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Abstract The brain must consider the arm’s inertia to predict the arm’s movements elicited by

commands impressed upon the muscles. Here, we present evidence suggesting that the

integration of sensory information leading to the representation of the arm’s inertia does not take

place continuously in time but only at discrete transient events, in which kinetic energy is

exchanged between the arm and the environment. We used a visuomotor delay to induce cross-

modal variations in state feedback and uncovered that the difference between visual and

proprioceptive velocity estimations at isolated collision events was compensated by a change in the

representation of arm inertia. The compensation maintained an invariant estimate across modalities

of the expected energy exchange with the environment. This invariance captures different types of

dysmetria observed across individuals following prolonged exposure to a fixed intermodal

temporal perturbation and provides a new interpretation for cerebellar ataxia.

DOI: https://doi.org/10.7554/eLife.32587.001

Introduction
In a conference if you cannot understand the speaker due to excessive background noise or poor

acoustics, seeing her face would help you capture what she is saying. The evident explanation for

this experience is that the integration of information from multiple sensory modalities improves per-

ception (Ernst and Bülthoff, 2004). Similarly, the sensorimotor control system combines different

sensory measurements to enhance the perception required to perform accurate movements and to

skillfully manipulate objects. However, because of delays in neural pathways, the brain cannot rely

entirely on sensory feedback to effectively control movements, particularly when interacting with a

dynamical environment. Predicting the consequences of an action is essential to compensate for the

temporal delays of sensory information. To this end, a widely accepted view is that the brain relies

on internal representations, or ‘internal models’ of the body and of the environment in which it oper-

ates (Wolpert et al., 1995; Wolpert and Miall, 1996; Wolpert and Kawato, 1998; Kawato, 1999).

The predictions of these internal models, often called forward models, generate expectations for

future sensory consequences of the ongoing motor commands before sensory feedback becomes

available (Shadmehr et al., 2010). These ‘priors’ are combined with delayed sensory feedback to

estimate both the state (e.g. position and velocity) of the body and the context (e.g. mass of
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manipulated object) of the movement (Wolpert and Ghahramani, 2000; Wolpert and Flanagan,

2001). In a biological system, however, noise and uncertainty spread through every aspect of sen-

sory perception and motor command generation (Faisal et al., 2008). Additionally, the environment

itself is ambiguous and variable. This makes state and context estimation probabilistic problems to

solve. Over the past decade, Bayesian integration theory has provided a unifying framework to cap-

ture behavior under uncertainty in a wide range of psychophysical studies on sensory perception

(Weiss et al., 2002; Jazayeri and Shadlen, 2010), multisensory integration (Ernst and Banks, 2002;

Alais and Burr, 2004; Ernst, 2007), and sensorimotor function (Körding and Wolpert, 2004;

Miyazaki et al., 2005). However, the temporal structure of state and context estimation remains

largely unknown.

Object manipulation is an effective and natural test bed for sensorimotor integration. It engages

multiple sensory modalities and in contrast to movements in free space, it provides an additional

challenge to the nervous system. Holding an object changes the dynamics of the arm, thereby suc-

cessful manipulation requires not only knowledge of the arm dynamics, but also knowledge of the

object dynamics. This knowledge is not solely acquired through proprioceptive and tactile feedback;

vision also provides information about the mechanical properties of the object (Gilden and Proffitt,

1989; Gordon et al., 1991; Jenmalm and Johansson, 1997; Salimi et al., 2003; Ingram et al.,

2010; Takamuku and Gomi, 2015). Here we employed an object manipulation task to investigate

the temporal resolution of the sensory integration process that provides the information for estimat-

ing the mechanical properties of the object being manipulated (i.e. context estimation). We consid-

ered two possibilities: a time-dependent structure in which context estimation takes place

continuously or periodically at isochronous intervals and a state-dependent structure in which con-

text estimation occurs sporadically at salient task-relevant events (e.g. contact events in an object

manipulation task).

To test these alternative possibilities, we developed a virtual two-dimensional ping-pong game in

which participants continuously manipulated an object (paddle) to hit a ball (Figure 1A). Visual, hap-

tic, and auditory feedbacks were provided simultaneously (within the resolution and synchronization

capabilities of our setup) at the time of impact between the paddle and the ball. This design was

ideal for our purpose as it was a continuous object manipulation task that also included discrete mul-

tisensory events. In this task, the two proposed temporal structures would provide different mass

estimations after adaptation to an artificial delay in the sensory feedback (Foulkes and Miall, 2000;

Miall and Jackson, 2006; Farshchiansadegh et al., 2015). Figure 1B is a schematic illustration of

the changes in the hand position in a reciprocal movement in which one hits the ball and returns

back in preparation for the next hit in the pong game with its delayed visual representation. If pro-

prioceptive and visual information are integrated continuously or periodically to estimate the mass

of the paddle, then the internal representation of the mass should remain unchanged at the end of

adaptation. This is because the mismatch between the two sensory measurements would integrate

to zero (integrating over the region indicated by the gray box in Figure 1B) not only for position,

but also for all the higher derivatives. On the other hand, if sensory integration for mass estimation

occurs only at collision events, because collisions only occur when the hand is moving in the outward

direction and therefore the sensory discrepancies do not integrate to zero across collision events,

this should result in predictable and systematic changes in the mass representation depending on

the difference between sensory measurements at the time of events. To assess the changes in repre-

sentation of mass, we asked participants to perform reaching movements without feedback (in a

feedforward fashion) before and after playing pong.

Results
We asked three groups of volunteers to make blind reaching movements to visual targets before

and after playing a simulated pong game holding a robotic manipulandum. After playing pong for a

few minutes without a delay, the game’s response to the player’s movements was delayed and par-

ticipants continued playing for ~40 min. We investigated the effects of adaptation on the reaching

trajectories.
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Figure 1. Adaptation to delayed feedback in a ping-pong game influences reaching behavior. (A) Subjects played

a planar pong game in frontal direction using a robotic manipulandum. In addition to continuous visual feedback,

auditory and tactile feedbacks were provided simultaneously upon collisions with the ball. After few minutes of

familiarization, the game’s response to the player’s movements was delayed and subjects continued playing the

game in the delayed environment. Participants also performed reaching movements without any continuous or

terminal feedback before and after playing the pong. Objects and labels in black were not visible to the subjects.

(B) A cartoon of the changes in the hand position during a reciprocal movement in the pong game and its delayed

representation. If sensory integration occurs continuously, then the reaching trajectories should remain unchanged

after adaptation because the difference between visual and proprioceptive information integrates to zero.

However, if sensory integration occurs only at collisions, this should result in predictable changes in the terminal

position of the reaching movements depending on the sensory measurements at collisions. (C) The endpoints of

the reaching movements of a typical subject before and after adaptation. (D) All subjects showed hypermetria in

Figure 1 continued on next page
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Experiment I
The first group of participants played a frontal pong (FP, proximal-distal direction, Figure 1A). With

practice, all subjects improved their performance. Since subjects were instructed to maximize the

number of collisions with the ball, hit rate was set as a metric for proficiency. A paired t-test between

the first and the last five minutes of the delayed pong revealed a significant increase in the number

of hits per minute (p ¼ 0:04). Notably, playing the delayed pong influenced the reaching behavior.

Figure 1C compares the endpoint of the reaches of a participant in this group before and after

adaptation. A systematic hypermetria in reaching was observed in all subjects after playing the

game (Figure 1D). The magnitude of the movements was significantly larger following adaptation

(paired t-test, p ¼ 0:02). To further verify that the changes in reaching trajectories were not a byprod-

uct of interacting with the robot itself, a subgroup of the subjects in this group also participated in a

control experiment in which the game was not delayed. Expectedly, the hypermetria was absent in

this experiment (paired t-test, p ¼ 0:53).

One interpretation of these results (our hypothesis) would suggest that adapting to the delay

changed the representation of the mass of the object (paddle) being manipulated. In this case,

hypermetria would follow from assigning inertial values to the object that are higher than the actual

value. However, there were multiple alternative interpretations including different kinematic models

(see the end of the Results section) that were similarly successful to explain this outcome. To con-

sider these alternative explanations, we designed additional experiments in which participants

played the pong game in lateral direction. The main objective of the lateral pong was to create a

scenario in which two groups play the game under similar kinematic conditions but with paddles that

possess different mechanical properties. This setup allowed us to tease apart the relative importance

of kinematic and dynamic parameters that influence adaptation. To this end, we took advantage of

the passive dynamics of the robot and asked two groups of participants to play pong in different

regions of the workspace of the robot. The anisotropic position-dependent inertial properties of the

robot effectively made the dynamics of the paddle to be different between the two groups. In this

scenario if the adaptation is derived by the kinematic features of the pong game then the post adap-

tation effects on the reaching trajectories should be symmetric between the two groups. However, if

adaptation is dominated by the dynamic features, then this should lead to asymmetric results.

Experiments II and III
In these experiments, we placed two pong courts next to each other and participants played a lat-

eral pong (LP, medio-lateral direction, Figure 2A). One group played the delayed pong only in the

right court (LPR), while the other group played the delayed pong only in the left court (LPL). The

same pattern of reach targets that was utilized in the experiment I were re-positioned within each

court (Figure 2A). Both groups performed blind reaching movements to all six targets from the cor-

responding starting positions in each side before and after adaptation. To ensure that the difficulty

level of playing pong was not different between the courts, initially all participants played the game

with no delay in both courts. Hit rate analysis showed that there was no difference in performance

across the courts (paired t-test, p ¼ 0:32). Thus, we could assume that there was not an inherent gap

in difficulty between the two courts. In addition, there was no significant difference in the movement

extent (t-test, p ¼ 0:5) between the movements made by the LPR group on the right court and the

movements made by the LPL group on the left court during the pre-adaptation pong. Task perfor-

mance was drastically affected when the delay was introduced. However, with practice both groups

improved their performance significantly at an equivalent level. A mixed-design ANOVA with prac-

tice as a within-subject factor (2 levels) and group as a between-subject factor (2 levels) revealed a

main effect of practice (F 1; 14ð Þ ¼ 55; p<0:001), no effect of group (F 1; 14ð Þ ¼ 0:007; p ¼ 0:93) and no

interaction effect (F 1; 14ð Þ ¼ 2:1; p ¼ 0:17). Furthermore, there was no difference in movement extent

(t-test, p ¼ 0:18) between the two groups at the end of the adaptation.

Figure 1 continued

the reaching movements after adaption. The hypermetria was absent in a subgroup who additionally did the same

experiment without the delay. Error bars represent one standard error of the mean.

DOI: https://doi.org/10.7554/eLife.32587.002
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While the learning rates and the level of performance were largely equivalent across the two

groups, the effect of adaptation on the reaching trajectories was strikingly different: the LPR group

demonstrated a large hypermetria on the right side (the training region) that generalized to a lesser

extent to the other side (Figure 2C), whereas the LPL group showed only a very small hypermetria

on both sides (Figure 2B). A two-way mixed ANOVA on change in the movement magnitude, with

reaching side as a within-subject factor (2 levels) and group as a between-subject factor (2 levels)

revealed no significant main effect of reaching side (F 1; 14ð Þ ¼ 1:2; p ¼ 0:3). However, there was a

significant main effect of group (F 1; 14ð Þ ¼ 5:6; p ¼ 0:03). Additionally, there was no significant inter-

action effect (F 1; 14ð Þ ¼ 3:2; p ¼ 0:1).

Sensory integration at events explains individual differences
We have recently shown that when transporting an object carried by the hand, visual and proprio-

ceptive information are integrated to optimize the kinetic energy transferred to the object

(Farshchiansadegh et al., 2016). For the same optimization to occur in a pong game, it is necessary

for the collisions to happen at the time of peak paddle velocity. Analysis on the relationship between

the velocity profile and the collision time in the baseline non-delayed trials - when vision and propri-

oception were congruent - reveals that, here as well, participants adopted the energy-efficient strat-

egy by hitting the ball, on average, at the time of peak velocity (Figure 3A). Introducing the delay

affected this optimal behavior but participants exhibited a continuous effort towards recovering the

energy optimal behavior. We have computed the time difference between the average time of

Figure 2. Hypermetria in reaching depends on the dynamics of the pong. (A) Two separate groups of subjects

played a lateral pong with delay. Each group adapted to the delay only in one of the two courts that were placed

next to each other. Both groups performed blind reaching movements before and after adaption from starting

positions on the two sides of the body midline. Objects and labels in black were not visible to the subjects. (B)

Subjects on the left court showed a very small average hypermetria on both sides. (C) Subjects on the right court

showed a large average hypermetria on the right side that generalized to a lesser extent to the left side. Error bars

represent one standard error of the mean.

DOI: https://doi.org/10.7554/eLife.32587.003
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Figure 3. Mass modifier explains individual and group differences. (A) Subjects optimized the energetic cost of

their movements in the non-delayed pong game by hitting the ball at the peak velocity of the paddle. (B) In

adaptation trials, there was a continuous effort towards recovering the energy optimal policy by reducing the

difference between the time of the peak velocity of the paddle and the time of the impact (C) In the delayed

Figure 3 continued on next page
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collision with the ball and the average time of the peak velocity of the paddle during adaptation tri-

als (Figure 3B). A paired t-test between the first and the last five minutes of the delayed pong, rev-

eled a significant reduction in the time difference and thereby a progression towards the energy

optimal movements p ¼ 0:02ð Þ. Moreover, during adaptation, the difference between the time of

collision with the ball and time of the peak velocity of the paddle was reduced by 0:018� 0:04 s for

the LPR group and 0:019� 0:01 s for the LPL group. There was not any difference between the two

groups in moving towards energy optimal policy (t-test, p ¼ 0:89).

In adaptation trials, the force impulse at time of the collision with the ball and auditory feedback

were also delayed. Therefore, each hit in the delayed game generated a simultaneous multisensory

response similar to the baseline trials. However, participants effectively played the game with two

paddles that were separated in time: a visual paddle (delayed) and a proprioceptive paddle (not

delayed). Figure 3C illustrates the schematic velocity profile of the visual and the proprioceptive

paddles for a movement in the hitting direction. For a hit that is happening at time t1 in this figure,

the kinetic energy at collision is related to the velocity of the proprioceptive and visual paddles as

KE t1ð Þ ¼ 1

2
mrvv t1ð Þ2¼ 1

2
mrvp t1 � tð Þ2 6¼ 1

2
mrvp t1ð Þ2 (1)

Where mr, vv, vp and t represent the effective mass of the robot, the velocity of the visual paddle,

the velocity of the proprioceptive paddle and the delay, respectively. Also, note that at time t1 the

estimate of the kinetic energy of the paddle based on visual information would be different from the

estimate based on proprioceptive information because the velocity measurements are different in

the two modalities. We hypothesize that sensory integration for mass estimation does not happen

continuously in time but only at salient multisensory events when there is an exchange of kinetic

energy with the environment, in this case at collisions. Moreover, we hypothesize that the optimiza-

tion problem must satisfy the constraint that the estimated kinetic energy transfer remains invariant

across modalities. Therefore, instead of estimating t one may rewrite Equation (1) without explicit

consideration of the delay, by modifying the effective proprioceptive mass of the robot (see

the Materials and methods section for the definition of effective mass and its connection to kinetic

energy):

KE t1ð Þ ¼ 1

2
mrvv t1ð Þ2¼ 1

2
mr þ m̂ð Þvp t1ð Þ2 (2)

Under this hypothesis, discrete sensory integration at isolated collision events leads to a percep-

tual illusory mass m̂, that hereinafter we refer to as "mass modifier" and can be derived from Equa-

tion (2) at any hitting time:

m̂¼ mr
vv thitð Þ2�vp thitð Þ2

vp thitð Þ2
(3)

Depending on the time of collision, the mass modifier can have three categorical values

(Figure 3C): a hit that happens around t1 leads to a negative mass modifier since around this time

Figure 3 continued

pong, visual and proprioceptive measurements were different at the time of collisions. Hence, sensory integration

at events caused a misperception of the paddle’s mass. Mass modifier is the difference between the actual mass

and the perceived mass. Depending on the timing of the hits, the mass modifier can have three categorical values:

a hit around t1 leads to a negative mass modifier (vv<vp), a hit at t2 (vv ¼ vp) makes the mass modifier to be zero

and for a hit around t3 (vv>vp), the mass modifier is positive. (D-F) Left panels show the average velocity profile of

the hand and the paddle during the last five minutes of adaptation for three individual subjects, one from each

possible outcome category. The vertical dashed line represents the average time of the hit in the pong game.

Right panels show the adaptation effects on the reaching movements. Error bars represent one standard error of

the mean. These results are consistent with the hypothesis that mass estimation occurs at discrete events. (G)

Effective mass of the manipulandum in each direction. Each plot is centered on the average position of the hits for

the corresponding group. Subjects in the LPR group played with a heavier paddle than the LPL group. In addition,

the mass modifier is proportional to the mass of the paddle itself. Gray areas represent 95% confidence intervals.

DOI: https://doi.org/10.7554/eLife.32587.004
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vv<vp, a hit at t2 (vv ¼ vp) makes the mass modifier to be zero and finally if the hit happens around t3

(vv>vp), the mass modifier would be positive.

Previously, we examined the changes in the reaching movements following adaptation at the

group level. As it is typically the case, there was a substantial variability in the performance of each

participant following adaptation. The hypothesis that estimation of the effective mass depends on

the sensory measurements at contacts allows us to make predictions of individual responses. To test

this prediction, we consider within each group cases that deviated maximally from the average

behavior. Figure 3D corresponds to the subject that exhibited the largest hypermetria in the LPR

group (right panel). Our hypothesis predicts that the timing of the collisions for this individual should

be around t3 because the large hypermetria indicates a positive estimation of the mass modifier and

thereby an increase in the perception of the robot’s effective mass. Analysis on the pong data con-

firmed this prediction: the left panel of this figure shows the average velocity profile of the two pad-

dles during the last five minutes of adaptation for this subject and the vertical dashed line represents

the average time of the hit. On the other extreme of the LPR group, the individual in Figure 3E did

not show an effect. Similar analysis on the pong data showed that on average this subject hit the

ball at t2 where the two velocities were equal. Per our hypothesis this would cause the mass modifier

to be zero. The subject that exhibited the largest hypermetria in the LPL group behaved similarly as

their counterpart in the LPR group by timing the strokes in a same manner to hit the ball at around t3

(same as Figure 3D). Finally, the other extreme subject in the LPL group showed a notable hypome-

tria on the right side (Figure 3F). In this case, the hypothesis predicts a negative estimation of the

mass modifier which is a consequence of the impacts that are occurring at around t1. Subsequent

analysis of the velocity profiles and the average hitting time of this subject corroborated with this

prediction as well. The three possible outcome categories were not evenly distributed among partic-

ipants. Most subjects exhibited a significant hypermetria after adaptation (n = 7 in the LPR group

and n = 4 in the LPL group), while the remaining subjects (n = 1 in the LPR group and n = 4 in the

LPL group) exhibited either hypermetria or hypometria after adaptation but the confidence intervals

of the change after adaptation included zero.

Thus far, we showed that sensory integration at events explains individual differences in all the

three possible outcome categories. Later, we will use this concept to model the outcome behavior

for all the subjects to further test the hypothesis.

Mass of the manipulated object explains group differences
The lateral groups played the game in the same direction with the same amount of delay and there

were no differences in performance and adaptation rate between the two groups. However, despite

the equivalence of the task in the right and left courts, the effect of adaption on the reaching trajec-

tories was asymmetric between these two groups at the end of the experiment. This asymmetry is

explained by the change in the dynamics of the task. The effective endpoint mass of the five-bar link-

age robotic device used in this study depends on the configuration and the direction of motion.

These dependencies can be portrayed by polar plots that are centered at any desired configuration.

Each point on the plot represents the projection of the inertia matrix onto the direction (unit velocity

vector) that connects the center to that point. Figure 3G illustrates two of these plots that are cen-

tered on the average position of the hits with arrows that indicate the average movement direction

across all subjects in each lateral pong group. This analysis reveals that the subjects in the LPR group

played with an apparently heavier paddle with the effective mass of 1.5 kg, compared to the LPL

group, whose paddle had the average effective mass of 1 kg. We know from Equation (3) that the

mass modifier is directly proportional to the mass of the object being manipulated and therefore the

larger hypermetria in the LPR group can be explained by the fact that this group played with a pad-

dle that had a larger effective mass than the LPL group.

Model predictions
In the previous subsections, we laid out the elements that explain different outcomes at an individual

and group level. Here, we present and validate a computational model that employs these concepts

to predict the reaching behavior (see the Materials and methods section for a detailed description

of the model). For each individual, we extracted the configuration of the robot, velocity of the visual

paddle, and velocity of the proprioceptive paddle (hand’s velocity) at impacts from the pong data.
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From these data, we computed the visual effective mass and the proprioceptive effective mass at

hits and combined them by using maximum-likelihood estimation to obtain the mass modifier. Next,

we predicted the outcome of blind reaching movements after pong. To this end, we added the

mass modifier to the simulated model of the robot and computed the inverse dynamics for pre-

planned paths to the targets. We then used the calculated torques as feedforward commands to the

actual model of the robot (without the mass modifier) to replicate the blind reaching scenario.

As mentioned earlier, the computational model consists of two main components that collectively

explain the results; the timing of the movements and the mass of the object being manipulated.

First, we argued that the timing behavior explains individual differences in all three possible out-

come categories. Next, we showed that the mass of the object scales the effect, and this explains

the asymmetric results between the two group averages in the lateral pong experiments. Figure 4A

shows the contribution of each component to the total variance. The scatter plots illustrate the aver-

age hypermetria for all the subjects in the lateral pong groups on both reaching sides that are sorted

based on the magnitude of the hypermetria. If we only consider the mass of the robot, then we have

assumed that all the participants in each group learned a single mass modifier that can be most

accurately described using the group averages (solid black lines). However, this component only cap-

tures 28% of the total variance in the data. On the other hand, if we consider the individual timing

behavior in addition to the mass of the robot then we get predictions that explain 61% of the total

variance (solid purple lines). The remaining unaccounted variance might be attributable to a multi-

tude of factors including errors in estimating the mechanical parameters and lack of consideration of

joint friction of the robot, the fact that the game of pong is a relatively more unconstrained task and

that blind reaching movements are inherently nosier than visually guided movements.

Figure 4B illustrates the hypermetria in the model predictions averaged across all subject in all

the three groups. These predictions demonstrate the ability of this simple computational model with

only one free parameter (the mass modifier) to capture the variance in the data: it explains between

subject differences, the differences in the magnitudes of the hypermetria across groups and the

reduction of the overshoot in the LPR group on the left side.

Alternative explanations
There were other potential accounts for some of our observations in this study. However, neither of

which was sufficient to explain all the aspects of the results.

1-Proprioceptive recalibration: introducing a visual delay causes a mismatch between vision and

proprioception. As we discussed earlier, in the game of pong, the mismatch between the two sen-

sory measurements integrates to zero over time (Figure 1B). But if we assume that the recalibration

is not occurring continuously and it is limited to the collision events, then, the hypermetria observed

in the reaching movements in the frontal pong experiment could also be interpreted as spatial

remapping of proprioception. However, in the lateral pong experiments, the direction of the pong

was orthogonal to the direction of the reaching movements. In this case, and in contrast to the

results, the proprioceptive recalibration model predicts a lateral shift rather than hypermetria in the

reaching movements. Alternatively, we can further assume that the direction of the proprioceptive

shift also depends on the direction of the movement. To investigate this possibility, we extracted

the average spatial mismatch between vision and proprioception at the time of the hits during the

last five minutes of adaptation for all the participants of the lateral pong experiments. There was no

correlation between the magnitude of the sensory mismatch in pong and the magnitude of the

hypermetria in the reaching movements (Figure 4C).

2-Visuomotor gain: another possibility is to interpret the results by considering the spatial effect

of the imposed delay as a gain factor. A successful ball strike requires the paddle to be at a desired

position within a certain time window. To achieve this objective in a delayed visual space, the hand

needs to travel a longer distance, in the same time, and in the same direction. Therefore, the spatial

distortions brought about by a visual delay can be approximated using a visuomotor scaling factor

(Pine et al., 1996; Krakauer et al., 2000). Indeed, our results from a previous study

(Avraham et al., 2017) suggested that a visuomotor gain is successful in explaining the transfer of

adaptation to a variety of blind movements including reaching and tracking compared to the alterna-

tive hypotheses of adaptation in the time domain, a visuomotor shift, and a mechanical system com-

posed of a mass, damper, and spring. Although with a fixed delay, the spatial expansion of the

proprioceptive space is not uniform and the scaling factor depends on movement speed, it is
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reasonable to assume that the participants learned the average of the scaling factors that they expe-

rienced (Scheidt et al., 2001; Braun et al., 2009). To investigate this possibility, we extracted the

average visuomotor gain that participants of the lateral pong groups experienced during the last

five minutes of adaptation. The gain factor for each hit was computed as a ratio between the trav-

eled distance of the arm and the paddle from movement initiation to contact. Subsequent analysis

also uncovered that there was no correlation between the gain factor during adaptation and the

hypermetria in the reaching movements (Figure 4D).

3-Mass overestimation due to the visual feedback delay: introducing artificial delays between an

applied force and the resulting motion causes an increase in the apparent mass of an object, as it

alters the action-consequence relationship (Honda et al., 2013). Modeling studies have suggested

that in the sensorimotor control system, externally imposed visual delays in the causal link between
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force and motion may be approximated by equivalent mechanical systems (Takamuku and Gomi,

2015) such as a mass-spring-damper system (Sarlegna et al., 2010). Therefore, an alternative expla-

nation is that here as well the effect is due to an excessive delay in the visual response. But an impor-

tant observation in these and other delay adaptation studies is that the overestimation of the mass

fades with adaptation (Botzer and Karniel, 2013; Honda et al., 2013) and sudden delays in the

visual feedback are necessary for the perception of additional mass (Takamuku and Gomi, 2015).

On the contrary, here the effect is a consequence of prolonged exposure and adaptation.

Furthermore, the asymmetric results from the lateral pong experiments allowed us to further

reject these alternative possibilities. Two groups of participants played the game with the same tem-

poral delay and identical kinematics while holding simulated paddles with different inertial mass.

After adaptation, they exhibited a significantly different pattern of reaching movements. This asym-

metric outcome eliminates the entire class of kinematic models. The free parameters in the mechani-

cal equivalent model are also derived using the kinematics (position, velocity, and acceleration) of

the object and its delayed representation. Therefore, this model also predicts an equal additional

mass to be perceived by the groups. Moreover, none of these models could account for individual

differences among the participants.

Discussion
We examined the temporal structure of the estimation process that is involved in the representation

of object dynamics. Participants played a virtual pong game under an artificially induced visuomotor

delay and performed reaching movements (without visual feedback) before and after the game using

a robotic manipulandum. We predicted that a continuous or periodic estimation should result in no

change in the internal representation of the robot’s inertia whereas discrete estimation at contact

events should lead to changes in the represented inertia. The existence of neural representations,

called ‘internal models’, of the physical properties of the limbs and of the objects being manipulated

is a widely accepted view that has nevertheless attracted some controversy. Feldman and Latash

(Feldman and Latash, 2005) have rejected altogether the idea that the brain ‘computes’ mechanical

variables such as force, torque and inertia in a way similar to how robotic manipulators are pro-

grammed. Instead, they posit that muscle mechanical properties combined with the modulation of

reflex parameters may render the anticipation of the mechanical consequences of motor commands

unnecessary. While we instead remain convinced that the long delays of neural communications -

both sensory and motor - and the complex nonlinear mechanics of the limbs and environment pro-

vide a strong rationale for predictive internal representations, we regard the existence and character

of such representations far from being settled. We would not suggest that neural computation fol-

lows the same structure as robot control programs. In fact, the development of adaptive internal

models based on observed statistics of commands and outcome is not a priority for robotic systems

that can operate at feedback rates that are order of magnitude faster than the biological counter-

parts. We consider internal models as a conceptual tool to organize hypotheses and experiments on

the brain’s ability to plan actions and form expectations based on the assessed balance between

deterministic and random influences of the environment. In this spirit, we found changes in the

reaching trajectories after the game suggesting that participants estimated the mass only during

contact events, at which kinetic energy was exchanged with the environment. These modifications in

mass estimations appeared to conserve the expected exchange of kinetic energy across sensing

modalities.

Multisensory events in object manipulation
Many discrete events in the physical world are perceived through multiple sensory modalities provid-

ing us with different types of information regarding those events. Although these sensory stimuli

originate synchronously in the environment, to perceive them as simultaneous the nervous system

should, and in fact does, account for the differences in both physical (Sugita and Suzuki, 2003) and

neural (Stone et al., 2001) transmission rates. Additionally, the neural mechanism of simultaneity

perception is subjective (Vroomen and Keetels, 2010) and the temporal intermodal alignment can

be recalibrated (Fujisaki et al., 2004). This adaptive mechanism is proposed to be beneficial for

object manipulation purposes (Johansson and Flanagan, 2009). Manipulation tasks often include

distinct action phases in which objects are grasped, moved, brought in contact with other objects
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and released. These action phases are confined between discrete contact events that generate

multi-sensory responses which are linked in space and time (Flanagan et al., 2006; Johansson and

Flanagan, 2009). Therefore, sensory integration at these events provides a more accurate and reli-

able perception of the environment. In this study, we have provided experimental evidence to sug-

gest that the nervous system exploits this opportunity by limiting the context estimation to sensory

information provided at multimodal events.

When reaching to grasp objects, the brain predicts the sensory consequences of contacts and

estimate the level of the required grip force before they happen (Flanagan and Beltzner, 2000;

Flanagan et al., 2003) using the experience of the previously manipulated objects (Haruno et al.,

2001). Contact events are rich sources of information to compare the predicted and actual sensory

responses. Therefore, forward models can be updated and aligned using prediction errors and con-

text estimation at events. Depending on the complexity of the interactions and past experiences,

occasional regulation of the forward models at events could be sufficient to fulfill and attain the

manipulation objectives. Indeed, this was the observation in the current study. Research on eye-

hand coordination in sequential object manipulation tasks reported that participants direct their

gaze to successive contact locations that mark the end of a sequence well before the time that hand

reaches them (Johansson et al., 2001; Flanagan and Johansson, 2003). But the gaze location

remains fixed and stationary until the sequence is completed. These results indicate that the sensori-

motor control system is actively seeking for task-relevant events that provide distinct and simulta-

neous multi-sensory information to compare and regulate forward model predictions for the

upcoming manipulation sequence, while being confident that the previous event-based adjustments

were adequate to attain the objective of the current sequence without any additional use for feed-

back. This event-driven use of state feedback in sensorimotor control has obvious computational

advantages over a control scheme that continuously incorporates feedback.

Generalization
We put forward that the event-driven employment of feedback for context estimation and forward

models’ calibration is not limited to contacts. External perturbations and inaccurate forward models

lead to performance and prediction errors that require correction. Feedback is then integrated only

after an event indicates that the control error exceeded some threshold. This threshold is variable

and depends on feedback uncertainty (Wei and Körding, 2010), perturbation uncertainty

(Izawa et al., 2008) and the level of precision that is required by the task itself. Therefore, similar to

the contact events, error events adjust forward models only in task-relevant dimensions. This task

dependent use of feedback allows forward models to drift in the task-irrelevant dimensions (uncon-

trolled manifold) over time (Scholz and Schöner, 1999; Todorov and Jordan, 2002). In novel object

manipulation tasks, when there are no forward models to rely on, feedback is extensively utilized at

initial stages to train forward models whereas practice reduces reliance on feedback (Sailer et al.,

2005).

We propose that the features that we discussed so far regarding context estimation can be general-

ized to state estimation. Ariff and colleagues (Ariff et al., 2002) designed an experiment in which they

asked participants to track with their eyes the location of their own unseen hand during reaching

movements and they found a proactive gaze behavior with gaze leading the hand. In this task, for-

wards models and proprioceptive feedback were combined to estimate the state of the hand and eye

movements were served as a proxy for the estimation process. An important observation in this study -

for our purposes here - is that rather than pursuit eye movements, participants made saccades to track

the hand (but see [Gauthier and Mussa Ivaldi, 1988; Gauthier et al., 1988]). Moreover, the position

and timing of these saccades were random. Therefore, even in simple and familiar reaching move-

ments, the task demands for continuous state estimation could not be satisfied.

The role of cerebellum in event prediction and formation of forward
models
The adaptive learning mechanism in the cerebellum (Marr and Thach, 1991) makes it an ideal sub-

strate for generating forward models. There is growing body of evidence from studies on behavioral

deficits in patients with cerebellar dysfunction (Bastian et al., 1996; Tseng et al., 2007), functional

imaging (Blakemore et al., 2001; Kawato et al., 2003), and transcranial magnetic stimulation

Farshchian et al. eLife 2018;7:e32587. DOI: https://doi.org/10.7554/eLife.32587 12 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.32587


(Miall et al., 2007; Schlerf et al., 2012) that links the cerebellum to forward models (Bastian, 2006).

In a ball catching task, subjects with cerebellar damage exhibited difficulty in predicting the required

muscle forces to compensate for ball weight before the ball reached the hand, but showed normal

force adjustments after impact (Lang and Bastian, 1999). Similarly, in a locomotion study

(Morton and Bastian, 2006), Subjects with cerebellar damage were capable of making reactive

changes to a perturbation, but were impaired at making predictive adjustments. In object manipula-

tion, cerebellar lesions prevented predictive grip force modulations in anticipation of inertial loads

(Nowak et al., 2002; Rost et al., 2005). These results suggest that the integrity of the cerebellum is

critical for preparing motor responses in anticipation of discrete sensory events that mark the transi-

tion between action phases. Damages to the cerebellum impairs adaptation to both kinematic

(Martin et al., 1996) and dynamic (Smith and Shadmehr, 2005) changes in the environment. Persons

with cerebellar ataxia may exhibit dysmetria in their movements. The dysmetria have a distinctive char-

acter in each individual. Some tend to show hypometria, while others are hypermetric (Manto, 2009).

It has recently been shown that errors in movement extent in patients with cerebellar dysmetria is

caused by the misrepresentation of arm dynamics (Bhanpuri et al., 2014). Our findings here suggest

that errors in estimating mechanical properties of the arm could be caused by the cerebellar dysfunc-

tion in temporal processing and alignment of multimodal sensory information. Moreover, each injury

to the cerebellum, depending on the location and severity, leads to a specific temporal calibration

error in sensory integration causing a broad range of patient specific motor deficits.

Materials and methods

Participants
Twenty-four right handed volunteers (11 females, ranging in age from 23 to 35) participated in the

study. All participants were neurologically intact with normal or corrected to normal vision and had

no prior knowledge of the experimental procedure. The study protocol was approved by Northwest-

ern University’s Institutional Review Board (STU00026226) and all the participants signed an

informed consent form.

Experimental setup
Participants were positioned in front of a horizontal screen and held the handle of a planar, two-

degree of freedom robotic manipulandum with their right hand. The screen prevented the partici-

pant’s view of their arm and the robot. A projector was used to display the visual information on the

screen and it was calibrated so that the position of the handle was overlaid on its true position with

a precision of 1 mm. Position and velocity of the robot were computed from instrumented encoders

at the frequency of 1 kHz to provide sensory feedback during the experiment and the data were

recorded at the rate of 200 Hz.

Experimental design
The experiment consisted of two tasks: playing a pong game and executing reaching movements. In the

pong game, the ball movement was confined to a rectangular court and participants were instructed to

hit the ball towards a side that was distinguished by a different color (green sides in Figure 1A and

Figure 2A) from the remaining sides using a rectangular paddle that represented the location of the

hand. To expand the court coverage and to mimic the presence of an opponent, the velocity of the ball

was changed by a random number upon bouncing from the distinguished side of the court. This number

was drawn from a uniform distribution between �0:13 m=s and was applied to the velocity component

along the bouncing side. Additionally, friction was modeled as a linear decay in the velocity of the ball.

After a collision with the paddle, the ball velocity was determined using

x
:þ
ball

y
:þ
ball

" #

¼ 0:7
cos2� sin2�

sin2� �cos2�

� �

x
:�
ball

y
:�
ball

" #

þ 0:42
x
:
paddle

y
:
paddle

" #

(4)

Where – and + represent before and after the collision respectively and q is the orientation of the

paddle with respect to the horizontal axis. A haptic pulse was generated by the robot at the time of

impact for the duration of 5 ms. This force feedback was computed using f ¼mb Dvball, where mb ¼
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0:05 kg and Dv is the change in the velocity vector. The sudden activation of the motors to generate

this pulse was creating a sound that made it unnecessary to provide any additional auditory feed-

back. Each trial of the pong game lasted for one minute. A timer indicated the elapsed time and a

counter displayed the number of collisions in each trial.

In the reaching phase, the screen turned black and a circular target appeared on the screen. Par-

ticipants were instructed to reach the target and stop there. This movement was executed without a

visual feedback of the location of the hand and it was guided only by the proprioceptive representa-

tion of the hand position in relation to the visual target. After the movement was complete, the

hand was passively brought back to the starting position by the robot. Similarly, no visual feedback

of the starting position was present.

Protocol
Participants were randomly divided in three groups. All the experiments consisted of a reaching-

pong-reaching sequence. Participants in the first experiment (n = 8), played pong in frontal direction

(Figure 1A). After two minutes, the game was delayed for t ¼ 80 ms and participants played the

delayed game for ~40 minutes. The delay was applied across all the visual, haptic, and auditory

channels. In reaching tasks, participants performed 45 reaching movements in a random order to

three targets that were placed at 0:14 m from the starting position and were separated from each

other by 45
� (Figure 1A). A subgroup of participants in this experiment (n = 5), also participated in a

control experiment in a separate session where they played the game for ~20 minutes but without

the pong being delayed. The order in which these participants performed the delayed and non-

delayed game was randomized.

In the two other experiments, participants played pong in lateral direction. Two pong courts

where juxtaposed next to each other (Figure 2A) in such a way that their intersection was along the

participants’ body midline. Each court was a square with the side of 0:2m and subjects made con-

tacts with the ball on average in the middle of the court. Therefore, they had to move 0:1m in the

lateral direction from the midline of the body. This movement was by far within the area that each

subject could comfortably reach. At the beginning, participants played the pong game with no delay

in both courts for the total time of eight minutes that was equally divided and alternating between

the courts. Next, participants in one group (n = 8) played the delayed pong only in the right court

for 40 min, while the other group (n = 8) played the delayed pong only in the left court for the same

amount of time and with the same amount of delay (t ¼ 120 ms). However, the reaching tasks before

and after pong were identical across these two groups. In the lateral pong experiments the direction

of the reaching was orthogonal to the direction of the pong. We duplicated the same pattern of tar-

gets that was used in the first experiment and placed one in each court (Figure 2A). Therefore, par-

ticipants in these two groups performed reaching movements to six targets (three in each court)

from two corresponding starting positions (one in each court). Each movement was repeated five

times in a random order.

Computational model
The equations of motion for a five-bar linkage robotic device used in this experiment can be derived

using the Euler-Lagrange equations and expressed in matrix form as

M qð Þ€qþC q; _qð Þ _q¼ u (5)

Where M qð Þ, C q; _qð Þ and u represent the inertia matrix, Centripetal/Coriolis matrix and general-

ized forces respectively. The effective mass of the robot is spatially varying and configuration depen-

dent. The effective mass (mr) is defined as the projection of the inertia matrix onto the instantaneous

direction of motion (Worsnopp et al., 2006). Therefore, for each direction of motion at each config-

uration, the inertia of the robot matches that of a point mass. The inertia of this equivalent point

mass can be derived using the conservation of energy principle: the kinetic energy of the robot must

be equivalent to the kinetic energy of the point mass

1

2
_qTM qð Þ _q¼

1

2
_xTmr _x (6)
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The unit velocity vector is x
_

¼ cos� sin�½ �T and � is the angle between the direction of motion and

the x-axis. Therefore

mr ¼ _xT J�1 qð Þ
� �T

M qð ÞJ�1 qð Þ _x (7)

Where J is the Jacobian matrix. To predict the outcome of blind reaching movements after pong

we extracted the configuration of the robot, the velocity of hand (vp) and its delayed representation

(vv) at hits from the pong data during the last five minutes of adaption for each individual. From

these data, we computed the effective visual mass (mv ¼ mr) and the effective proprioceptive mass

(mp ¼ mr
v2v
v2p
) of the robot. Next, we integrated these sensory information using maximum-likelihood

estimation (Ernst and Banks 2002) to obtain the apparent mass

E mð Þ ¼

1

s
2
v

1

s
2
v
þ 1

s
2
p

mv þ

1

s
2
p

1

s
2
v
þ 1

s
2
p

mp (8)

Where s
2

v and s
2

p represent the variance of the effective visual and proprioceptive masses at hits.

The perceived mass is therefore different from the actual effective mass of the robot. We called this

difference the mass modifier (m̂¼ E mð Þ�mr).

Finally, we added the mass modifier to the simulated model of the robot and computed the

inverse dynamics for preplanned minimum jerk (Flash and Hogan, 1985) trajectories to the targets.

We then used the calculated torques as feedforward commands to the actual model of the robot

(without the mass modifier). The difference in the dynamic model of the robot between inverse com-

putation and feedforward simulation caused an erroneous trajectory. The magnitude of the error

was used to emulate changes in reaching trajectories after adaptation.

Data and statistical analysis
A fifth-order Butterworth low-pass filter with a cutoff frequency of 20 Hz was implemented to

smooth the velocity signals. We fed the hit data from the last five minutes of pong to the computa-

tional model, however the output of the model was not sensitive to this choice. The hits at which the

proprioceptive effective mass was more than ten standard deviations away from the mean visual

effective mass were removed from the analysis. The threshold of significance in all the statistical anal-

ysis was set at 0.05.
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