configurations. In terms of main axis 373 

orientation the model explained 29% of the variability of the data across the three configurations 374 

and 63% when considering only the two extreme configurations (1 and 3). 375 



Finally, while simulations predicted the progressive change of main-axis orientations across 376 

configurations, differences can be observed between simulations and experimental data. As in the 377 

model the two arms are modeled identically, the force produced by the two arms in simulations are 378 

symmetrical relative to the vertical midline whereas asymmetries can be observed between the right 379 

and left arm in experimental data (Fig. 2). This suggests that factors other than biomechanics 380 

influence participants’ behavior. Differences between model simulations and experimental data are 381 

not systematic across experimental groups, however similar asymmetries can be observed in both 382 

right- and left-handed participants. For instance, we determined the total amount of force generated 383 

by each arm based on the surface areas of the fitted ellipses for each arm of each subject. We found 384 

that the left arm produced, on average, slightly more force (56% and 53% of the total force for left-385 

handed and right-handed participants, respectively) than the right arm (44% and 47%, respectively). 386 

A rmANOVA revealed no main effects of handedness (F(1,18) = 0.207, p = 0.61), body-side (F(1,18) = 387 

4.18, p = 0.056), or joint configuration (F(2,36) = 0.613, p = 0.55) on fitted ellipse surface area, and no 388 

significant interactions (all p > 0.2). The fact that both right- and left-handed groups showed similar 389 

asymmetries across arms suggests that these differences are not due to handedness. 390 

Effect of biomechanics on corrective bimanual responses 391 

In Experiment 2, the cursor jumped perpendicularly to the target direction at the midpoint of the 392 

movement requiring participants to perform corrective force adjustments to direct the cursor 393 

towards the target. These corrective force adjustments produced in response to cursor jumps 394 

differed dependent on the direction of the target (Fig. 5C, D, G and H). For example, the motor 395 

response of the right arm was larger when moving the cursor towards the lower target than towards 396 

the higher target (Fig. 5G and C, inset respectively). The end-point forces produced during 397 

unperturbed trials were similar to Experiment 1 in configuration 3, thus reproducing the Experiment 398 

1 results in a distinct group of participants (see Fig. 6A and Fig. 2C-D). As predicted by the model 399 

simulation, the main differences in force produced by the two arms in configuration 3 were seen for 400 

the down-right and down-left targets. If motor corrections take biomechanical factors into account, 401 



then lateral jumps should evoke online adjustments of the weighing of each arm on the total force 402 

production that differ according to the location of the target and to the amplitude of the cursor-403 

jump. For instance, perturbations when moving the cursor towards a straight downward target 404 

should elicit distinct corrections dependent on the direction of the cursor jump, with a greater 405 

contribution of the right or left arm when the cursor jumps clockwise (CW) or counter clockwise 406 

(CCW) respectively (Fig. 6A, B and C). 407 

Analysis of the average end-point forces produced in perturbed trials towards the center-down 408 

target revealed adjustments consistent with the biomechanically optimal distribution of forces (Fig. 409 

6A and B). More precisely, for the center-down target, motor corrections to CCW or CW jumps 410 

elicited differential use of the arms that paralleled the differences observed at baseline (Fig. 6B). 411 

A series of rmANOVAs was performed for each target on the forces produced by each arm. For 412 

the up-right and up-left (diagonal direction) targets, as well as the far-right and far-left targets (along 413 

the x-axis), there was a main effect of perturbation (individual tests across target F(4,48) > 7, p < 414 

0.05), no effect of body-side (F(1,12) < 1.8, p > 0.05), and no interaction (F(4,48) < 2.3, p > 0.1). A 415 

significant effect of perturbation shows that for these targets the cursor jump amplitude and 416 

direction impacts the end-point forces produced by the two arms. For the down-left and down 417 

target, we found a main effect of perturbation (F(4,48) = 36.5, p < 0.001 and F(4,48) = 7.4, p < 0.001 418 

respectively), no effect of body-side (F(1,12) = 1.8, p = 0.184 and F(1,12) = 7.4, p = 0.077 419 

respectively), and a significant interaction (F(4,48) = 9.8, p < 0.001 and F(4,48) = 49.6, p < 0.001 420 

respectively). For the down-right target, we found main effects of perturbation (F(4,48) = 12.6, p < 421 

0.001), body-side (F(1,12) = 7.5, p = 0.017) and a significant interaction (F(4,48) = 1.8, p = 0.133). 422 

More intuitively, a significant interaction effect means that force adjustments of the dominant arm 423 

changed across cursor jump amplitudes in a different way than the force adjustments of the non-424 

dominant arm (Fig. 6B). 425 



For each perturbation amplitude, we computed the difference between the forces produced by 426 

the right and left arms from 200 ms before to 500 ms after the cursor jump. For all targets, corrective 427 

responses started, on average, 160 ms after the cursor jump (Fig. 6C), though the adjustments 428 

differed with respect to the target direction (reported above). After 160 ms the weight attributed to 429 

each arm on the total force production is modulated online dependent on the cursor jump amplitude 430 

(Fig. 6C). To determine the moment at which the inter-arm force difference started to diverge across 431 

jump amplitudes, we computed the derivative of the force difference between the right and left 432 

arms. With this derivative as the dependent variable, we performed a rmANOVA on each 10-ms 433 

window starting from the moment of the jump. For the center-down target, we observed a main 434 

effect of jump amplitude (F(4,48) = 3.617, p < 0.05) starting from ~160 ms after the jump (all earlier 435 

windows, p > 0.05). This correction latency was later than expected in light of previous reports on 436 

online corrections during reaching (Dimitriou et al. 2013). Notwithstanding, similar correction times 437 

(~150 ms) were observed with a unimanual version of the task (data not shown). It is worth noting 438 

that while the net response of the arms scales with direction and amplitude of the cursor jump, the 439 

force difference across arms is precisely indicative of the influence of biomechanics in the corrective 440 

response, with adjustments differing dependent on target direction in a way that is consistent with 441 

the force distribution predicted by joint configuration (Fig. 6A). For instance, for the upper target no 442 

change in force difference across arms should arise from a left or right-ward cursor jump (Fig. 6A), 443 

which is what we observed in the time evolution of the perturbed trials towards this target (data not 444 

shown).   445 

The force distribution across arms observed after cursor jumps was very similar to the force 446 

distribution observed during unperturbed trials for the corresponding direction (Fig. 7A and D) 447 

suggesting that biomechanics impacted the corrective force responses. To further compare the end-448 

point forces of unperturbed and perturbed trials, we fitted an ellipse on the end-point forces 449 

measured during unperturbed trials. Based on this elliptical fit we predicted the forces that should be 450 

produced in the direction of the new target forces after cursor jump. We compared the predicted 451 



force difference between right and left arm to the forces measured during perturbed trials and 452 

observed that the correlations between predicted and measured forces for each cursor jump 453 

amplitude were very strong (R² > 0.80 and p < 0.001; Fig. 7B, C, E and F), confirming that 454 

biomechanical factors were integrated into online corrective force adjustments. We performed the 455 

same analysis with model simulations and observed correlations very similar to those observed in 456 

experimental data (Fig 7B, C, E, F). 457 

Discussion 458 

We investigated the impact of biomechanical constraints on how the brain weights each arm in 459 

the context of bimanual control. More precisely, we studied the impact of asymmetries in the 460 

strength across muscle groups of the upper-limbs and the effect of the moment arm of each limb 461 

joint and of each muscle group which varied with joint configuration. Our main finding was that the 462 

orientation of the axes at which each limb produces more force (ellipse orientation) and how much 463 

force production varies across the targets (axis ratio) varied progressively and systematically across 464 

joint configurations, independent of handedness, in a way that was predicted by simulations of the 465 

optimal control model, in which differences in force across flexor and extensor muscle groups and 466 

the moment arm of each upper-limb joint as well as of each muscle group were the only source of 467 

mechanical anisotropy. Moreover, following cursor jumps the forces produced by participants were 468 

adjusted online optimally with respect to the biomechanical configuration of their arms. The 469 

presently observed match between the optimal control model and participants’ behavior supports 470 

the hypothesis that biomechanics shape neural control solutions during bimanual tasks. 471 

With respect to laterality, there are several known asymmetries between the dominant and non-472 

dominant arm during unimanual movements (see Goble and Brown, 2008 for review). For instance, 473 

Sainburg and Kalakanis (2000) reported a laterality difference in the control of limb dynamics during 474 

reaching. Shabbott and Sainburg (2008) further explored this difference in response to cursor jumps 475 



during unimanual reaching movements and found that the right and left arm showed similar timing 476 

and amplitude of corrective movements but showed differences in movement trajectories. Mutha et 477 

al. (2013) suggested that, when learning to reach in a force field, the dominant hand is better at 478 

optimizing task dynamics whereas the non-dominant hand is better at stabilizing around the target. 479 

Handedness has also been shown to influence bimanual coordination. Control of the dominant 480 

arm, relative to the non-dominant arm, has been associated with a smaller variability (Kalisch et al. 481 

2006), and thus better motor control, for which variability and effort are determinant factors 482 

(Todorov and Jordan 2002). In a task similar to the one presented here, Salimpour and Shadmehr 483 

(2014) reported a smaller variability in force production for the dominant arm, which led to a greater 484 

contribution of this arm during bimanual task performance. White and Diedrichsen (2010) reported 485 

that the left hand of right-handed participants corrected more following unexpected visuomotor 486 

rotations, but also adapted more in the next trial, suggesting that the CNS may assign error-coping to 487 

the non-dominant (and less skilled) arm. Altogether, these findings indicate that cerebral 488 

lateralization impacts control across a wide range of contexts. 489 

Surprisingly, our experimental observations from right-handed and left-handed participants in 490 

Experiment 1 were identical in terms of overall contribution and preferential direction of force 491 

production. Furthermore, in Experiment 2, we found no effect of handedness on the corrective 492 

responses for any of the participants, thus we were not able to analyze how lateralization may 493 

interact with the optimization related to limb biomechanics. Given that two prior studies that 494 

employed the same paradigm found influences of handedness on the inter-arm distribution of force 495 

(Salimpour and Shadmehr 2014; Salimpour et al. 2015), our data suggests that the circumstances 496 

under which handedness may influence bimanual control deserve further examination. As to why we 497 

did not find an influence of handedness, it is possible that our explicit instruction to use both arms 498 

influenced the way the task was performed. It is also possible that as the rather low level of forces 499 

produced during the task lead to small differences in variability across arms, which we did not 500 



measure in a unimanual context as in Salimpour and Shadmehr (2014), but the force level being the 501 

same as in this study it remains unclear where differences between our and previous observations 502 

come from. Constraining the arms’ position may also have prevented an influence of handedness 503 

suggesting that these factors may be hierarchically considered during bimanual manipulations. 504 

Indeed, it is conceivable that, if the physics of the task is not experimentally imposed (by constraining 505 

the configuration), then participants may adopt a configuration in which the mechanical anisotropies 506 

play a secondary role and exploit hand dominance to a greater extent. 507 

Importantly, we found that rapid adjustments following cursor jumps, which alter target-bound 508 

forces, were also influenced by the optimal weighting of each limb as predicted by the model (Fig. 7). 509 

That is, the perturbation-compelled force adjustments were generated in a way that integrated 510 

optimal limb use. The presently observed motor response to reaching the end-point was delayed by 511 

~160 ms, which, in light of previous work, seems fairly long. Electromyographic responses to cursor 512 

jumps have been detected with delays of ~100 ms (Dimitriou et al. 2013; Cluff et al. 2015) and 513 

around 120–150 ms after reaching the movement end-point in unimanual reaching tasks (Saunders 514 

and Knill 2003, 2004; Franklin and Wolpert 2008; Dimitriou et al. 2013). However, our observation of 515 

similar response latencies in a unimanual mode of the task suggests that the mapping of force 516 

production to cursor motion in this paradigm may require more internal processing than standard 517 

reaching tasks. Functional similarity between motor planning and feedback control appears to be a 518 

hallmark of sensorimotor coordination (see Crevecoeur et al., 2014; Scott et al., 2015 for review) in 519 

the sense that corrective responses exhibit flexibility similar to that of unperturbed movements. Our 520 

data suggest that neural resources that optimize control distribution across limbs may be shared 521 

between movement planning and movement execution during bimanual tasks. 522 

In our task, three biomechanical parameters influence the force distribution across arms, the 523 

relation between joint torques and end-point force (J(θ) in the model), the moment arm of each 524 

muscle group (M(θ)) and the asymmetries in force between the flexor and extensors muscle groups. 525 



Previous studies have shown that biomechanical parameters such as the inertial resistance of the 526 

arm (Gordon et al. 1994) or the metabolic energy required for movement production (Shadmehr et 527 

al. 2016) define preferential direction of reaching movements. Factors such as the inertial resistance 528 

of the arm have no impact during isometric tasks as no movement is involved which suggests that 529 

some biomechanical factors underlying preferential directions of movement or force production are 530 

specific to the type of task being performed. However, despite different biomechanical factors 531 

influencing isometric and dynamical tasks, it has been shown that neurons in the primary motor 532 

cortex fire preferentially for elbow flexion combined with shoulder extension or elbow extension 533 

combined with shoulder flexion, arrangements that are optimized for limb biomechanics in both 534 

isometric and dynamical tasks (Scott et al. 2001; Lillicrap and Scott 2013; Heming et al. 2016). 535 

Intuitively, the preferential directions that we observed in configurations 1 and 3 correspond with 536 

this behavior. Indeed, for each configuration, the directions of largest force production of each arm 537 

in our simulations corresponded to these combined flexor-extensor arrangements (data not shown). 538 

Hence, the distribution of preferential firing directions of motor cortex neurons, shaped by limb 539 

physics, may be an easy and effective way to optimize control solutions during both isometric and 540 

dynamical tasks, in a way that may be relatively independent of handedness. An important challenge 541 

for future work will be to investigate the neural basis of optimal sharing of effort across limbs in 542 

more detail. 543 

In conclusion, we demonstrated a consistent influence of limb physics on the planning and 544 

control of bimanual tasks by imposing the direction of force targets. Given the influence of expected 545 

motor costs on decisions about how to move (Cisek 2012; Wolpert and Landy 2012), or which target 546 

to acquire, our results may also explain possible planning biases during bimanual control. Insofar as a 547 

representation of mechanical effort is available during motor planning, we would expect it to impact 548 

solution selection. Indeed, for bimanual motor behaviors, our brain may choose a favorable joint 549 

configuration as well as a movement plan that is favorable to our limb physics. If so, movement 550 



control in general, from planning through execution, may factor in both movement value and 551 

biomechanical costs. We expect that prospective studies investigate these question in detail. 552 
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Figure captions 652 

Figure 1. Human-inspired model and experimental procedure performed on the KINARM robot. 653 

A) Each subject sat in front of a screen holding two robotic arm handles. Movements were countered 654 

by a very stiff force field (k = 2000 N/m, B = 50 N·s/m). Participants are asked to push on both 655 

handles to reach a total force of 20 N in the horizontal plane. A cursor (black dot) indicated the total 656 

force being produced. The sum of forces produced by both arms was mapped onto the cursor 657 

position (black dot) on the virtual reality display. B) Two human-inspired upper-limbs actuated by six 658 

muscle groups (numbered 1–6) corresponding to the mono- and bi-articular muscles at each joint. 659 

Both limbs work in the horizontal plane. The joint configuration was defined by the joint angles 𝜃1 660 

and 𝜃2. C) The possible targets (black and red circles) were positioned on a 10-cm–radius circle and 661 

evenly spaced. Targets represented by black and red circles were used in experiment 1 and only the 662 

targets represented by red targets were used in experiment 2. D) Cursor trajectory (solid black line) 663 

from the initial cursor position to the target center in experiments 1 and 2. The force produced by 664 

the subject is presented as a gray line. In experiment 2, the cursor jumped midway through the 665 

movement. The target projected onto the screen was presented as a black circle. The new target 666 

force after the cursor jump is presented as a dashed gray disk.   667 

Figure 2. Arm configuration, model predictions, and mean experimental results for right- and 668 

left-handed participants. A) The three joint configurations tested in model simulations and 669 

experiments. B) In the simulations, the force produced by each arm was projected along the 670 

direction of the target and plotted in the target’s direction. Solid grid lines show target directions and 671 

force levels. Simulation results are plotted in red for the right arm and in blue for the left arm. The 672 

main axis orientation of an elliptical fit performed on simulation data is presented as a solid blue or 673 

red line. C) Mean and standard error of the mean (SEM) of the experimental results of all right-674 

handed participants pooled together. The forces are displayed in a manner identical to the 675 

simulation results. The solid lines represent the mean main-axis orientations of the arms of all right-676 

handed participants pooled together. D) Mean and SEM of the experimental results of all left-handed 677 



participants pooled together. The lines represent the pooled mean main-axis orientations as in panel 678 

C.  679 

Figure 3. Main-axis orientation and axis ratio for simulations at various elbow angles and for 680 

experimental data. A) Simulation data for the left (blue dots) and right arm (red dots) in 681 

configuration 1. The elliptical fit performed on these data is presented as a solid line ellipse. The main 682 

axis orientation of the fitted ellipses are presented as solid lines. B) Exemplar participant data for the 683 

left and right arm (blue and right disks, respectively). The elliptical fit is presented as a solid line 684 

ellipse. The main axis orientation of the ellipse is presented as a solid line. C) Main-axis orientation of 685 

the left (blue line) and right arm (red line) of the simulations for elbow angles ranging from 35° to 686 

110°. Shoulder angles were linearly interpolated between the angles presented in Table 1 in order to 687 

match the experimental joint configurations as closely as possible. The dashed gray lines indicate the 688 

elbow angles measured during the experiment for configurations 1, 2, and 3. D) Main-axis 689 

orientation for the left (blue line) and right arm (red line) of all participants pooled together for the 690 

three tested configurations. E) Axis ratio for the two arms in the simulations (black line). Both arms 691 

had an identical axis ratio. F) Axis ratio for the left and right arm of all participants pooled together 692 

for the three configurations. 693 

Figure 4. Radial plot of the axis ratio and main-axis orientation for all right-handed and left-694 

handed participants in the three experimental configurations. The radius of the plot represents the 695 

axis ratio and the phase represents the main-axis orientation of the ellipses fitted on participant 696 

data. The right- and left-arm data of all participants are presented in red and blue, respectively. The 697 

right-handed participants’ data are presented as disks and the left-handed participants’ data are 698 

presented as circles. The main-axis orientation of simulation predictions are presented as solid lines.  699 

Figure 5. Cursor trajectory and arm forces for the top (A–D) and bottom (E–H) targets in 700 

exemplar subjects. A, E) Theoretical cursor trajectories of the presented trials for the top (A) and 701 

bottom (E) targets. B, F) Cursor trajectory of 10 trials for the top (B) and bottom (F) targets with a 5-702 



cm rightward cursor jump. C, G) Corrective force responses (dashed box) of the right (red) and left 703 

(blue) arms over 10 trials after cursor jumps (black dots). D, H) Time evolution of the x and y forces of 704 

the arms for 10 top-target (D) and 10 bottom-target (H) trials. 705 

Figure 6. Analysis of corrective responses for all cursor jump amplitudes for the bottom target 706 

(positioned at 270°). A) Mean  SEM of forces produced at target reach for unperturbed trials of all 707 

targets. The forces produced by the right (red) and left (blue) arm are projected along the direction 708 

of the respective target and plotted in the targets direction. Solid grid lines show the target 709 

directions and force levels. Cursor jump directions are indicated by white and gray arrows. The actual 710 

endpoint forces that must be produced following a cursor jump are presented as white and gray 711 

dashed-circle targets (colors match corresponding jumps). B) Mean  SEM of forces produced from 712 

200ms after target reach to 400ms after target reach by the left and right arm for the bottom target 713 

with all cursor jump amplitudes. C) Time evolution of the average difference between the force 714 

produced by the right versus the left arm for all perturbed and unperturbed trials with bottom 715 

targets. Shaded areas represent the SEM across participants. Perturbation amplitudes are color-716 

coded: red, 5 cm; green, 3 cm; black, unperturbed; light blue, -3 cm; and purple, -5 cm.  717 

Figure 7. Comparison between forces produced during baseline trials and perturbed trials (A 718 

and D) and comparison between forces predicted from baseline trials versus measured forces in all 719 

perturbed (B, C, E andF) trials. A, D) Means  SEMs of forces produced at target reach in 720 

unperturbed (A) and perturbed (D) trials for all targets. The forces produced by the right (red) and 721 

left (blue) arm are projected along the direction of the respective target and plotted in the targets 722 

direction. Solid grid lines show the different target directions and force levels. The light blue circle, 723 

square, and diamond represent the corresponding targets in all panels of the plot. The two arrows 724 

indicate CCW and CW corrections. B, E) Means  SEMs of measured versus predicted force 725 

differences between the right and the left arms for each target in all perturbed trials with -5 cm (B) 726 

or 5 cm (E) cursor jumps, which correspond to a large CW (B) or CCW (E) cursor jumps forces. The 727 



predicted force differences were extracted from the ellipses fitted on the forces measured for each 728 

arm of each subject during unperturbed trials. A dashed black line represents the unity line. The solid 729 

green line represents the predictions of model simulations. The light blue square, circle, and diamond 730 

correspond to the targets presented in panel A. C, F) Means  SEMs of measured versus predicted 731 

force differences between the right and the left arms for each target in all perturbed trials with -3 cm 732 

(C) or 3 cm (F) cursor jumps, which correspond to a small CW (C) or CCW (F) cursor jumps. The solid 733 

green line represents the predictions of model simulations. The light blue square, circle and diamond 734 

correspond to the targets presented in panel A. Statistical values are shown to the right of all graphs.   735 



Table 1. Mean joint angles (standard deviations) for all participants. Values reflect averages of 736 

all participants pooled together in the three configurations of experiment 1.  737 
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1
2
3

Joint configuration Shoulder angle ( 1) [°] Elbow angle ( 2) [°]
23.86 +- 5.94 
16.53 +- 3.98
21.28 +- 5.59

88.53 +- 5.08
76.51 +- 5.70
51.59 +- 11.26
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