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OVERVIEW

Neural control

Musculoskeletal mechanics
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— Scott, 2004, Nat Rev Neurosci 5:534




THE MUSCLE

https://www.youtube.com/watch?v=jUBBW2Yb5KI



https://www.youtube.com/watch?v=jUBBW2Yb5KI

THE MUSCLE

Description

muscle = set of fibers

fiber = set of myofibrils
myofibril = set of sarcomeres

sarcomere = smallest
contractile part = thin
filaments (actin) + thick
filaments (myosin)
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— Hamill & Knutzen, 2009, Biomechanical
Basis of Human Movement, LWW
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MUSCULAR CONTRACTION

Stops I the ntaton of  contraction Stops that ond the conracion
Principle - T B

depolarization of a

muscle fiber mp

increase in intracellular

calcium wp

mechanical contraction

(excitation-contraction

coupling)

— Hamill & Knutzen, 2009, Biomechanical
Basis of Human Movement, LWW



MUSCULAR CONTRACTION

Sliding-filament theory “’:3;3;'.?&:1.‘22'.:::’;?.,"'*’9”
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SARCOMERE FORCE

Overlap between thin and thick filaments

Ideal sarcomere length
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MUSCULAR FORCE

Spring-like behavior

a muscle generates force when it is stretched beyond a threshold
length — the force increases with length — the threshold changes
with the stimulation level
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MUSCULAR FORCE

Properties

Muscular force depends on the frequency of action potentials in

the motor nerve.
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The muscle behaves as a low-
pass filter. At low frequency,
muscular tension varies with
input frequency. When
frequency increases,
fluctuations disappear.



SENSORY RECEPTORS

Definition
— spindles are structures arranged in parallel with the muscle.
They transmit information on the length and changes of length of

the muscle
— Golgi tendon organs are structured in series with the muscle,

at the junction bewteen the muscle and the tendon. They transmit
information on muscular tension
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MUSCLE SPINDLES

Role

— they transmit
information on the
length and changes
in the length of
the muscle

— primary spindles
(Ia): sensitive to
length and velocity;
secondary spindles
(ID): sensitive only
to length
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GOLGI TENDON ORGANS
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MOTOR UNIT

Most basic level of control

— A motoneuron (MN) is neuron whose cell body is located in
the spinal cord and whose axon projects to a muscle fiber

— Each muscle fiber is innervated by a single motoneuron

— A motoneuron innervates a set of muscle fibers

— A motor unit is a motoneuron and its set of muscle fibers

The number of muscle fibers
innervated by a MN is called
the innervation ratio. This
ratio is roughly proportional
to the size of the muscle (10
for extraocular muscles, 100
for hand muscles). A small
ratio correspond to a finer
control of muscular force. ! ¥ motoneurons

innervate muscle
spindles




PROPERTIES OF MOTOR UNITS

Size
size of the MN, diameter of its axon, number of
muscle fibers it innervates: small (slow) / large (fast) MUs

A Action potentials in two motor units
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— Desmedt & Godaux, 1977, Nature 267:717




PROPERTIES OF MOTOR UNIT

Resistance to fatigue
slow (great resistance), fast (wide range of resistance)

The proportions of slow, fast-resistant and fast-fatigable MUs in different
limb and trunk muscles accurately reflect differences in the way muscles are
used in different species.




RECRUITMENT OF MOTOR UNITS

Order of recruitment
* Size principle
during natural contractions
MUs are recruited in an
orderly fashion, from small
to large motor units

— Latash, 2012, Fundamentals of Motor Control, Academic Press

* Frequency modulation
increasing the firing

frequency of already
recruited MUs
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SPINAL CORD

Cell bodies of
$eNsory Neurons
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Local organization

— MNis located in the spinal cord
— afferent/dorsal roots — efferent/
ventral roots — gray matter: cell
body of MNs — white matter:
axons — MNs grouped into pools
over several segments
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— Kandel et al., 2013, Principles of Neural Science, McGraw-Hill



SPINAL CORD

Global organization

Cervical vertebrae : : LA
C1-3 Limited head control ' S vertebrae
C4 Breathing and shoulders shrug ﬁa c1-cs8
C5 Lift arm with shoulder, elbow flex

m C6 Elbow flex and wrist extension :

m C8 Finger flexion ~

e
. =

Thoracic vertebrae s Thoracic
T1 Finger movement vgl’:t-e%rzae

W T2-T12 Deep breaths, deep breathing

W T6-L1 Deep exhale of breath, stability while sitting /“

Lumbar vertebrae
L1-L2 Hip flexion =
L2-L3 Hip movement toward middle of body = Lumbar
L3-L4 Knee extension g vertebrae

m L4-L5 Ankle extension L1-L5

m L5 Extension of big toe “

Sacral vertebrae

. Sacral
S1 Movement of foot and ankle vertebrae

S$1-S2 Toe movement S1-S4
S2-S4 Function of bladder and bowel ‘



INPUT/OUTPUT OF MUSCLE SPINDLES

A Muscle spindle B Intrafusal fibers of the muscle spindle C Response of 1a sensory fiber to selective
activation of gamma motor neurons

Output (afferent)
the spindles innervate
alpha MNs through
fibers Ia and I1I
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FUSIMOTOR CONTROL

Static vs dynamic
during activities in which muscle length changes slowly and
predictably vs during behaviors in which muscle length may

change rapidly and unpredictably

Level of fusimotor activity

@JWWWW N B

Rest Sitting Standing Slow Fast Imposed Paw Beam
walk walk movements shakes walking
Static
0 + + ++ ++ + + - + + +
Dynamic
0 0 0 0 + + + + ++ + + o+ +

— Prochazka et al., 1988, in Mechanoreceptors: Development, Structure and Function, Plenum Press



ALPHA-GAMMA COACTIVATION

A Alpha-gamma co-activation reinforces alpha motor activity
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Movement, Oxford University Press



REFLEXES

* Definition

— stereotyped movements elicited
by activation of receptors in skin or
muscle (e.g. strech reflex)

* Modern view

— difficult to define

— in fact, flexible and adapted to
ongoing tasks

— integrated by centrally
generated motor commands into
complex adaptive movements




STRETCH REFLEX

Monosynptic organization

Regulates the output of a MN through a negative feedback
process. The feedback gain can be modulated by the nervous
system (e.g. ¥ MNs). Minimum delay = 30 ms
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Negative feedback system

STRETCH REFLEX

reduces deviations around a reference value
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FLEXION-WITHDRAWAL REFLEX

Polysynaptic protective reflex
coordination to avoid painful stimulation
e.g. wiping in the spinal frog evoked by chemical stimulation

6 12 18 20 26 40

modulated by body posture

— Fukson et al., 1980, Science 209:1261

enhance postural support

during withdrawal of a foot
from a painful stimulus




SPINAL VS LONG-LOOP REFLEX
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SPINAL MECHANISMS

Description

— a motor act generally requires the
coordination of a large number of
muscles. Spinal circuits play a critical
role in this coordination

— spinal reflexes form a set of
elementary coordination patterns (e.g.
stretch reflex). Most reflexes involve
complex circuits that link several
muscles or articulations

— interneurons (INs) are basic
elements of reflexes. Convergence,
divergence, gating, reverberation, cyclic
interactions, CPG (central pattern
generator)
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SPINAL MECHANISMS

CPG

central pattern generator
rhythmic activity for stepping
is generated by networks of
neurons in the spinal cord
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SPINAL MECHANISMS

Locomotion

when transection isolates the whole

spinal cord, electrical stimulation of

the Mesencephalic Locomotor Region

generates locomotion. As stimulation

intensity increases, locomotion ol
becomes faster. Then there is a ,'
transition between trot (alterned L; |
flexions/extensions) and gallop
(simultaneous flexions/extensions)
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hind limb
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ASCENDING SYSTEMS

Two main systems

— dorsal column/median
lemniscus system: transmits
tactile and proprioceptive

information
— anterolateral system:
transmits pain and Somararsry
temper ature /J_/j» gl Fore
)\ Thalamus
\3 Modulla
\Retina ‘ g(l:ltleq'x
Dorsal column Medulla
nucled
Dorsal root

— Kandel et al., 2013, Principles ganalen
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of Neural Science, McGraw-Hill



CENTRAL REPRESENTATIONS

Primary somatic sensory cortex Unimodal association cortex Multimodal association cortex
Somatosensory Posterior Cingulate cortex
Motor cortex Anterior parietal Premotor penctel
cortex cortex pa cortex Anterior parietal cortex
cortex
o
Parahippocampal
Posterior Temporal cortex
parietal association
cortex cortex
A Sensory homunculus B Motor homunculus 5 A

Medial Lateral Medal Lateral



DESCENDING SYSTEMS

Desconding latoral corticospinal pathway

Multiple pathways
— the cortico-spinal tract
is the largest pathway (1 -
million fibers, 30% from
the primary motor cortex)
— the lateral pathway
controls the distal and o
proximal muscles; the
ventral pathway control
axial muscles
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CORTICAL MOTOR AREAS

A Direct pathways

Premotor areas
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motor area
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NEURAL PROPERTIES

Neural activity
modulated by
force

— Evarts, 1968, | Neurophysiol 31:14



NEURAL PROPERTIES

Neural activity modulated by movement direction
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