HUMAN MOTOR CONTROL

Emmanuel Guigon

Institut des Systèmes Intelligents et de Robotique Université Pierre et Marie Curie CNRS / UMR 7222 Paris, France

emmanuel.guigon@upmc.fr
e.guigon.free.fr/teaching.html

OUTLINE

I. The organization of action Main vocabulary

2. Computational motor control Main concepts

3. Biological motor control Basic introduction

4. Models and theories Main ideas and debates

3. Biological motor control

OVERVIEW

THE MUSCLE

https://www.youtube.com/watch?v=jUBBW2Yb5KI

THE MUSCLE

Description

muscle = set of fibers fiber = set of myofibrils myofibril = set of sarcomeres

sarcomere = smallest
contractile part = thin
filaments (actin) + thick
filaments (myosin)

— Hamill & Knutzen, 2009, Biomechanical Basis of Human Movement, LWW

MUSCULAR CONTRACTION

— Hamill & Knutzen, 2009, Biomechanical Basis of Human Movement, LWW

MUSCULAR CONTRACTION

Sliding-filament theory

cyclical interactions between filaments: — myosin heads bind on actin molecules to form a cross-bridge — myosin heads undergo a transformation that result in a force exerted on the thin filaments

SARCOMERE FORCE

Overlap between thin and thick filaments

MUSCULAR FORCE

Spring-like behavior

a muscle generates force when it is stretched beyond a threshold length — the force increases with length — the threshold changes with the stimulation level

MUSCULAR FORCE

Properties

Muscular force depends on the frequency of action potentials in the motor nerve.

The muscle behaves as a lowpass filter. At low frequency, muscular tension varies with input frequency. When frequency increases, fluctuations disappear.

SENSORY RECEPTORS

Definition

— **spindles** are structures arranged in parallel with the muscle. They transmit information on the length and changes of length of the muscle

— **Golgi tendon organs** are structured in series with the muscle, at the junction bewteen the muscle and the tendon. They transmit information on muscular tension

MUSCLE SPINDLES

Role

they transmit
information on the
length and changes
in the length of
the muscle
primary spindles
(Ia): sensitive to
length and velocity;
secondary spindles
(II): sensitive only
to length

GOLGI TENDON ORGANS

MOTOR UNIT

Most basic level of control

A motoneuron (MN) is neuron whose cell body is located in the spinal cord and whose axon projects to a muscle fiber
Each muscle fiber is innervated by a single motoneuron
A motoneuron innervates a set of muscle fibers
A motor unit is a motoneuron and its set of muscle fibers

The number of muscle fibers innervated by a MN is called the innervation ratio. This ratio is roughly proportional to the size of the muscle (10 for extraocular muscles, 100 for hand muscles). A small ratio correspond to a finer control of muscular force.

! γ motoneurons innervate muscle spindles

PROPERTIES OF MOTOR UNITS

Size

size of the MN, diameter of its axon, number of muscle fibers it innervates: small (slow) / large (fast) MUs

— Desmedt & Godaux, 1977, Nature 267:717

PROPERTIES OF MOTOR UNIT

Resistance to fatigue

slow (great resistance), fast (wide range of resistance)

The proportions of slow, fast-resistant and fast-fatigable MUs in different limb and trunk muscles accurately reflect differences in the way muscles are used in different species.

RECRUITMENT OF MOTOR UNITS

• Size principle

during natural contractions MUs are recruited in an orderly fashion, from small to large motor units

- Latash, 2012, Fundamentals of Motor Control, Academic Press

• Frequency modulation increasing the firing frequency of already recruited MUs

- Monster & Chan, 1977, J Neurophysiol 40:1432

SPINAL CORD

Local organization

MNs located in the spinal cord
afferent/dorsal roots — efferent/
ventral roots — gray matter: cell
body of MNs — white matter:
axons — MNs grouped into pools
over several segments

- Kandel et al., 2013, Principles of Neural Science, McGraw-Hill

SPINAL CORD

Global organization

Cervical vertebrae

- C1-3 Limited head control
- C4 Breathing and shoulders shrug
- C5 Lift arm with shoulder, elbow flex
- C6 Elbow flex and wrist extension
- C8 Finger flexion

Thoracic vertebrae

- T1 Finger movement
- T2-T12 Deep breaths, deep breathing
- T6-L1 Deep exhale of breath, stability while sitting

Lumbar vertebrae

- L1-L2 Hip flexion
- L2-L3 Hip movement toward middle of body
- L3-L4 Knee extension
- L4-L5 Ankle extension
- L5 Extension of big toe

Sacral vertebrae

- S1 Movement of foot and ankle
- S1-S2 Toe movement
- S2-S4 Function of bladder and bowel

INPUT/OUTPUT OF MUSCLE SPINDLES

C Response of Ia sensory fiber to selective B Intrafusal fibers of the muscle spindle A Muscle spindle activation of gamma motor neurons Static nuclear bag fiber 200 Dynamic nuclear bag fiber 8 Dynamic response Intrafusal muscle Steady state response Nuclear fibers chain fibers 0 L Stretch alone Capsule II sensory 200 fiber = Sensory 800 endings Ia sensory fiber Static gamma Afferent Stimulate static gamma motor neurons motor neuron axons 200 Efferent axons Dynamic gamma ŝ motor neuron Gamma motor Stimulate dynamic gamma motor neurons neuron endinas Stretch 0.2 s B Stimulation of alpha motor neurons only 111 Contraction C Stimulation of alpha and gamma motor neurons Ia fiber response is "filled in"

Contraction

Output (afferent)

the spindles innervate **alpha** MNs through fibers Ia and II

Input (efferent)

the spindles are innervated by **gamma** MNs which modulate their **static** and **dynamic** sensitivity

gamma control =
fusimotor control

FUSIMOTOR CONTROL

Static vs dynamic

during activities in which muscle length changes slowly and predictably *vs* during behaviors in which muscle length may change rapidly and unpredictably

- Prochazka et al., 1988, in Mechanoreceptors: Development, Structure and Function, Plenum Press

ALPHA-GAMMA COACTIVATION

A Alpha-gamma co-activation reinforces alpha motor activity

-Vallbo, 1981, in Muscle Receptors and Movement, Oxford University Press

B Spindle activity increases during muscle shortening

REFLEXES

Definition

— stereotyped movements elicited by activation of receptors in skin or muscle (e.g. strech reflex)

Modern view

difficult to define
in fact, flexible and adapted to ongoing tasks
integrated by centrally generated motor commands into complex adaptive movements

STRETCH REFLEX

Monosynptic organization

Regulates the output of a MN through a negative feedback process. The feedback gain can be modulated by the nervous system (e.g. γ MNs). Minimum delay \approx 30 ms

STRETCH REFLEX

Negative feedback system

reduces deviations around a reference value

FLEXION-WITHDRAWAL REFLEX

Polysynaptic protective reflex

coordination to avoid painful stimulation e.g. wiping in the spinal frog evoked by chemical stimulation

SPINAL VS LONG-LOOP REFLEX

SPINAL MECHANISMS

Description

— a motor act generally requires the coordination of a large number of muscles. Spinal circuits play a critical role in this coordination - spinal reflexes form a set of elementary coordination patterns (e.g. stretch reflex). Most reflexes involve complex circuits that link several muscles or articulations — interneurons (INs) are basic elements of reflexes. Convergence, divergence, gating, reverberation, cyclic interactions, CPG (central pattern generator)

SPINAL MECHANISMS

CPG

central pattern generator

rhythmic activity for stepping is generated by networks of neurons in the spinal cord

- Brown, 1911, Proc R Soc Lond B Biol Sci 84:308

SPINAL MECHANISMS

Locomotion

when transection isolates the whole spinal cord, electrical stimulation of the *Mesencephalic Locomotor Region* generates locomotion. As stimulation intensity increases, locomotion becomes faster. Then there is a transition between trot (alterned flexions/extensions) and gallop (simultaneous flexions/extensions)

ASCENDING SYSTEMS

Two main systems

dorsal column/median
lemniscus system: transmits
tactile and proprioceptive
information
anterolateral system:
transmits pain and
temperature

— Kandel et al., 2013, Principles of Neural Science, McGraw-Hill

CENTRAL REPRESENTATIONS

DESCENDING SYSTEMS

Multiple pathways

— the cortico-spinal tract is the largest pathway (I million fibers, 30% from the primary motor cortex) — the lateral pathway controls the distal and proximal muscles; the ventral pathway control axial muscles

CORTICAL MOTOR AREAS

ARCHITECTURE

NEURAL PROPERTIES

Neural activity modulated by force

C Load assists flexors

Weight assists flexors

- Evarts, 1968, J Neurophysiol 31:14

NEURAL PROPERTIES

Neural activity modulated by movement direction

