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Abstract	12	

Correction	on	the	basis	of	previous	errors	is	paramount	to	sensorimotor	learning.	While	13	

corrections	of	spatial	errors	have	been	studied	extensively,	little	is	known	about	14	

corrections	of	previous	temporal	errors.	We	tackled	this	problem	in	different	conditions	15	

involving	arm	movements	(AM),	saccadic	eye	movements	(SM)	or	button	presses	(BP).	The	16	

task	was	to	intercept	a	moving	target	at	a	designated	zone	(i.	e.	no	spatial	error)	either	with	17	

the	hand	sliding	a	pen	on	a	graphics	tablet	(AM),	a	saccade	(SM)	or	a	button	press	(BP)	that	18	

released	a	cursor	moving	ballistically	for	a	fixed	time	of	330	ms.	The	dependency	of	the	19	

final	temporal	error	on	action	onset	varied	from	“low”	in	AM	(due	to	possible	online	20	

corrections)	to	“very	high”	in	the	other	conditions	(i.e.	open	loop).	The	lag-1	cross-21	

correlation	between	action	onset	and	the	previous	temporal	error	were	close	to	zero	in	all	22	

conditions	suggesting	that	people	minimized	temporal	variability	of	the	final	errors	across	23	

trials.	Interestingly,	in	conditions	SM	and	BP,	action	onset	did	not	depend	on	the	previous	24	

temporal	error.	However,	this	dependency	was	clearly	modulated	by	the	movement	time	in	25	
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the	AM	condition:	faster	movements	depended	less	on	the	previous	actual	temporal	error.	26	

An	analysis	using	a	Kalman	filter	confirmed	that	people	in	SM,	BP	and	AM	involving	fast	27	

movements	used	the	prediction	error	(i.e.	intended	action	onset	minus	actual	action	onset)	28	

for	next	trial	correction	rather	than	the	final	target	error.	A	closer	look	at	the	AM	condition	29	

revealed	that	both	error	signals	were	used	and	that	the	contribution	of	each	signal	follows	30	

different	patterns	with	movement	time:	as	movement	progresses	the	reliance	on	the	31	

prediction	error	decreases	non-linearly	and	that	on	the	final	error	increases	linearly.	32	

Author	summary	33	

Many	daily	life	situations	(e.g.	dodging	an	approaching	object	or	hitting	a	moving	target)	34	

require	people	to	correct	planning	of	future	movements	on	the	basis	of	previous	temporal	35	

errors.	This	is	paramount	to	learning	motor	skills.	However	the	actual	temporal	error	can	36	

be	difficult	to	measure	or	perceive:	imagine,	for	example,	a	baseball	batter	that	swings	and	37	

misses	a	fastball.	Here	we	show	that	in	these	kinds	of	situations	people	can	use	an	internal	38	

error	signal	to	make	corrections	in	the	next	trial.	This	signal	is	based	on	the	discrepancy	39	

between	the	actual	action	onset	and	the	expected	one.	The	relevance	of	this	error	decreases	40	

with	the	movement	time	of	the	action	in	a	particular	way	while	the	final	actual	temporal	41	

error	gains	relevance	for	the	next	trial	with	longer	motor	durations.	42	

	 	43	
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Introduction	44	

Timing	errors	of	actions	are	ubiquitous	in	daily-life	and	learning	from	these	errors	to	45	

improve	planning	of	future	movements	is	of	great	importance.	Suppose	you	are	batting	in	a	46	

baseball	game	and	you	just	missed	a	fast	ball	by	50	ms.	Assuming	you	validly	expect	47	

another	fast	ball,	how	and	how	much	you	should	you	correct	for	this	error	in	the	next	48	

movement	may	depend	on	different	factors.	You	could	use	an	estimate	of	this	temporal	49	

error	(between	the	bat	and	the	ball)	and	try	to	react	earlier	if	you	were	late.	However	your	50	

measurement	of	this	error	can	be	noisy.	Since	the	movement	time	of	your	hitting	51	

movement	can	be	quite	constant	you	could	alternatively	rely	on	correcting	the	start	of	the	52	

swing	relative	to	some	relevant	moment	(e.g.	ball	motion	onset).	In	this	study,	we	address	53	

on	what	basis	one	corrects	for	temporal	errors	under	different	situations	of	uncertainty	54	

about	the	final	temporal	error	and	the	possibility	of	correction	during	the	movement.	55	

Correcting	on	the	basis	of	previous	errors	is	one	of	the	hallmarks	of	motor	learning	(1,2)	56	

and	many	studies	have	addressed	how	people	correct	for	spatial	errors	when	there	is	some	57	

external	perturbation	(e.g.	with	force-fields	or	distorted	visual	feedback)	(3-7)	or	in	58	

situations	without	perturbations	(8).	59	

It	is	known	that	larger	uncertainty	on	the	observed	spatial	error	leads	to	smaller	60	

corrections	(5,9,10).	This	is	either	because	one	would	weight	the	final	sensed	error	less	61	

relative	to	some	internal	prediction	of	the	error,	as	predicted	by	Bayesian	frameworks	(11)	62	

(see	Fig1A),	or	because	the	noise	added	by	the	movement	execution	is	relatively	large	63	

compared	to	the	noise	in	planning	that	movement	(8).	The	possibility	of	control	while	64	

unfolding	the	action	could	also	affect	the	relevance	of	the	final	temporal	error.	For	instance,	65	

in	open	loop	actions	or	when	the	movement	time	is	very	stable	(e.g.	the	baseball	example	66	
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or	in	saccadic	eye	movements)	the	time	of	action	onset	becomes	relevant	to	the	final	67	

temporal	error	(i.e.	they	are	highly	correlated)	and	one	could	weight	the	final	error	less	and	68	

base	the	corrections	on	some	prediction	error	between	the	intended	and	actual	action	69	

onset	(Fig1A).	This	can	be	so	especially	in	fast	movements	in	which	predictive	components	70	

are	important.	Alternatively,	both	prediction	and	final	errors	can	be	used	in	combination	to	71	

specify	the	next	trial	correction.	We	consider	these	possibilities	in	this	study.	72	

We	know	that	predictions	based	on	forward	models	(12)	are	important	for	correction	73	

mechanisms	in	general.	That	is,	discrepancies	between	the	prediction	and	some	feedback,	74	

be	it	internal	or	sensed	(13),	are	the	key	for	mainstream	computational	models	of	motor	75	

learning	(14,2)	to	explain	the	corrections	of	saccadic	movements	(15)	or	fast	arm	76	

movements	which	are	too	brief	to	benefit	from	the	final	sensory	feedback.	In	particular,	in	77	

conditions	where	humans	are	aware	of	perturbations,	errors	based	on	internal	predictions	78	

can	even	override	final	target	spatial	errors	(16)	leading	to	the	distinction	between	79	

different	kinds	of	errors:	aiming	errors	(i.e.	discrepancy	between	the	planned	and	final	80	

positions)	and	target	errors	(i.e.	target	vs	final	position	discrepancy),	which	are	important	81	

in	motor	learning	models	(17).	82	

Here,	we	resort	to	a	similar	distinction:	errors	based	on	the	discrepancy	between	internally	83	

predicted	and	sensed	action	onset	(prediction	error)	and	temporal	errors	based	on	the	84	

experienced	sensory	feedback	at	the	end	of	the	movement.	We	expect	a	different	85	

contribution	of	each	error	type	in	the	next	trial	correction	depending	on	how	fast	the	86	

movements	are	(i.e.	prediction	error	being	more	relevant	in	faster	movements).	We	test	87	

this	hypothesis	by	using	temporal	corrections	in	an	interception	task.	88	
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We	will	consider	the	situation	in	which	errors	arise	when	inappropriate	motor	commands	89	

are	issued	(execution	errors)	as	opposed	to	errors	caused	by	external	changes	(18,5).	In	90	

order	to	see	the	extent	of	the	corrections,	we	exploit	the	properties	of	the	time	series	of	91	

action	onset	in	arm	movements,	saccadic	eye	movements	and	button-presses	to	study	how	92	

people	correct	when	the	initial	prediction	error	at	action	onset	(see	Fig1A)	contributes	93	

differently	to	the	final	sensory	temporal	error	with	respect	to	a	moving	target	in	the	94	

different	conditions.	In	the	button	press	condition,	a	keypress	released	a	fixed	movement	95	

cursor	to	intercept	the	target.	In	this	condition	and	in	the	eye	movements	condition	the	96	

prediction	error	is	highly	correlated	with	the	final	temporal	error.	However,	the	former	97	

error	can	be	perceived	with	high	perceptual	uncertainty	in	the	eye	movements	condition	98	

due	to	the	variability	of	saccadic	reaction	time	and	the	temporal	and	spatial	distortions	at	99	

the	time	of	saccades	starting	about	50	ms	before	saccade	onset	and	up	to	50ms	after	100	

saccade	offset,	a	phenomenon	often	termed	saccadic	suppression	(19,20).	Finally,	arm	101	

movements	with	different	movement	times	will	enable	us	to	determine	whether	the	102	

relative	contribution	of	either	type	of	error	depends	on	the	movement	time.	A	model	based	103	

on	a	Kalman	filter	will	be	used	to	obtain	an	estimate	of	the	predicted	action	onset	and	104	

therefore,	the	prediction	error.	We	show	that	both	prediction	error	relative	to	action	onset	105	

and	final	temporal	error	relative	to	the	target	can	be	used	in	combination	for	trial-to-trial	106	

corrections.	The	contribution	of	each	error	signal	follows	a	specific	time	course	since	action	107	

onset.	108	
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Methods	109	

Arm	movement	experiment	110	

Participants	111	

15	subjects	(age	range	22-33,	11	males)	participated	in	the	experiment.	Twelve	of	them	112	

were	right-handed	and	three	were	left-handed	as	by	self-report.	All	of	them	had	normal	or	113	

corrected-to-normal	vision,	and	none	had	evident	motor	abnormalities.	All	subjects	gave	114	

written	informed	consent.	The	study	was	approved	by	the	local	research	ethics	committee.	115	

Apparatus	116	

Participants	sat	in	front	of	a	graphics	tablet	(Calcomp	DrawingTablet	III	24240)	that	117	

recorded	movements	of	a	hand-held	stylus.	Stimuli	were	projected	from	above	by	a	118	

Mitsubishi	SD220U	ceiling	projector	onto	a	horizontal	back-projection	screen	positioned	119	

40	cm	above	the	tablet.	Images	were	projected	at	a	frame	rate	of	72	Hz	and	a	resolution	of	120	

1024	by	768	pixels	(60	x	34	cm).	A	half-silvered	mirror	midway	between	the	back-121	

projection	screen	and	the	tablet	reflected	the	images	shown	on	the	visual	display	giving	122	

participants	the	illusion	that	the	display	was	in	the	same	plane	as	the	tablet.	Lights	between	123	

the	mirror	and	the	tablet	allowed	subjects	to	see	the	stylus	in	their	hand.	Virtual	moving	124	

targets	were	white	dots	on	a	black	background	(shown	red	on	white	in	Fig	1A).	A	custom	125	

program	written	in	C	and	based	on	OpenGL	controlled	the	presentation	of	the	stimuli	and	126	

registered	the	position	of	the	stylus	at	125	Hz.	The	software	ran	on	a	Macintosh	Pro	2.6	127	

GHz	Quad-Core	computer.	The	set-up	was	calibrated	by	aligning	the	position	of	the	stylus	128	
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with	dots	appearing	on	the	screen,	enabling	us	to	present	visual	stimuli	at	any	desired	129	

position	of	the	tablet.	130	

Procedure	131	

To	start	each	trial,	subjects	had	to	move	the	stylus	to	the	home	position	(grey	dot	in	Fig	132	

1B).	After	a	random	period	between	0.8	and	1.2	seconds,	a	moving	target	that	consisted	of	133	

a	white	dot	of	1.2	cm	diameter	appeared	moving	rightwards	(or	leftwards	for	left-handed	134	

subjects).	Targets	could	move	at	one	of	three	possible	constant	speeds	(20,	25	or	30	cm/s),	135	

interleaved	across	the	session.	The	target	moved	towards	two	vertical	lines	of	2	cm	height	136	

and	separated	by	1.2	cm.	The	space	between	the	lines	was	aligned	with	the	home	position	137	

(Fig	1B).	Subjects	had	to	hit	the	target	(i.e.	passing	through	it)	at	the	moment	the	target	was	138	

between	the	two	vertical	lines.	Because	we	instructed	participants	to	hit	the	target	in	the	139	

interception	zone,	we	only	had	temporal	errors	associated	to	responses,	except	for	the	140	

trials	in	which	subjects	missed	the	zone	(less	than	2%).	The	starting	position	of	the	target	141	

was	determined	by	the	initial	time	to	contact	(i.e.	time	for	the	target	to	reach	the	142	

interception	zone)	value,	which	was	0.8	s	for	all	target	speeds.	Auditory	feedback	was	143	

provided	(100ms	beep	at	1000Hz)	whenever	the	absolute	temporal	error	between	the	144	

hand	and	the	target	was	shorter	than	20	ms	when	the	hand	crossed	the	target’s	path	145	

between	the	two	lines.	Each	subject	completed	360	trials.	146	

Data	analysis	147	

The	individual	position	data	time	series	were	digitally	low-pass	filtered	with	a	Butterworth	148	

filter	(order	4,	cut-off	frequency	of	8	Hz)	for	further	analysis.	Hand	tangential	velocity	was	149	
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computed	from	the	filtered	positional	data	by	three-point	central	difference	calculation.	150	

For	each	trial,	we	then	computed	the	time	of	arm	movement	onset,	the	peak	velocity,	the	151	

movement	time	(elapsed	time	from	the	hand	movement	onset	until	the	hand	crossed	the	152	

target’s	path),	and	the	temporal	error	with	respect	to	the	target.	Movement	onset	was	153	

computed	offline	by	using	the	A	algorithm	reported	in	(21)	on	the	tangential	velocity	of	the	154	

hand.	155	

	156	

Fig	1.	(A)	Action	onset	and	its	reliability	to	predict	the	relevant	task	variable:	temporal	error	157	

with	respect	to	the	moving	target.	The	uncertainty	in	determining	the	planning	of	the	action	158	

onset	(hidden	variable)	is	illustrated	by	the	orange	Gaussians,	while	the	execution	(or	159	

measurement)	noise	is	denoted	by	the	blue	Gaussians	centered	at	the	actual	action	onset.	160	

Different	variability	in	the	planning	of	action	onset	or	its	measurement	is	denoted	by	the	type	161	

of	line	(dashed:	lower	noise;	solid:	higher	noise).	The	prediction	error	is	the	difference	162	

between	the	planned	(or	predicted)	and	actual	action	onset.	The	top	row	illustrates	a	slow	163	

movement	after	action	onset	(longer	duration	until	crossing	the	target)	and	the	bottom	row	a	164	
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fast	movement.	One	would	expect	larger	corrections	when	the	measurement	noise	of	the	165	

actual	action	onset	is	lower	(blue	dashed	curves)	relative	to	the	planned	noise	(solid	orange	166	

curves).	The	decay	of	the	relevance	of	the	prediction	error	after	action	onset	is	denoted	by	the	167	

green	line,	while	the	increasing	relevance	of	the	final	temporal	error	for	next	trial	is	denoted	168	

by	the	red	line.	These	particular	trends	are	based	on	the	assumption	that	the	quadratic	sum	of	169	

both	lines	would	sum	up	to	one.	(B)	Illustration	of	the	experimental	tasks:	arm	movements	170	

(top)	and	eye	movements	(bottom).	171	

Button	press	experiment	172	

Participants	173	

Eight	participants	(age	range	23-32,	5	males)	participated	in	this	experiment.	All	of	them	174	

had	normal	or	corrected-to-normal	vision,	and	none	had	evident	motor	abnormalities.	All	175	

subjects	were	right	handed	and	gave	written	informed	consent.	The	study	was	approved	by	176	

the	local	research	ethics	committee.	177	

Apparatus	178	

Stimuli	were	shown	on	a	Philips	CRT-22	inch	(Brilliance	202P4)	monitor	at	a	frame	rate	of	179	

120	Hz	and	a	resolution	of	1024	by	768	pixels.	The	viewing	distance	was	about	60cm	and	180	

the	head	was	free	to	move.	A	custom	program	written	in	C	and	based	on	OpenGL	controlled	181	

the	presentation	of	the	stimuli	and	registered	the	time	of	the	button-presses	by	sampling	182	

an	ancillary	device	at	125	Hz.	The	software	was	run	on	a	Macintosh	Pro	2.6	GHz	Quad-Core	183	

computer.	184	
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Procedure	185	

The	stimuli	were	the	same	as	in	the	Arm	Movement	experiment	except	for	the	fact	that	the	186	

motion	was	presented	on	the	fronto-parallel	plane.	In	this	experiment	subjects	had	to	press	187	

a	button	that	initiated	the	release	of	a	moving	cursor	from	the	home	position.	Subjects	had	188	

to	press	the	button	timely	so	that	the	cursor	would	hit	the	target	when	passing	between	the	189	

two	vertical	lines	(interception	zone).	The	movement	time	of	the	cursor	from	the	home	190	

position	to	the	interception	zone	was	312	ms	and	its	velocity	profile	was	extracted	from	an	191	

actual	arm	movement.	In	this	experiment	the	time	of	the	button-press	determined	192	

completely	the	final	temporal	error.	Subjects	took	the	same	number	of	trials	and	sessions	193	

as	in	the	Arm	movement	experiment.	194	

Eye	Movement	experiments	195	

Participants	196	

Fifteen	participants	(age	range	18–47,	7	males,	including	two	authors)	participated	in	the	197	

experiments.	Among	them,	ten	(age	range	18–46,	4	males)	participated	in	th	first	198	

experiment	(termed	knowledge	of	results,	KR)	and	twelve	(age	range	23-47,	5	males)	199	

participated	in	the	second	one	(knowledge	of	performance,	KP).	They	had	normal	or	200	

corrected-to-normal	vision.	All	participants	gave	written	informed	consent.	The	study	was	201	

approved	by	the	local	research	ethics	committee.	202	
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Apparatus	203	

Stimuli	were	generated	using	the	Psychophysics	Toolbox	extensions	for	Matlab®	(22,23)	204	

and	displayed	on	a	video	monitor	(Iiyama	HM204DT,	100	Hz,	22’’).	Participants	were	205	

seated	on	an	adjustable	stool	in	a	darkened,	quiet	room,	facing	the	center	of	the	computer	206	

screen	at	a	viewing	distance	of	60	cm.	To	minimize	measurement	errors,	the	participant’s	207	

head	movements	were	restrained	using	a	chin	and	forehead	rest,	so	that	the	eyes	in	208	

primary	gaze	position	were	directed	toward	the	center	of	the	screen.	Viewing	was	209	

binocular,	but	only	the	right	eye	position	was	recorded	in	both	the	vertical	and	horizontal	210	

axes.	Eye	movements	were	measured	continuously	with	an	infra-red	video-based	eye	211	

tracking	system	(Eyelink®,	SR	Research	Ltd.,	2000	Hz)	and	data	were	transferred,	stored,	212	

and	analyzed	via	programs	written	in	Matlab®.	The	fixation	point	that	was	used	as	a	home	213	

position	for	the	gaze	was	a	0.4	deg×0.4	deg	square	presented	always	on	the	bottom	left	214	

quadrant	of	the	screen.	The	target	was	a	0.4	deg	of	diameter	disk,	and	the	interception	area	215	

was	a	goal	box	of	0.6	deg	of	diameter.	The	interception	area	was	located	12	deg	to	the	right	216	

of	the	home	position	(see	Fig	1B).	All	stimuli	were	light	grey	(16	cd/m2	luminance)	217	

displayed	against	a	dark	grey	background	(1.78	cd/m2	luminance).	Before	each	218	

experimental	session,	the	eye	tracker	was	calibrated	by	having	the	participant	fixate	a	set	219	

of	thirteen	fixed	locations	distributed	across	the	screen.	During	the	experiment	the	subject	220	

had	to	look	at	the	center	of	the	screen	for	a	one-point	drift	check	every	fifty	trials.	If	there	221	

was	any	gaze	drift,	the	eye	tracker	was	calibrated	again.	222	
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Procedure	223	

A	session	consisted	of	390	discrete	trials	lasting	between	2	and	2.45	secs.	Each	trial	started	224	

with	the	subject	looking	at	the	fixation	point	for	a	period	randomly	varying	between	700	225	

and	1100ms.	Participants	were	instructed	to	make	a	saccade	to	intercept	the	target,	that	226	

was	moving	downward	towards	the	interception	area,	at	the	time	it	was	within	the	227	

interception	area.	Targets	moved	with	a	constant	velocity	of	either	20,	25	or	30	deg/s.	228	

Target	velocities	were	interleaved	across	trials	in	both	the	KR	and	KP-interleaved	229	

experiments.	In	the	KP-blocked	condition,	the	targets’	velocities	were	presented	in	three	230	

consecutive	130-trial	blocks	(in	a	pseudo-random	order	counterbalanced	across	231	

participants).	The	same	participants	experienced	both	KP	conditions;	the	order	was	232	

counterbalanced	across	subjects.	The	time	to	contact	the	interception	area	was	600	ms	233	

since	target	onset,	and	the	target	starting	point	was	therefore	depended	on	the	actual	234	

target	velocity.	The	occurrence	of	a	saccade	was	crudely	detected	when	the	online	eye	235	

velocity	successively	exceeded	a	fixed	threshold	of	74	deg/s.	If	the	offset	of	an	ongoing	236	

saccade	was	detected	before	the	target	reached	the	interception	zone	the	target	was	237	

extinguished	at	the	next	frame,	i.e.	within	the	next	10ms	(offline	measurements	revealed	238	

that	the	target	disappeared	on	average	2	ms	after	the	time	of	the	actual	saccade	offset).	If	239	

the	target	center	was	aligned	with	the	goal	box	before	a	saccade	was	detected	we	240	

extinguished	the	target.	Therefore,	participants	never	saw	the	target	after	it	had	reached	241	

the	interception	zone.	We	delivered	an	auditory	feedback	(100	ms	beep	at	1000	Hz)	if	the	242	

eye	landed	within	3	deg	of	the	interception	area	with	an	absolute	temporal	error	smaller	243	

than	20	ms.	To	this	end,	the	actual	saccade	onset-	and	offset-time	and	position	were	244	
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computed	immediately	after	the	saccade	using	the	real-time	Eyelink	algorithm	with	a	30	245	

𝑑𝑒𝑔/𝑠	velocity	and	8000	𝑑𝑒𝑔/𝑠&	acceleration	thresholds	(on	average	we	retrieved	these	246	

values	12	ms	after	the	end	of	the	saccade).	In	the	first	experiment	(KR),	participants	did	not	247	

receive	explicit	feedback	on	their	performance	other	than	the	auditory	one.	In	the	second	248	

experiment	(KP),	the	actual	temporal	error	was	displayed	numerically	in	milliseconds	at	249	

the	end	of	each	trial	(KP).	For	offline	analyses,	a	human	observer	validated	each	saccade	250	

manually.	Saccades	with	an	amplitude	gain	smaller	than	0.5	or	a	duration	longer	than	100	251	

ms	were	discarded.	252	

Analysis	253	

Testing	for	the	optimality	of	corrections:	autocorrelation	analysis	254	

It	is	known	that	the	serial	dependence	of	consecutive	movement	errors	depends	on	the	255	

amount	of	trial-by-trial	correction	(24).	If	participants	are	trying	to	make	temporal	256	

corrections	based	on	the	prediction	error	we	should	be	able	to	see	a	serial	dependence	of	257	

the	action	onset	(𝑇()	in	both	simulated	and	behavioral	data	that	will	depend	on	𝛽,	the	258	

fraction	of	correction.	Suppose	that	no	corrections	are	made	whatsoever.	In	this	case,	we	259	

expect	that	consecutive	initiation	times	will	be	similar	to	the	previous	one.	The	absence	of	260	

correction	would	be	revealed	by	a	significant	positive	lag-1	autocorrelation	function	261	

(acf(1))	of	the	action	onset	under	the	assumption	that	planning	noise	accumulates	from	262	

trial	to	trial.	On	the	contrary,	if	one	aims	at	correcting	for	the	full	observed	error	(𝛽=1)	then	263	

consecutive	movements	will	tend	to	be	on	opposite	sides	of	the	average	response	because	264	

one	corrects	not	only	for	the	error	in	planning	but	also	for	the	random	effects	of	execution	265	
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noise.	In	both	scenarios	(𝛽=0	and	𝛽=1)	there	is	an	unnecessarily	large	temporal	variability	266	

due	to	different	causes.	If	one	does	not	correct,	not	only	will	previously	committed	errors	267	

persist	but	also	previous	planning	errors	will	accumulate	across	trials	increasing	the	268	

variability	much	like	when	one	repeatedly	reaches	out	for	static	targets.	If	one	does	fully	269	

correct,	the	variability	due	to	changes	in	the	planned	time	will	be	larger	than	if	smaller	270	

corrections	were	made.	In	either	case	the	process	is	not	optimal	in	the	sense	that	the	271	

temporal	error	is	more	variable	than	necessary.	When	corrections	are	large	enough	to	272	

compensate	for	random	variability	but	not	too	large	to	make	the	behavior	unstable,	then	273	

the	temporal	error	variance	is	minimal	and	the	correction	fraction	is	optimal.	For	such	274	

fractions	of	corrections,	acf(1)	of	the	temporal	errors	will	be	zero	(8).	In	our	case	275	

participants	can	correct	by	changing	the	action	onset,	so	we	are	interested	in	the	cross-276	

correlation	function	(ccf(1))	between	action	onset	at	trial	i	and	the	relevant	target	error	at	277	

trial	i-1.	Note	that	for	the	button	press	condition	action	onset	is	perfectly	correlated	with	278	

the	final	error	and	for	eye	movements	the	correlation	is	very	high,	therefore	the	ccf(1)	279	

would	be	undistinguishable	from	the	acf(1)	of	either	the	actual	error	or	action	onset.	280	

Similarly,	a	zero	cross-correlation	ccf(1)	would	denote	an	optimal	change	of	the	time	of	281	

action	onset	to	correct	for	the	previous	error.	282	

Dependency	on	the	previous	actual	temporal	error	283	

We	analyzed	the	dependency	of	the	time	of	action	onset	in	the	current	trial	on	the	temporal	284	

error	with	respect	to	the	target	in	the	previous	trial	in	the	different	conditions	by	fitting	285	

linear	mixed-effect	models	(LMMs),	which	enable	us	to	easily	analyze	the	effects	of	the	286	

previous	trial	on	the	current	response.	In	the	model,	the	action	onset	time	was	the	287	
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dependent	variable	and	the	previous	target	temporal	error,	the	independent	variable.	Both	288	

intercept	and	slope	were	allowed	to	vary	as	random	effects	across	subjects	Both	intercept	289	

and	slope	were	allowed	to	vary	as	random	effects	across	subjects.	We	used	the	lmer	290	

function	(v.1.0–6)	(25)	from	R	software	291	

Simulations	and	process	modelling	292	

In	order	to	estimate	the	prediction	error	relative	to	action	onset	we	used	a	Kalman	filter	to	293	

estimate	the	predicted	action	onset	time	before	the	actual	observation.	For	the	Kalman	294	

filter	to	work,	one	needs	knowledge	of	the	sources	of	variability	(process	and	measurement	295	

noise).	To	get	further	insight	into	the	variance	of	the	generative	process	of	the	action	onset,	296	

we	implemented	the	temporal	corrections	at	the	action	onset	across	simulated	trials	in	297	

which	we	manipulated	different	sources	of	variability:	process	variability	and	298	

measurement	(i.e.	motor)	variability.	The	process	variance	in	the	time	of	action	onset	is	299	

captured	by	the	following	expression	and	mainly	accounts	for	variability	of	sensory	origin:	300	

𝑉+ =
𝜎.
𝑣

&
+ 𝜎+&  (1)	301	

The	first	term	is	velocity	dependent	and	the	second	one	corresponds	to	a	timing	variability	302	

(26).	𝜎.	is	the	spatial	variability	about	the	target	position	at	action	onset	and	𝑣	is	the	target	303	

speed.	Uncertainty	caused	by	measuring	target	speed	may	likely	contribute	to	the	timing	or	304	

velocity	dependent	variability.	However,	in	practice	both	sources	of	variability	are	difficult	305	

to	tease	apart	because	an	error	in	misjudging	the	target	position	would	be	306	

indistinguishable	from	a	timing	error.	In	each	simulated	trial	i	the	generation	of	an	307	
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intended	action	onset	𝜏	is	a	stochastic	process	where	𝜏6 ,	the	planned	action	onset	at	trial	i,	308	

is	updated	according	to:	309	

𝜏678 = 𝜏6 − 𝛽𝑒6 + 𝑞, 𝑞 ∼ 𝑁(0, 𝑉+)  (2)	310	

where	𝛽	is	a	learning	rate	or,	in	our	case,	the	simulated	fraction	of	error	(e)	correction	and	311	

q	is	the	process	noise	related	to	eq.	1.	The	actual	action	onset	𝑇(	is	simulated	by	adding	312	

measurement	noise	(produced	by	motor	noise)	to	the	intended	action	onset:	313	

𝑇6( = 𝜏6 + 𝑟, 𝑟 ∼ 𝑁(0, 𝜎A& )  (3)	314	

where	r	is	the	execution	noise	(added	noise	from	when	the	motor	command	is	issued	until	315	

movement	onset).	The	final	temporal	error	e	at	trial	𝑖	is	given	by:	316	

𝑒6 = 𝑇D − (𝑇6( + 𝑇6A)  (4)	317	

where	𝑇D 	is	the	time	at	which	the	target	is	centred	within	the	interception	zone	and	𝑇6A	is	318	

the	movement	time.	Without	loss	of	generality,	we	set	𝑇6A	and	𝑇D 	to	zero.	319	

Modeling	the	corrections.	Using	the	equations	introduced	above,	we	modeled	a	trial-to-trial	320	

correction	of	the	time	of	initiation,	assuming	that	all	the	final	temporal	error	is	fully	caused	321	

by	the	time	of	action	initiation	𝑇(.	This	was	certainly	the	case	in	the	eye	movement	322	

conditions	and	button	press	conditions	–	because	in	our	case	the	time	to	reach	the	target	323	

was	fixed	once	the	button	was	triggered	-	while	for	arm	movements	there	is	some	room	for	324	

online	corrections	by	adjusting	the	movement	time.	We	modeled	16	different	correction	325	

fractions	from	0.06	to	1	by	increments	of	0.06	(range:	0.06-0.96)	and	four	values	of	r	(𝜎A =	326	

0.022,	0.05	0.1	and	0.2	s).	We	set	𝜎.	to	1	cm	and	𝜎+	to	0.05	s.	These	values	were	used	with	327	

three	target	velocities:	20,	25	and	30	m/s	resulting	in	a	mean	process	noise	variance	of	328	
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0.0042	s2.	These	choices	were	guided	by	values	reported	in	previous	studies	(26,27).	If	the	329	

simulated	time	at	trial	i	was	shorter	(i.e	responding	too	early)	than	a	target	value	(e.g.	0	330	

ms)	by	some	magnitude	𝑒6 ,	the	value	of	the	intended	time	onset	(𝜏678)	was	increased	by	𝛽𝑒	331	

on	the	next	trial,	or	decreased	if	the	observed	time	was	too	long.	We	ran	1000	simulations	332	

for	each	combination	of	𝛽	and	r.	Each	simulation	consisted	of	a	series	of	360	responses	or	333	

trials	in	which	speed	was	interleaved	(but	note	that	the	time	the	target	took	to	reach	the	334	

interception	zone	was	the	same	for	all	speeds,	so	target	speed	changes	between	335	

consecutive	trials	are	not	a	problem	for	making	trial-by-trial	corrections).	336	

Estimation	of	process	and	measurement	variances	337	

The	fraction	of	correction	𝛽	can	be	estimated	from	the	behavioural	data	through	the	338	

Kalman	gain	(K)	(9).	The	Kalman	filter	estimates	the	planned	action	onset	as	the	hidden	339	

state	from	the	actual	(noisy)	action	onsets.	In	order	to	know	K	one	possibility	is	to	estimate	340	

the	process	(𝑉+)	and	measurement	(𝜎A& )	variances	(28).	In	steady	state	(which	in	our	341	

experiments	was	approached	after	a	few	trials),	K	can	be	approximated	by	the	following	342	

expression	(5):	343	

𝐾 =
𝑉+

𝑉+ + 𝜎A&
  (5)	344	

Since	𝑉+	and	𝜎A& 	are	known	in	the	simulations,	this	expression	approximates	the	345	

corresponding	optimal	correction	fractions	for	the	different	values	of	simulated	motor	346	

(measurement)	noise:	K=	0.09,	0.29,	0.61	and	0.86	starting	with	largest	value	of	𝜎A& .	347	
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This	is	not	as	straightforward	when	analyzing	the	behavioral	data	since	both	parameters	348	

are	unknown.	In	order	to	estimate	the	process	noise	variance	𝑉+	in	the	different	349	

experimental	conditions,	we	proceeded	as	follows:	first	we	fitted	a	linear	model	to	the	350	

process	noise	variance	in	the	simulated	data	based	on	terms	that	could	be	obtained	from	351	

the	observed	data	(both	simulated	and	behavioral).	Second,	we	used	the	fitted	model	to	352	

predict	the	process	variance	in	the	experiments.	353	

The	linear	model	contained	three	terms	plus	their	interactions.	Two	of	the	terms	come	354	

from	the	decomposition	of	the	actual	temporal	variance	into	estimates	of	(𝜎./𝑣)&	and	𝜎+&	355	

which	may	contain	measurement	noise	because	they	were	estimated	from	the	observed	356	

simulated	data.	The	third	term	was	the	ccf(1)	of	the	action	onsets.	When	we	fitted	the	357	

model	to	the	process	noise	variance	in	the	simulated	data	the	model	accounted	for	the	94%	358	

of	the	variance.	359	

In	order	to	obtain	the	two	first	terms	of	the	linear	model	in	both	simulated	and	behavioral	360	

data,	we	fitted	the	following	model	(29)	to	the	total	spatial	variability:	361	

𝑆𝐷. = 𝜎.& + (𝑣𝜎+)&  (6)	362	

We	estimated	𝜎.	and	𝜎+&	for	each	series	of	360	trials	in	the	simulations	and	for	each	363	

participant	and	condition.	Fig	S1A	shows	the	simulated	process	variance	against	the	364	

predicted	process	variance	from	the	model.	Fig	S1B	shows	the	estimated	process	variance	365	

in	the	human	data	based	on	the	linear	model	used	to	fit	the	process	variance	in	the	366	

simulated	data.	The	process	variance	is	plotted	against	the	whole	observed	temporal	367	

variance.	Fig	S1C	shows	how	the	whole	temporal	variance	is	decomposed	according	to	368	

equation	eq.	1.	369	
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Once	we	had	estimated	the	process	variance	𝑉+ ,	the	measurement	noise	was	the	only	free	370	

parameter	when	fitting	the	Kalman	filter	to	the	behavioral	data.	371	

The	Kalman	filter	model	372	

We	applied	a	Kalman	filter	model	to	determine	the	degree	of	correction	based	on	the	373	

prediction	error.	As	shown	in	eq.	3	the	actual	action	onset	𝑇(	is	a	noisy	realization	of	the	374	

predicted	action	onset	𝜏.	We	can	rewrite	eq.	2	as:	375	

𝜏6 = 𝜏6K8 + 𝑐6 + 𝑞  (7)	376	

where	𝑐6 	is	a	correction	factor	that	has	to	be	determined	by	the	Kalman	filter.	But,	how	does	377	

the	Kalman	filter	work	out	the	magnitude	of	the	correction?	The	Kalman	estimates	𝑐6 	378	

recursively	by	combining	a	predicted	action	onset	(i.e.	a	priori)	and	the	observation	of	379	

action	onset	that	has	been	corrupted	by	noise	𝑇(.	After	movement	onset	at	trial	i,	the	380	

Kalman	filter	estimates	a	posterior	time	of	action	onset	(denoted	by	the	hat	operator):	381	

𝜏6 = 𝜏6 + 𝐾6(𝑇6( − 𝜏6)  (8)	382	

The	posterior	will	be	used	as	a	predicted	action	onset	time	in	trial	i+1,	becoming	𝜏6 	in	383	

(eq.	7).	𝐾6 	is	called	the	Kalman	gain	and	reflects	the	fraction	of	correction	of	the	prior	time	384	

of	action	onset.	If	𝐾 = 0	no	change	is	made	in	the	planning	for	the	next	trial;	alternatively,	if	385	

𝐾 = 1	the	whole	difference	between	the	prediction	and	the	observed	action	onset	is	386	

accounted	for	in	the	posterior.	We	will	refer	to	the	difference	between	𝑇(	and	𝜏	as	387	

prediction	error.	388	
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In	order	to	compute	𝐾,	the	Kalman	filter	takes	into	account	the	uncertainty	of	the	389	

prediction	and	the	one	of	the	observation.	390	

𝐾6 = 𝑃6(𝑃6 + 𝜎A& )K8  (9)	391	

where	𝑃6 	is	the	uncertainty	in	the	prediction	of	the	planned	onset	time	before	the	392	

observation	of	action	onset	takes	place.	Note	the	equivalence	with	eq.	5.	This	a	priori	393	

uncertainty	is	also	obtained	from	the	posterior	estimate	of	the	uncertainty,	𝑃,	in	trial	i-1:	394	

𝑃6 = 𝑃6K8 + 𝑉+  (10)	395	

The	Kalman	filter	will	correct	the	internal	estimate	(i.e.	predicted	action	onset)	by	a	396	

fraction	𝐾	of	the	prediction	error	𝑇( − 𝜏.	However,	although	the	prediction	error	is	highly	397	

correlated	with	the	final	temporal	target	error	in	some	conditions,	the	prediction	error	is	398	

not	the	task-relevant	error	shown	in	eq.	4.	We	analysed	the	correction	with	respect	to	399	

action	onset	because	we	are	interested	in	how	people	correct	in	the	planning	phase.	400	

The	planning	of	the	action	onset	should	aim	at	minimizing	the	expected	final	temporal	401	

error	(𝑒(𝜏) = 0)	which	can	be	stated	as:	402	

𝑒 = 𝑇D − 𝜏 + 𝑇A  (11)	403	

In	order	to	be	accurate	across	all	observed	responses	we	need	that:	404	

𝑇D = 𝑇( − 𝑇A  (12)	405	

Substituting	eq.	12	in	eq.	11:	406	

𝑒 = (𝑇( − 𝑇A) − (𝜏 + 𝑇A) = 𝑇( − 𝜏  (13)	407	
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which	is	the	prediction	error	with	respect	to	action	onset	that	the	Kalman	filter	is	408	

correcting.	This	equation	shows	that,	given	some	constraints	in	the	distribution	of	409	

movement	time	𝑇A	(i.e.	shifted	mean	with	respect	to	𝑇(),	correcting	for	the	prediction	410	

error	is	equivalent	to	correcting	for	the	final	temporal	error.	This	is	true	on	average,	since	411	

for	individual	trials	the	prediction	error	does	not	necessarily	correspond	to	the	final	error.	412	

Parameter	estimation.	In	order	to	estimate	the	predicted	action	onset	time	(𝜏)	𝜎+&,	the	413	

measurement	noise	was	the	only	free	parameter.	𝜎+&	was	determined	by	minimizing	the	414	

negative	log-likelihood	of	the	actual	action	onset	given	the	estimated	(planned)	action	415	

onset	computed	by	the	Kalman	filter	in	each	participant	and	condition.	416	
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	417	

Fig	2.	(A)	Example	of	action	onset	times	for	the	different	conditions.	Different	conditions	are	418	

color-coded	(see	legend	in	Fig2B).	Each	response	series	corresponds	to	a	single	participant.	419	

The	two	examples	of	the	arm	movement	condition	correspond	to	a	fast	(top-left)	and	slow	420	

(top-right)	participant.	The	action	onset	time	is	centered	at	zero	(by	substracting	the	mean)	421	

to	optimize	panel	space.	(B)	Mean	lag-1	cross-correlation	functions,	ccf(1),	between	the	time	422	

of	action	onset	at	trial	t	and	actual	temporal	error	at	trial	t-1	for	the	different	conditions.	423	

Error	bars	denote	the	95%-CI	of	the	correlation	coefficients.	(C)	(Simulated	data)	The	424	

temporal	error	variance	as	a	function	of	the	simulated	fraction	of	correction	𝛽	for	the	four	425	

different	levels	of	simulated	execution	noise.	The	arrows	point	to	the	value	of	𝛽	that	426	

corresponds	to	the	minimum	variance.	As	can	be	noted,	this	fraction	of	correction	is	similar	to	427	
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the	simulated	gain	(which	in	turn	depends	on	the	level	of	execution	noise,	see	legend	in	panel	428	

D).	The	largest	gain	(i.e.	K=0.86)	requires	larger	corrections	in	order	to	minimize	the	429	

variance.	(D)	(Simulated	data)	The	acf(1)	values	of	action	onset	in	the	simulated	data	against	430	

the	amount	of	correction.	As	can	be	seen,	the	acf(1)	should	be	near	zero	to	be	optimal	for	each	431	

gain.	432	

Results	433	

Are	temporal	corrections	optimal?	434	

Assuming	that	open-loop	control	schemes	are	used	to	execute	the	movements,	we	expect	a	435	

modulation	of	the	initiation	times	by	prior	temporal	errors	but	also	that	the	time	of	action	436	

initiation	relative	to	the	interception	time	is	not	statistically	different	across	different	437	

target	velocities.	That	is,	relevant	decision	variables	regarding	the	action	onset	would	438	

mainly	rely	on	temporal	estimates	of	the	remaining	time	to	contact	from	the	action	439	

initiation.	An	ANOVA	on	the	linear	mixed	model	in	which	action	onset	was	the	dependent	440	

variable,	target	speed	(fixed	effect	as	continuous	variable),	conditions	(fixed	effect	as	441	

factor)	and	subjects	treated	as	random	effects	failed	to	report	a	significant	effect	of	target	442	

speed	on	action	onset	(F<1,	p=0.96)	and	only	condition	was	significant	(F=53,	p<0.001).	443	

The	interaction	was	not	significant	(F<1,	p=0.473).	444	

Fig	2A	shows	examples	of	series	of	observed	action	onset	times	from	the	different	445	

experimental	conditions.	From	the	different	series	we	first	computed	the	lag-1	cross-446	

correlation	function	(ccf(1))	between	the	action	onset	in	trial	t	and	the	temporal	error	in	447	

trial	t-1.	To	qualify	as	“optimal	correction”,	ccf(1)	between	previous	target	error	and	action	448	

onset	must	be	zero	(or	very	close	to	zero).	Fig	2B	shows	the	mean	lag-1	cross-correlation	449	
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function	ccf(1)	between	the	time	of	action	onset	and	previous	error	for	the	different	450	

conditions.	These	values	are	consistent	with	participants	changing	their	action	onset	451	

optimally	or	near	optimally.	ccf(1)	values	for	arm	movements	and	eye	movements	(KP-452	

interleaved)	were	very	low	but	significantly	different	from	zero.	453	

We	conducted	the	same	analysis	on	the	simulated	data.	First,	Fig	2C	shows	how	the	fraction	454	

of	correction	modulates	the	overall	temporal	variance.	The	correction	fraction	for	which	455	

the	temporal	variance	is	minimal	is	the	optimal	correction	fraction.	This	fraction	is	456	

different	for	the	different	levels	of	simulated	execution	or	motor	noise	(measurement	457	

noise)	that	correspond	to	the	different	Kalman	gains.	Importantly	the	values	of	optimal	458	

correction	correspond	to	values	of	ccf(1)	(or	acf(1)	in	the	simulations)	very	close	to	zero	459	

(Fig	2D).	From	the	different	data	patterns	shown	in	Fig	2	we	can	be	quite	confident	that	460	

participants	corrected	by	changing	the	time	of	action	onset	in	an	optimal	way	or	close	to	an	461	

optimal	way.	462	

Dependency	on	the	previous	temporal	error	463	

Autocorrelation	indicates	how	consecutive	points	tend	to	be	around	the	mean	(e.g.	if	one	464	

overcorrects	then	consecutive	points	will	likely	be	on	opposite	sides),	but	does	not	indicate	465	

which	fraction	of	the	previous	actual	error	is	being	accounted	for	in	the	change	of	action	466	

onset	in	the	present	response.	In	order	to	get	an	estimate	of	this	magnitude	we	ran	the	467	

Linear	Mixed	Model	(described	in	the	methods	sections).	The	time	of	action	initiation	at	468	

each	trial	was	fitted	as	a	function	of	the	previous	final	temporal	error.	The	slope	denotes	469	

how	much	the	previous	error	is	considered.	Fig	3A	(red	dots	for	the	Arm	movement	470	

condition	and	boxplot)	shows	the	values	of	the	slopes.	The	larger	slopes	were	found	in	the	471	
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arm	movement	condition	and	the	average	slope	was	significantly	different	from	zero	472	

(slope=0.12	fraction/trial,	t=5.39,	p<0.0001).	For	the	remaining	conditions,	only	in	the	Eye	473	

movements	(KP-interleaved)	the	slope	was	significantly	different	from	zero	(slope=0.07	474	

fraction/trial,	t=3.78,	p=0.004).	The	distribution	of	individual	slopes	in	the	Arm	475	

movements	condition	reveals	an	interesting	and	clear	positive	linear	relation	between	the	476	

movement	time	and	the	dependency	on	the	previous	temporal	error	(Fig	2A	main	panel).	477	

Participants	with	slower	arm	movements	modified	more	the	action	onset	in	the	present	478	

trial	more	as	a	function	of	the	previous	interception	temporal	error.	Movement	time	in	479	

saccades	did	not	have	enough	variability	across	subjects	to	observe	a	similar	distribution	480	

and	cursor	movement	time	was	fixed	in	the	button	press	condition.	The	corrections	in	the	481	

Button	press	and	Eye	movements	conditions	(KR	and	KP-blocked)	did	not	rely	on	the	482	

previous	temporal	error	with	respect	to	the	target	(slopes	not	different	from	zero).	483	

	484	

Fig	3.	(A)	Dependency	(slope	in	the	linear	model)	of	the	action	onset	on	the	previous	actual	485	

temporal	error	as	a	function	of	movement	time	in	the	Arm	movement	condition.	Each	dot	486	

corresponds	to	an	individual	participant.	(inset)	The	slopes	(boxplot)	corresponding	to	the	487	
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other	conditions.	(B)	The	ccf(1)	for	each	participant	against	the	estimated	Kalman	gain	(K).	488	

Smaller	dots	correspond	to	individual	participants	and	conditions,	while	larger	dots	are	mean	489	

values	across	subjects	within	conditions.	For	the	Arm	movement	condition	we	split	the	data	490	

points	into	slow	and	fast	participants	depending	on	the	movement	time	(shape	coded).	Error	491	

bars	denote	95%-CI.	The	two	horizontal	grey	lines	denote	the	confidence	interval	for	the	null	492	

ccf.	For	the	sake	of	coparison,	the	four	lines	with	different	styles	(dolid,	dashed,	dotted	and	493	

dash-dotted)	correspond	to	the	Kalman	gain	and	expected	ccf	obtained	in	the	simulations	(see	494	

Fig	2D).	495	

The	question	then	is	how	do	people	correct	in	these	conditions?	One	possibility	(depicted	496	

in	Fig	1A)	is	that	people	corrected	the	aimed	action	onset,	not	based	on	the	final	temporal	497	

error	but	on	the	difference	between	the	planned	action	onset	and	the	actual	action	onset	498	

(i.e.	the	prediction	error).	Since	we	could	not	measure	this	prediction	error	in	the	499	

experiment,	we	had	to	model	correcting	based	on	this	error	to	infer	how	large	these	500	

corrections	were.	We	used	a	Kalman	filter	model	to	estimate	the	Kalman	gain,	that	is	the	501	

fraction	of	the	prediction	error	that	is	used	to	update	the	aimed	action	onset	for	the	next	502	

trial.	503	

Corrections	based	on	the	action	onset	prediction	error	504	

Unlike	in	the	simulations,	both	the	process	(𝑉+)	and	measurement	(𝜎A& )	variances	are	505	

unknown	in	the	experiments.	The	Kalman	filter	requires	knowledge	of	these	variances	in	506	

order	to	estimate	the	optimal	Kalman	gain	(K).	We	inferred	the	process	noise	variance	(𝑉+)	507	

in	the	experimental	data	by	predicting	this	variability	from	the	linear	model	that	was	used	508	

to	fit	the	process	noise	variance	in	the	simulations.	509	
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The	standard	deviation	of	the	process	noise	for	the	eye	movements	(KR)	was	larger	than	in	510	

the	other	conditions	(58	ms	versus	37	ms	in	Button	press,	38	ms	in	Arm	movements,	44	ms	511	

in	Eye	movements	KP-Blocked	and	KP-interleaved).	Only	the	difference	between	KR	and	512	

Arm	movements	reached	significance	(corrected	p=0.009).	For	the	hand	movements	513	

condition,	we	found	a	clear	difference	between	slower	and	faster	(<400	ms	of	movement	514	

time)	participants	with	the	latter	being	more	variable	(49	ms	versus	17	ms,	p<0.0001).	515	

The	Kalman	filter	was	fitted	to	the	time	series	based	on	the	action	onset	with	the	516	

measurement	noise	variance	(𝜎A& )	as	the	only	free	parameter.	517	

	518	

Fig	4.	(A)	Relation	between	the	contribution	to	the	correction	of	the	action	onset	based	on	the	519	

previous	temporal	error	(Target	error	contribution)	and	the	contribution	to	the	correction	520	

based	on	the	prediction	error	(i.e.	based	on	the	Kalman	gain)	for	the	Arm	movement	521	

condition.	Each	dot	corresponds	to	a	different	participant	and	the	shape	corresponds	to	the	522	

classification	of	the	movement	time	duration	(fast:	less	than	0.5	s;	slow	larger	than	0.5	s).	The	523	

target	error	contribution	between	0	and	1	corresponds	to	the	actual	fraction	of	correction	of	524	

the	final	error	obtained	from	the	slopes	shown	in	Fig	3A	by	using	a	linear	the	model.	The	525	

linear	model	was	obtained	with	the	simulated	data	and	allowed	to	estimate	the	526	
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corresponding	slope	for	each	(simulated)	fractions	of	corrections.	The	Kalman	gain	527	

contribution	is	obtained	by	scaling	the	Kalman	gain	between	0	and	1.	The	grey	line	528	

corresponds	to	the	predicted	relation	assuming	that	both	correction	fractions	are	combined	529	

into	a	quadratic	sum	(equation	14)	(B).	Evolution	in	time	of	the	correction	fractions	(i.e.	530	

relevance	given	to	prediction	and	final	error).	The	shift	of	the	two	lines	(prediction	and	531	

feedback-based	correction)	depends	only	on	the	time	at	which	the	final	temporal	error	will	532	

start	to	be	considered	for	correction	in	the	next	trial	(about	171	ms	in	the	figure).	See	text	and	533	

equation	15	for	the	computation	of	the	two	lines	in	panel	B.	534	

The	individual	as	well	as	the	mean	Kalman	gains	for	participants	and	conditions	are	shown	535	

in	Fig	3B	together	with	the	value	of	the	ccf(1).	This	plot	shows	that	different	values	of	536	

correction	with	respect	to	the	action	onset	prediction	error	(i.e.	Kalman	gain)	can	537	

correspond	to	optimal	or	near	optimal	corrections.	The	estimated	magnitude	of	the	538	

measurement	noise	was	very	similar	among	conditions	and	its	standard	deviation	ranged	539	

from	33	ms	(Arm	movements)	to	35	ms	(Eye	movements	KP-Blocked).	No	difference	was	540	

significant.	There	was	no	difference	between	slow	(31	ms)	and	fast	(34	ms)	participants	in	541	

the	arm	movement	condition.	Thus,	the	differences	in	process	to	measurement	variance	542	

ratio	that	determines	the	Kalman	gain	are	due	to	differences	in	the	process	noise.	Fig	3B	543	

also	shows	the	difference	between	slow	and	fast	participants	in	the	Arm	movement	544	

conditions	with	the	parameters	corresponding	to	the	fast	group	being	very	similar	to	those	545	

of	the	Eye	movements	and	Button	press	conditions.	This	is	consistent	with	people	546	

correcting	less	based	on	the	prediction	error	(difference	between	planned	action	onset	and	547	

actual	action	onset)	when	they	moved	more	slowly.	548	

This	high	Kalman	gain	(i.e.	use	of	prediction	error)	would	be	expected	in	the	Eye	movement	549	

conditions	because	the	sensory	feedback	of	the	final	temporal	error	can	be	noisy.	However	550	
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this	is	not	the	case	for	the	Button	press	condition	in	which	participants	could	perfectly	551	

perceive	the	error.	Since	the	final	temporal	error	is	fully	explained	by	the	time	of	action	552	

onset	in	this	condition,	it	seems	that	the	correction	based	on	the	prediction	error	rather	553	

than	the	final	error	seems	to	be	based	on	the	reliability	(or	correlation)	of	the	prediction	554	

error	with	respect	to	the	final	temporal	error.	555	

Relation	between	prediction	error	and	final	temporal	error	556	

Based	on	the	auto-correlations,	people	make	corrections	that	minimize	the	temporal	557	

variability	across	trials.	However,	in	some	conditions	there	is	no	dependency	on	the	558	

previous	temporal	error.	One	possibility	that	would	explain	this	apparent	contradiction	is	559	

that	people	correct	based	on	some	combination	of	the	prediction	error	and	the	final	560	

temporal	error,	with	this	combination	being	modulated	by	the	movement	time.	This	would	561	

explain	the	difference	in	Kalman	gain	between	slow	and	fast	movement	times	in	the	Arm	562	

movement	condition.	The	prediction	error	(actual	onset	minus	planned	onset	times)	would	563	

be	weighted	more	heavily	in	the	next	trial	for	short	movement	times	with	a	progressively	564	

decay	in	favor	of	the	final	temporal	error	(relative	to	the	target)	as	movement	time	565	

increased	(Fig.	1A).	The	estimated	Kalman	gains	support	this	hypothesis,	but	to	further	566	

explore	this	possible	use	in	combination	of	both	error	signals	we	plotted	the	relation	567	

between	the	(normalized)	dependency	on	the	actual	previous	temporal	error	and	the	568	

Kalman	gain	contribution	(1	meaning	that	all	the	estimated	Kalman	gain	is	used	for	569	

correction)	for	the	different	subjects	who	participated	in	the	Arm	movements	condition	570	

(Fig	4A).	Interestingly,	the	relation	between	the	corrections	fractions	based	on	both	types	571	

of	errors	resembles	a	specific	type	of	combination	described	by	the	grey	line	in	Fig4A.	This	572	
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line	denotes	a	quadratic	sum	of	the	two	error	signals	contributions	(x	and	y	axes).	For	573	

example,	if	we	take	any	point	(x,y)	along	the	grey	line	(e.g.	x=0.7,	y=0.72),	the	quadratic	574	

sum	 (𝑥& + 𝑦&)	adds	to	one.	575	

Faster	subjects	(circles	in	Fig	4A)	show	larger	Kalman	gains	(as	in	Fig	3B)	and	the	576	

dependency	on	the	previous	target	error	is	small.	This	trade-off	changes	for	slow	577	

participants	(triangles	in	Fig	4A).	This	transition	is	well	described	by	the	grey	line	that	578	

corresponds	to	a	quadratic	sum	of	the	two	fractions	of	correction:	579	

𝜔 = (𝛽& + 𝐾&)8/&  (14)	580	

where	𝛽	and	K	correspond	to	the	contributions	of	the	actual	temporal	error	and	prediction	581	

error	respectively	and	𝜔	denotes	the	trade-off	between	the	two	error	signals.		582	

Some	models	of	cue	combination	(30)	have	used	the	expression	represented	by	eq.	14	to	583	

define	the	combined	reliability	(i.e.	reciprocal	of	variance)	from	the	individual	reliabilities.	584	

In	this	sense	equation	eq.	14	captures	the	maximum	likelihood	estimation	of	the	combined	585	

reliability.	Such	a	combined	use	of	error	signals	(not	contemplated	in	our	model)	results	in	586	

an	increased	precision	with	respect	to	using	either	signal	alone.	However,	one	important	587	

assumption	is	that	the	individual	reliabilities	are	independent	(i.e.	uncorrelated).	This	is	588	

not	the	case	in	our	two	temporal	error	signals.	The	prediction	error	and	the	final	target	589	

error	are	highly	correlated	in	our	conditions	(see	Fig	S2).	Due	to	the	magnitude	of	the	590	

correlation,	there	is	very	little	or	no	benefit	in	correcting	based	on	integrating	or	combining	591	

both	error	signals	(31)	(see	Fig	S3).	The	expression	in	eq.	14	then	should	not	be	interpreted	592	

as	a	weighted	combination	but	as	denoting	the	trade-off	between	the	two	error	signals.		593	
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Fig	4A	does	not	contain	any	temporal	information	concerning	how	the	relevance	of	each	594	

signal	𝛽	and	K	evolves	over	time.	The	modulation	of	the	relative	relevance	in	next	trial	by	595	

the	movement	time	(Fig.	4B)	sheds	some	light	on	how	both	types	of	errors	(the	prediction	596	

error	based	on	K	and	the	final	temporal	error	based	on	𝛽)	evolve	over	time.	Fig	4B	simply	597	

plots	the	same	points	shown	in	Fig	4A	as	a	function	of	the	corresponding	movement	time	598	

for	each	point.	As	can	be	seen,	the	relevance	of	the	prediction	error	decreases	in	a	non-599	

linear	manner,	while	the	contribution	of	the	target	error	increases	linearly.	Moreover,	Fig	600	

4B	shows	that	the	increase	of	𝛽	takes	place	after	some	critical	movement	time	or	601	

sensorimotor	delay	𝛿(A.	We	can	formulate	this	trend	(red	lines	in	Fig	4B)	according	to	the	602	

following	piecewise	function:	603	

𝛽+ =
0, if	𝑇A ≤ 𝛿(A
𝑎𝑇A, otherwise   (15)	604	

where	𝑇A	is	the	movement	time.	On	the	other	hand,	we	can	obtain	how	the	corresponding	605	

fraction	of	correction	given	to	prediction	(K)	as	a	function	of	the	change	in	𝛽	across	time	606	

from	eq.	14.	The	value	of	K	is	expected	to	decrease	with	time	according	to	this	expression	607	

(green	line	in	Fig	4B):	608	

𝐾+ = (1 − 𝛽+&)(8/&)  (16)	609	

We	only	adjusted	𝛿(A	in	Fig	4B	so	that	the	dcrease	of	𝐾+	and	simultaneous	increase	of	𝛽+	610	

minimized	squared	errors	across	the	red	and	green	dots	in	Fig	4B.	The	parameter	a	in	611	

eq.	15	will	then	depend	on	𝛿(A.	In	our	case	a=3.58.	The	obtained	value	of	𝛿(A	was	170	ms.	612	

This	value	imposes	a	lower	temporal	bound	on	the	movement	time	from	which	the	final	613	

temporal	error	with	respect	to	the	target	will	be	considered	to	be	corrected	for	in	next	trial.	614	
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Discussion	615	

We	show	that	people	minimize	the	temporal	variance	across	trials	when	correcting	for	616	

temporal	errors.	This	is	concluded	from	the	structure	of	temporal	correlations	(32):	we	617	

report	near	zero	lag-1	ccf	between	action	onset	and	the	previous	temporal	error	in	an	618	

interception	task.	However,	which	error	signal	is	predominantly	used	to	correct	differs	619	

depending	on	the	condition	and	duration	of	the	movement	of	the	action:	slower	620	

movements	showed	larger	dependency	on	the	previous	final	temporal	error	with	respect	to	621	

the	target	in	the	Arm	movement	condition.	In	most	conditions	(Eye	movements,	Button	622	

press	and	fast	Arm	movements),	people	strongly	rely	on	the	prediction	error	at	action	623	

onset	rather	than	the	actual	temporal	error	with	respect	to	the	target	to	change	the	624	

planned	initiation	time	in	the	next	trial.	This	is	based	on	the	high	values	of	the	Kalman	gain,	625	

which	denotes	that	the	prior	(planned)	action	onset	will	be	shifted	in	the	next	trial	by	a	626	

large	fraction	(about	0.8)	of	the	prediction	error	(i.e.	difference	between	the	prior	and	627	

actual	action	onset).	In	the	Arm	movements	condition,	fast	movements	were	initiated	later,	628	

therefore	their	planning	could	have	been	more	robust	than	slow	movements	(initiated	629	

earlier)	increasing	the	reliability	of	the	prediction	error.	The	reliance	on	the	prediction	630	

error	has	obvious	advantages	when	the	final	sensory	feedback	is	noisy.	This	is	the	case	in	631	

the	Eye	movements	conditions	where	perception	of	the	sensory	temporal	error	signal	can	632	

be	noisy.	Correcting	from	the	prediction	error	at	action	onset	is	possible	under	some	633	

restrictions	(e.g.	open	loop),	as	there	is	a	clear	correlation	between	the	prediction	error	634	

and	the	final	temporal	error	(Fig	S2).	Due	to	the	possibility	of	making	corrections	during	635	
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the	movement,	the	correlation	is	lower	in	the	Arm	movement	condition,	and	this	is	the	636	

condition	in	which	we	find	less	contribution	of	the	prediction	error	(slower	movements).	637	

Models	of	motor	learning	would	predict	less	correction	(e.g.	lower	learning	rate)	when	the	638	

sensory	feedback	is	more	uncertain	(5,10,11,9)	or	if	error	signals	are	perceived	less	639	

relevant	(7,33).	The	Bayesian	explanation	is	that	the	sensory	error	feedback	is	weighted	640	

less	in	favor	of	internal	state	estimates	(34).	This	is	usually	the	case	when	studies	focus	on	641	

the	reliability	of	the	final	task-relevant	error.	Our	findings,	however,	show	that	the	picture	642	

can	be	more	complex.	We	found	the	same	amount	of	correction	in	the	Eye	movements	and	643	

Button	press	conditions	while	the	final	temporal	error	signal	is	likely	perceived	with	very	644	

different	uncertainty,	as	the	Button	press	is	more	reliable.	Our	results	show	that	645	

corrections	in	these	two	conditions	are	executed	in	a	very	similar	way	(similar	Kalman	646	

gains	and	dependency	on	the	previous	temporal	error).	The	way	temporal	errors	are	647	

corrected	(mainly	in	the	Button	press	condition)	challenges	some	of	the	assumption	of	648	

current	models,	and	merely	considering	the	final	sensory	error	might	not	suffice,	at	least	649	

when	temporal	errors	are	relevant.	The	control	at	the	time	of	the	button	press	seems	to	be	650	

an	important	factor	as	to	which	error	signal	will	be	used	to	correct	in	the	next	trial.	651	

Prediction	errors	have	been	mostly	regarded	as	relevant	for	online	corrections	when	the	652	

final	sensory	feedback	would	arrive	too	late	to	make	useful	corrections.	Here	we	show	that	653	

prediction	errors	can	be	useful	for	trial-by-trial	corrections	after	the	actual	error	is	known.	654	

This	process	is	apparently	not	affected	by	low	uncertainty	of	the	final	error	(e.g.	Button	655	

press	condition)	because	it	does	not	override	the	use	of	the	prediction	error	at	action	onset.	656	

Interestingly,	it	seems	that	the	contribution	of	the	final	error	for	next	trial	correction	657	
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depends	on	the	movement	time.	We	found	that	the	final	target	error	will	start	to	be	658	

weighted	for	correction	in	the	next	trial	by	movement	times	close	to	200	ms.	This	is	659	

consistent	with	the	value	that	has	recently	been	reported	for	online	spatial	corrections	660	

when	there	is	a	target	movement	(35).	The	model	(Fig	4B)	also	predicts	that,	as	movement	661	

progresses,	the	reliability	of	the	prediction	error	at	action	onset	decreases	reaching	a	662	

minimum	after	400	ms.	This	time	course	of	the	contribution	of	the	prediction	error	for	the	663	

next	trial	parallels	the	shift	from	prediction	to	sensory	signals	in	online	correction	of	664	

spatial	errors	of	arm	movements	(12).	665	

The	evolution	of	the	contirbution	given	to	prediction	and	final	errors	suggests	that	the	666	

system	has	some	access	to	or	knowledge	about	the	noise	that	is	added	from	the	time	of	667	

action	onset.	This	would	be	in	agreement	with	previous	work	showing	that	the	motor	668	

system	is	able	to	model	the	temporal	uncertainty	of	the	movement	time	when	669	

programming	reaching	movements	under	temporal	constraints	(36).	670	

The	relevance	of	the	prediction	error	in	trial-to-trial	temporal	corrections	is	mostly	671	

noticeable	in	the	Eye	movements	condition.	The	behavioral	plasticity	of	the	saccadic	672	

system	has	been	well	established	in	the	temporal	domain:	saccade	latencies	may	be	673	

strongly	affected	by	a	number	of	factors	such	as	temporal	stimulus	arrangement	(37),	674	

stimulus	properties	(38,39),	urgency	(40),	expectations	(41)	or	reinforcement	675	

contingencies	(42).	Moreover,	studying	saccades	directed	toward	a	moving	target	revealed	676	

that	the	saccadic	system	takes	into	account	both	the	saccade	latency	and	duration,	and	is	677	

able	to	adjust	to	experimentally	induced	perturbations	(43).	Our	current	results	shed	a	new	678	

light	on	the	underlying	adaptive	process	revealing	that	the	temporal	error	is	integrated	on	679	
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a	trial-to-trial	basis	to	adjust	the	saccade-triggering.	It	is	noteworthy	that	these	conclusions	680	

nicely	echoe	ones	from	saccade	adaptation	studies	in	which	the	adjustment	of	saccade	681	

amplitude	has	been	well	accounted	for	by	postulating	a	Bayesian	integration	in	which	the	682	

weight	associated	with	each	piece	of	information	is	adjusted	depending	on	the	sensory	683	

evidence	available	(2).	684	

Concerning	the	eye	movements,	we	found	a	small	but	significant	dependency	of	the	final	685	

temporal	error	on	whether	the	target	speed	was	interleaved	and	knowledge	of	686	

performance	based	on	the	final	error	was	provided	(KP-interleaved).	Although	the	687	

correlation	between	the	final	temporal	error	and	prediction	error	is	slightly	weaker	in	the	688	

interleaved	condition	(slope	of	0.75	Fig	S2)	than	in	the	other	two	Eye	movements	689	

conditions	(slope	of	0.80	and	0.81),	the	differences	are	not	significant.	The	Kalman	gain	was	690	

not	significantly	smaller	in	this	condition	(KP-interleaved)	compared	to	when	the	speed	691	

was	blocked	(KP-Blocked),	which	denotes	also	a	strong	weight	of	the	prediction	error.	692	

However,	the	condition	of	a	non-stationary	environment	(variable	speed	across	trials)	693	

could	have	encouraged	a	larger	contribution	of	the	final	error.	Note	that	knowledge	of	the	694	

magnitude	of	the	error	was	not	provided	in	the	KR	condition	in	which	the	speed	was	also	695	

interleaved.	Conditions	of	stationary	environment	can	be	an	important	factor	that	also	696	

contributes	to	how	the	final	error	is	weighted.	In	addition	to	stationary	stimuli	conditions,	697	

the	temporal	restrictions	on	which	feedback	is	provided	can	also	change.	One	limitation	of	698	

our	study	is	that	we	have	used	a	relatively	constant	temporal	window	for	participants	to	hit	699	

the	moving	target	and	the	feedback	was	given	with	respect	to	a	fixed	temporal	window.	700	

The	learning	rates	or	correction	fractions	might	be	also	tuned	to	this	temporal	requirement	701	

and	different	learning	rates	could	have	been	observed	by	varying	the	temporal	window	on	702	
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which	feedback	was	provided.	For	example,	lax	temporal	constraints	would	lead	to	smaller	703	

learning	rates.	Recent	studies	have	shown	that	different	sensitivities	to	execution	errors	704	

arise	in	motor	learning	depending	on	the	stationary	conditions	of	the	environment	(44).	705	

From	our	study	we	do	not	know	whether	the	specific	weighting	pattern	of	the	two	signals	706	

can	be	generalized	to	other	conditions,	such	as	non-stationary	environments	in	which	the	707	

temporal	constraints	are	not	constant.	Future	studies	will	have	to	address	whether	flexible	708	

learning	rates	also	apply	to	the	temporal	domain.	709	
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	805	

Fig	S1.	(A)	The	simulated	process	variance	is	plotted	as	a	function	of	the	prediction	made	from	806	

the	linear	model	based	on	𝜎+&,	(𝜎./𝑣)&	and	the	ccf(1).	(B)	The	predicted	process	variance	807	

obtained	from	the	linear	model	based	on	the	simulated	data	as	a	function	of	the	whole	808	

temporal	variance	in	the	different	experimental	conditions.	(C)	Decomposition	of	the	whole	809	

temporal	variance	into	the	two	factors	of	eq.	1.	One	can	see	the	part	of	the	variability	that	810	

comes	from	spatial	(𝜎+&)	and	temporal	((𝜎./𝑣)&)	origin.	811	
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	813	

	814	

Fig	S2.	Density	between	the	final	temporal	error	(x-axis)	and	prediction	error	(y-axis)	that	is	815	

computed	from	the	Kalman	filter	for	each	condition.	The	density	plot	includes	all	participants.	816	

The	bar	plot	shows	the	slope	of	the	fitted	(grey)	line	for	each	condition.	The	slope	for	the	Arm	817	

movement	condition	is	shown	without	separating	fast	and	slow	movement	time.	However	the	818	

slope	was	significantly	smaller	for	slower	movements	(0.49	versus	0.72,	p=0.01.)	819	
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	820	

Fig	S3.	Expected	reliability	of	a	weighted	linear	combination	of	two	cues	c1	and	c2	with	821	

simulated	reliabilities	r1=1	and	r2=2.	See	(31)	for	details	about	the	computation	of	the	822	

combined	reliability	for	correlated	cues.	The	x-axis	denotes	the	contribution	of	cue	1.	Five	823	

different	correlations	between	c1	and	c2	are	shown.	For	the	range	of	correlations	observed	824	

between	the	prediction	error	and	the	target	error	(Fig	S2)	the	expected	benefit	from	825	

integration	is	very	little	or	null.	826	

	827	
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