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REMINDER PREVIOUS COURSES

• Motor control (e.g; how to perform a movement)

• Action selection (e.g. which movement ? which target ?)

• Reinforcement Learning (e.g. some movement lead to 
« reward » or « punishment »)

à complementary and interacting processes in the brain.

Important for autonomous and cognitive robots
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OUTLINE

1. Intro
2. Reinforcement 

Learning model
− Algorithm
− Dopamine activity

3. Continuous RL
− Robot navigation
− Neuro-inspired models

4. PFC & off-line 
learning
− Indirect reinforcement 

learning
− Replay during sleep

5. Meta-Learning
− Principle
− Neuronal recordings
− Humanoid Robot 

interaction
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Global organization of the brain

Doya, 2000
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Hikosaka et al., 2002
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THE ACTOR-CRITIC MODEL
Sutton & Barto (1998) Reinforcement Learning: An Introduction

RL Model

The Actor learns to select actions that maximize reward.

The Critic learns to predict reward (its value V).

A reward prediction error constitutes the reinforcement signal.
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TD-LEARNING

CRITIC
Learns to 
predict 
reward 
values

• Developed in the AI community (RL)
• Explains some reward-seeking behaviors (habit

learning)
• Resemblance with some part of the brain

(dopaminergic neurons & striatum)

ACTOR
Learns to 
select 

actions

Q-LEARNING
Learns action 

values

RL Model
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1

2

3

4

5
Reward

1 2 3 4 5actions:
reward

REINFORCEMENT LEARNING

• Learning from delayed reward

RL Model
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1

2

3

4

5
Reward

1 2 3 4 5actions:

reinforcement

reward

reward
reinforcement

REINFORCEMENT LEARNING

δt = rt

• Learning from delayed reward

RL Model
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1

2

3

4

5
Reward

1 2 3 4 5actions:

reinforcement

reward

reward
reinforcement

V(st)Value estimation (“reward prediction”):

Rescorla and Wagner (1972).

REINFORCEMENT LEARNING

δt+n = rt+n – V(st) 

• Learning from delayed reward

RL Model
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• Temporal-Difference (TD) learning

1

2

3

4

5
Reward

1 2 3 4 5actions:
reward

reward
reinforcement

reinforcement

Sutton and Barto (1998).

REINFORCEMENT LEARNING

δt+1 = rt+1 + γ . V(st+1) – V(st)     (γ < 1) 

Value estimation (“reward prediction”): V(st) V(st+1)

RL Model
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learning rate (=0.9)discount factor (=0.9)

REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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learning rate (=0.9)discount factor (=0.9)

REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0   =  0   +     0          - 0 0   =    0    +  0.9 * 0
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REINFORCEMENT LEARNING
in a Markov Decision Process

1   =  1   +     0          - 0 0.9   =    0    +  0.9 * 1

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

RL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

1   =  1   +     0          - 0 0.9   =    0    +  0.9 * 1

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

Color 
indicates 

value
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0   =  0   +     0          - 0 0   =    0    +  0.9 * 0
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REINFORCEMENT LEARNING
in a Markov Decision Process

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0.81 =  0 + 0.9 * 0.9    - 0 0.72 =    0    +  0.9 * 0.81

RL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

0.81 =  0 + 0.9 * 0.9    - 0 0.72 =    0    +  0.9 * 0.81

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

Color 
indicates 

value
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REINFORCEMENT LEARNING
in a Markov Decision Process

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0.1  =  1    +     0        - 0.9 0.99 =    0.9  +  0.9 * 0.1

RL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

0.1  =  1    +     0        - 0.9 0.99 =    0.9  +  0.9 * 0.1

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

Color 
indicates 

value

RL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

After

N simulations

Very long!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

usually small for stability
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

After

N simulations

Very long!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

After

N simulations

Very long!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

May converge 

to a sub-

optimal 

solution!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

Exploration-

Exploitation 

trade-off

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

RL Model

Finds best 

solution after 

infinite time!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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How can the agent learn a policy?
How to learn to perform the right actions

RL Model
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How can the agent learn a policy?
How to learn to perform the right actions

S : state space
A : action space
Policy function  π : S A

What we learned until now:
Value function  V : S R

RL Model
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Dopaminergic neuron

The Actor-Critic model
RL Model

How can the agent learn a policy?
How to learn to perform the right actions

a solution: parallely update a policy and a value function

V(st) = V(st) + α . δt+1
Pπ(at|st) = Pπ(at|st) + α . δt+1
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The Q-learning model
RL Model

How can the agent learn a policy?
How to learn to perform the right actions

other solution: learning Q-values (qualities)
Q : (S,A) R                Q-table: state	/	action a1	:	North a2	:	South a3	:	East a4	:	West

s1 0.92 0.10 0.35 0.05
s2 0.25 0.52 0.43 0.37
s3 0.78 0.9 1.0 0.81
s4 0.0 1.0 0.9 0.9
… … … … …
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The Q-learning model
RL Model

0.9
0

0.1
0.3

0.8
0

0.1
0

0
0.9

0.3
0.1

0.8
0.8

0.
0.1

state	/	action a1	:	North a2	:	South a3	:	East a4	:	West
s1 0.92 0.10 0.35 0.05
s2 0.25 0.52 0.43 0.37
s3 0.78 0.9 1.0 0.81
s4 0.0 1.0 0.9 0.9
… … … … …

How can the agent learn a policy?
How to learn to perform the right actions

other solution: learning Q-values (qualities)
Q : (S,A) R                Q-table: 
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The Q-learning model
RL Model

exp(β . Q(s,a))

Σ exp(β . Q(s,b))b

P(a) =  The β parameter regulates the exploration –
exploitation trade-off. 

state	/	action a1	:	North a2	:	South a3	:	East a4	:	West
s1 0.92 0.10 0.35 0.05
s2 0.25 0.52 0.43 0.37
s3 0.78 0.9 1.0 0.81
s4 0.0 1.0 0.9 0.9
… … … … …

How can the agent learn a policy?
How to learn to perform the right actions

other solution: learning Q-values (qualities)
Q : (S,A) R                Q-table: 
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l ACTOR-CRITIC

l SARSA

l Q-LEARNING

Different Temporal-Difference (TD) 
methods 

State-dependent Reward Prediction Error

(independent from the action)

RL Model
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l ACTOR-CRITIC

l SARSA

l Q-LEARNING

Different Temporal-Difference (TD) 
methods 

Reward Prediction Error dependent on the action 

chosen to be performed next

RL Model
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l ACTOR-CRITIC

l SARSA

l Q-LEARNING

Different Temporal-Difference (TD) 
methods 

Reward Prediction Error dependent on the best action

RL Model
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Links with biology
Activity of dopaminergic neurons

RL Model
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TD-learning explains classical conditioning (predictive 
learning)

CLASSICAL CONDITIONING
RL Model

Taken from Bernard Balleine’s lecture at Okinawa Computational Neuroscience Course (2005).
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reward
reinforcement

RS

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

+1

REINFORCEMENT LEARNING
RL Model

l Analogy with dopaminergic neurons’ activity

δt+1 = rt+1 + γ . V(st+1) – V(st)
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reward
reinforcement

RS

+1

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

REINFORCEMENT LEARNING
RL Model

δt+1 = rt+1 + γ . V(st+1) – V(st)

l Analogy with dopaminergic neurons’ activity
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reward
reinforcement

RS

0

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

REINFORCEMENT LEARNING
RL Model

δt+1 = rt+1 + γ . V(st+1) – V(st)

l Analogy with dopaminergic neurons’ activity
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reward
reinforcement

RS

-1

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

REINFORCEMENT LEARNING
RL Model

δt+1 = rt+1 + γ . V(st+1) – V(st)

l Analogy with dopaminergic neurons’ activity
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The Actor-Critic model
and the Basal Ganglia

Barto (1995); Montague et al. (1996); Schultz et al. (1997); Berns 
and Sejnowski (1996); Suri and Schultz (1999); Doya (2000); Suri 
et al. (2001); Baldassarre (2002).
see Joel et al. (2002) for a review.

Dopaminergic neuron

Houk et al. (1995)

RL Model
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Wide application of RL models to 
model-based analyses of behavioral 

and physiological data during 
decision-making tasks

RL Model
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Model-based analysis of brain data

Sequence of observed trials : Left (Reward); Left (Nothing); Right (Nothing); Left (Reward); …

RL model

?

Brain responses Prediction error

fMRI scanner

cf. travail de Mathias Pessiglione (ICM)

ou Giorgio Coricelli (ENS)

RL Model
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If we can find reward prediction error 
signals, do we also find reward 

predicting signals?

à REWARD PREDICTION IN THE 
STRIATUM

RL Model
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The Actor-Critic model

Dopaminergic neuron

Temporal-order input
[0 0 1 0 0 0 0]

1

2

3

4

5

reward

or spatial or visual 
information

Which state space as an 
input?

RL Model
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Electrophysiology
Reward prediction in the striatum

immobilityrunning

Reservoir

Time

Departure

1 drop

5 water drops

3 drops

7 drops

RL Model
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RESULTS: Coherent with the TD-
learning model

Activity of a neuron from striatum

Simulated TD-learning model

Khamassi, Mulder, Tabuchi, Douchamps & Wiener (2008). European Journal of Neuroscience.

Anticipation variable
Prediction error 

variable

Corrélés

r(t) = r(t) + γ.P(t) – P(t-1)^

RL Model
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Modelling with TD-learning
Results

TD-learning
Temporal order information 
(Montague et al., 1996).
[0 0 1 0 0]   [0 0 0 0 0] ...

Incomplete temporal 
representation
[0 0 1]   [0 0 0] ...

Ambiguous visual input
[0 0 1]   [0 0 0] ...

No spatial information
[0 0 1]   [0 0 1] ...

Place #1         Place #2

7 droplets         5                 3                 1

TD-learning

TD-learning

TD-learning

RL Model
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This works well, but…

• Most experiments are single-step
• All these cases are discrete
• Very small number of states, actions
• We supposed a perfect state identification

RL Model
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OUTLINE

1. Intro
2. Reinforcement 

Learning model
− Algorithm
− Dopamine activity

3. Continuous RL
− Robot navigation
− Neuro-inspired models

4. PFC & off-line 
learning
− Indirect reinforcement 

learning
− Replay during sleep

5. Meta-Learning
− Principle
− Neuronal recordings
− Humanoid Robot 

interaction
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CONTINUOUS
REINFORCEMENT LEARNING

Continuous RL
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Robotics application

Actions
1

2

3

4

5 reward

TD-Learning model applied to spatial navigation behavior learning 
in the plus-maze task

Sensory input

Khamassi et al. (2005). Adaptive Behavior.
Khamassi et al. (2006). Lecture Notes in 

Computer Science

Continuous RL
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Extension of the Actor-Critic model
Coordination by a self-organizing map

Actor-Critic multi-modules
neural network

Continuous RL
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Hand-tuned Autonomous Random

Continuous RLExtension of the Actor-Critic model
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Autonomous

Two methods :

1. Self-Organizing Maps (SOMs)

2. specialization based on performance
(tests modules' capacity for state prediction)
Baldassarre (2002); Doya et al. (2002). Within a 
particular subpart of the maze, only the module 
with the most accurate reward prediction is 
trained. Each module thus becomes an expert 
responsible for learning in a given task subset.

Continuous RLExtension of the Actor-Critic model
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average

Continuous RLExtension of the Actor-Critic model
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Nb of iterations required

(Average performance during the second 
half of the experiment)

94
3,500

404
30,000

1. hand-tuned
2. specialization based on performance
3. autonomous categorization (SOM)
4. random robot

Continuous RLExtension of the Actor-Critic model
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Nb of iterations required

(Average performance during the second 
half of the experiment)

94
3,500

404
30,000

1. hand-tuned
2. specialization based on performance
3. autonomous categorization (SOM)
4. random robot

Continuous RLExtension of the Actor-Critic model
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OUTLINE

1. Intro
2. Reinforcement 

Learning model
− Algorithm
− Dopamine activity

3. Continuous RL
− Robot navigation
− Neuro-inspired models

4. PFC & off-line 
learning
− Indirect reinforcement 

learning
− Replay during sleep

5. Meta-Learning
− Principle
− Neuronal recordings
− Humanoid Robot 

interaction
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Off-learning (Indirect RL) & prefrontal 
cortex activity during sleep

Off-line Learning
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REINFORCEMENT LEARNING

After

N simulations

Very long!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

Off-line Learning
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TRAINING DURING SLEEP

Method in Artificial Intelligence:
Off-line Dyna-Q-learning

(Sutton & Barto, 1998)

Off-line Learning
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To incrementally learn a model of transition and reward 
functions, then plan within this model by updates “in 
the head of the agent” (Sutton, 1990).

S : state space

A : action space
Transition function  T : S x A       S
Reward function  R : S x A R

Internal model

Model-based Reinforcement Learning Off-line Learning
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Model-based Reinforcement Learning

s : state of the agent (  )

Off-line Learning
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Model-based Reinforcement Learning

s : state of the agent (  )

maxQ=0.3 maxQ=0.9

maxQ=0.7

Off-line Learning
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Model-based Reinforcement Learning

s : state of the agent (  )
a : action of the agent (go east) maxQ=0.3 maxQ=0.9

maxQ=0.7

Off-line Learning
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Model-based Reinforcement Learning

s : state of the agent (  )

a : action of the agent (go east)

stored transition function T:
proba(        ) = 0.9
proba(        ) = 0.1
proba(        ) = 0

maxQ=0.3 maxQ=0.9

maxQ=0.7

Off-line Learning
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Model-based Reinforcement Learning

s : state of the agent (  )

a : action of the agent (go east)

stored transition function T:
proba(        ) = 0.9
proba(        ) = 0.1
proba(        ) = 0

0.6 0                 0.9*0.7 + 0.1*0.9 + 0*0.3 + …

maxQ=0.3 maxQ=0.9

maxQ=0.7

Off-line Learning
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Model-based Reinforcement Learning

No reward prediction error!

Only:
Estimated Q-values
Transition function

Reward function

Off-line Learning
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Links with Neuroscience data

Instrumental conditioning (Daw et al., 2005)
Human behavior (Daw et al., 2011)
Hippocampal off-line replays… (Foster & Wilson, 2006; 

Euston et al., 2007; Gupta et al., 2010)

…coordinated with PFC or VS (Lansink et al., 2009; 
Peyrache et al., 2009; Benchenane et al., 2010).

Navigation strategies (Khamassi & Humphries, 2012)

Model-based Reinforcement Learning Off-line Learning
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Hippocampal place cells

l NMDA receptors, place cells and hippocampal spatial memory. Kazu 
Nakazawa, Thomas J. McHugh, Matthew A. Wilson & Susumu Tonegawa. 
Nature Reviews Neuroscience 5, 361-372 (May 2004)

Off-line Learning
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Hippocampal place cells

• Reactivation of hippocampal place cells during sleep
(Wilson & McNaughton, 1994, Science)

Off-line Learning
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Hippocampal place cells

• Forward replay of hippocampal place cells during
sleep (sequence is compressed 7 times) (Euston et
al., 2007, Science)

Off-line Learning
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Sharp-Wave Ripple (SWR) events

l “Ripple” events = irregular 
bursts of population 
activity that give rise to 
brief but intense high-
frequency (100-250 Hz) 
oscillations in the CA1 
pyramidal cell layer.

Off-line Learning
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Selective suppression of SWRs 
impairs spatial memory

l Girardeau G, Benchenane K, Wiener SI, Buzsáki G, 
Zugaro MB (2009) Nat Neurosci.

Off-line Learning
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SUMMARY OF NEUROSCIENCE DATA

Replay their sequential activity during sleep (Foster & 
Wilson, 2006; Euston et al., 2007; Gupta et al., 2010)

Performance is impaired if this replay is disrupted 
(Girardeau, Benchenane et al. 2012; Jadhav et al. 
2012)

Only task-related replay in PFC (Peyrache et al., 2009)
Hippocampus may contribute to model-based navigation 

strategies, striatum to model-free navigation strategies 
(Khamassi & Humphries, 2012)

Hippocampal place cells Off-line Learning
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Applications to robot off-line learning
Work of Jean-Baptiste Mouret et al. @ ISIR

How to recover from damage without needing to identify the damage?

Off-line Learning



RL Model
Continuous RL

Off-line Learning
Meta-Learning

slide # 81 / 180

Applications to robot off-line learning
Work of Jean-Baptiste Mouret et al. @ ISIR

The reality gap
Self-model vs reality: how to use a simulator?

Solution: Learn a transferability function (how well does the simulation 
match reality?) with SVM or neural networks.

Idea: the damage is a large reality gap.
Koos, Mouret & Doncieux. IEEE Trans Evolutionary Comput 2012

Off-line Learning
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Applications to robot off-line learning
Work of Jean-Baptiste Mouret et al. @ ISIR

Experiments

Koos, Cully & Mouret. Int J Robot Res 2013

Off-line Learning
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OUTLINE

1. Intro
2. Reinforcement 

Learning model
− Algorithm
− Dopamine activity

3. Continuous RL
− Robot navigation
− Neuro-inspired models

4. PFC & off-line 
learning
− Indirect reinforcement 

learning
− Replay during sleep

5. Meta-Learning
− Principle
− Neuronal recordings
− Humanoid Robot 

interaction
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META-LEARNING
(regulation of decision-making)

1. Dual-system RL coordination
2. Online parameters tuning

Meta-Learning
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Multiple decision systems

(Daw Niv Dayan 2005, Nat Neurosci)

Model-based system                          Model-free sys.Skinner box (instrumental conditioning)

Behavior is initially model-based and becomes model-
free (habitual) with overtraining.

Meta-Learning
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Progressive shift from model-based 
navigation to model-free navigation

Khamassi & Humphries (2012) Frontiers in Behavioral Neuroscience

Meta-Learning
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Model-based and model-free 
navigation strategies

Benoît Girard 2010 UPMC lecture

Model-free navigation Model-based navigation

Meta-Learning
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MULTIPLE DECISION SYSTEMS IN A 
NAVIGATION MODEL

Model-free system

(basal ganglia)

Model-based 
system

(hippocampal 
place cells)

Work by Laurent Dollé:

Dollé et al., 2008, 2010, submitted
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MULTIPLE NAVIGATION STRATEGIES 
IN A TD-LEARNING MODEL

Model:
Dollé et al., 2010

Task with a cued platform (visible flag) changing location every 4 trials

Task of Pearce et al., 1998

Meta-Learning
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PSIKHARPAX ROBOT

Caluwaerts et al. (2012) Biomimetics & Bioinspiration

Work by:

Ken Caluwaerts (2010)

Steve N’Guyen (2010)

Mariacarla Staffa (2011)

Antoine Favre-Félix (2011)
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PSIKHARPAX ROBOT

Planning strategy only

Caluwaerts et al. (2012) Biomimetics & Bioinspiration

Planning strategy + Taxon strategy

Meta-Learning
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CURRENT APPLICATIONS TO 
THE PR2 ROBOT

Travaux de :

Erwan Renaudo

Omar Islas Ramirez
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CURRENT APPLICATIONS TO 
HUMAN-ROBOT INTERACTION

Travaux de :

Erwan Renaudo

Collaboration : 

Alami et al (LAAS)

Task: Clean the table

Current state: A priori given action plan 

(right image)

Goal: Autonomous learning by the robot

Meta-Learning
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META-LEARNING
(regulation of decision-making)

1. Dual-system RL coordination
2. Online parameters tuning

Meta-Learning
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Dopamine: TD error δ
Acetylcholine: learning rate α
Noradrenaline: exploration β

Serotonin: temporal discount γDoya, 2002

REINFORCEMENT LEARNING &
META-LEARNING FRAMEWORK Meta-Learning

exp(β . Q(s,a))

Q(s,a) ß Q(s,a) + α . δ

Σ exp(β . Q(s,b))
b

P(a) =  

Action values update

Action selection

Reinforcement signalδ = r + γ . max[Q(s’,a’)] – Q(s,a)
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Meta-Learning

Effect of γ on expected reward value

META-LEARNING

Doya, 2002
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l The exploration-exploitation trade-off: necessary for 
learning; but impacts on action selection.

META-LEARNING
Meta-Learning
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Effect of β on 

exploration

META-LEARNING
Meta-Learning

exp(β . Q(s,a))

Σ exp(β . Q(s,b))
b

Boltzmann softmax equation: P(a) =  

Doya, 2002
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• Meta-learning methods propose to tune RL parameters as a 
function of average reward and uncertainty (Schweighofer & 

Doya, 2003).

àCan we use such meta-learning principles to better 
understand neural mechanisms in the prefrontal cortex ?

condition change

Meta-Learning
META-LEARNING
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TASK
Meta-Learning

Question: How did the monkeys learn to re-explore 
after each presentation of the PCC signal?
Hypothesis: By trial-and-error during pretraining.

Khamassi et al. (2011) Front in Neurorobotics; Khamassi et al. (2013) Prog Brain Res
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Computational model

β*: exploratory variable used to modulate β

Meta-Learning

Khamassi et al. (2011) Frontiers in Neurorobotics
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Meta-Learning

Computational model

Khamassi et al. (2011) Frontiers in Neurorobotics

l Reproduction of the global properties of monkey 
performance in the PS task.
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Multiple regression analysis with bootstrap

Q

δ

β*

Khamassi et al. (2013) Prog Brain Res; Khamassi et al. (in revision)

Model-based analysis
My post-doc work Meta-Learning
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• In the previous task, monkeys and the model a priori 
‘know’ that PCC means a reset of exploration rate 
and action values.

• Here, we want the iCub robot to learn it by itself.

Meta-Learning

Meta-learning applied to Human-
Robot Interaction
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Meta-learning applied to Human-
Robot Interaction

Khamassi et al. (2011) Frontiers in Neurorobotics

Meta-Learning
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Go signal

Error

Wooden boardRewardChoice

Human’s hands Cheating Cheating

Meta-learning applied to Human-
Robot Interaction Meta-Learning
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meta-value(i) ß meta-value(i) + α’. Δ[averageReward]

Threshold

Meta-learning applied to Human-
Robot Interaction Meta-Learning
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CONCLUSION OF THE ACC-LPFC 
META-LEARNING PART

l ACC is in an appropriate position to evaluate feedback 
history to modulate the exploration rate in LPFC.

l ACC-LPFC interactions could regulate exploration 
based on mechanisms capturable by the meta-
learning framework.

l Such modulation could be subserved via 
noradrenaline innervation in LPFC.

l Such a pluridisciplinary approach can contribute both 
to a better understanding of the brain and to the 
design of algorithms for autonomous decision-making.

Meta-Learning
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Meta-learning and motor learning

l Can meta-learning principles be useful for the 
integration of reinforcement learning and motor 
learning?

Meta-Learning
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Structure learning
(Braun Aertsen Wolpert Mehring 2009) Meta-Learning
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Structure learning
(Braun Aertsen Wolpert Mehring 2009) Meta-Learning
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Structure learning
(Braun Aertsen Wolpert Mehring 2009) Meta-Learning
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Schmidhuber on meta-learning (1)

l Recurrent neural-networks applied to Robotics

Mayer et al. (IROS 2006)

Meta-Learning
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Schmidhuber on meta-learning (2)

l RL with self-modifying policies (actions that can edit 
the policy itself)

l Success-story criterion (time varying set V of past 
checkpoints that led to long-term reward 
accelerations)

Meta-Learning
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Schmidhuber on motor learning

l Learning maps of task-relevant motor behaviors under 
specified constraints (e.g. maintain hands parallel ; do 
not touch box nor table ; …)

l How can these primitive constrained motor behaviors 
be used by decision system and high-level goal-
directed learning?

Stollenga et al. (IROS 2013)

Meta-Learning
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SUMMARY

l Direct RL with Temporal-Difference methods:
l Actor-Critic / SARSA / Q-learning

l Works well for perfect discrete state/action spaces

l Indirect RL (planning, dyna-Q, off-line learning)
l Needs to know the transition & reward functions

l Partially Observable MDP (POMDP)
l When the Markov hypothesis is violated (perceptual aliasing, 

multi-agents, non stationnary environment)

l Current advancement of RL models for:
l continuous action space (gradient descent)
l multiple parallel decision systems.
l meta-learning (ACC-LPFC interactions).
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CONCLUSION

l The Reinforcement Learning framework provides 
algorithms for autonomous agents.

l It can also help explain neural activity in the brain.
l Such a pluridisciplinary approach can contribute both 

to a better understanding of the brain and to the 
design of algorithms for autonomous decision-making.
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FURTHER READINGS

1. Sutton & Barto (1998) RL: An Introduction
2. Buffet & Sigaud (2008) en français
3. Sigaud & Buffet (2010) improved trad. of 2
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