MOVEMENT DISORDERS

Emmanuel Guigon

Institut des Systèmes Intelligents et de Robotique Université Pierre et Marie Curie CNRS / UMR 7222 Paris, France

emmanuel.guigon@upmc.fr
e.guigon.free.fr/teaching.html

introduction

THE GRAND EXPERIMENT

MOVEMENT DISORDERS

SOLUTIONS

SOLUTIONS

SOLUTIONS

Why is a complex system functioning improperly? — e.g broken down car vs the motor brain

It could work

- no keys
- no gazoline
- no driver

It works improperly

- no breaks
- no lights
- drunk driver

It does not work - no engine

- no tires

It could work

- no motivation
- sleep
- coma

It works improperly

- disease/lesion
- blindness
- drunk driver

It does not work

- no muscle
- paralysis

Directly visible

- Krebs et al., 1999, Proc Natl Acad USA 96:4645

healthy control reflexive saccades

patient with
Parkinson's disease reflexive saccades

- Melvill Jones and DeJong, 1971, Exp Neurol 31:17

Paradoxical kinesia

— **Conditions in which an impaired action recovers** environment, stimuli, instructions, psychological states

— Snijders and Bloem, 2010, N Eng J Med 362:e46

patients who survived the 1917-28 epidemic of encephalitis lethargica

— Awakenings, 1990, movie by Penny Marshall, adapted from Awakenings, 1973, book by Oliver Sacks

Positive vs negative symptoms

— symptom whose content is an exaggeration of a function or is a behavior "that normal people do not have" *vs* symptom referring to a deficit or an absence of a function or signal, to a vacuum, to a state of "not having a behavior that normal people have"

• Akinetic, hypokinetic, hyperkinetic symptoms

- paucity of movements, mutism
- slowness and reduced amplitude of movements
- abnormal involuntary movements (chorea)

UNDERSTANDING MOVEMENT DISORDERS

E.g. scaling laws

OUTLINE

I. Functional motor anatomy spinal cord, motor cortex, cerebellum, basal ganglia

2. Methods & advanced data processing multidimensional data analysis, time series analysis

I. Functional motor anatomy

spinal cord, motor cortex, cerebellum, basal ganglia

PROBLEM

COMPUTATIONAL ARCHITECTURE

COMPUTATIONAL NEUROANATOMY

— Scott, 2004, Nat Rev Neurosci 5:534 — Shadmehr and Krakauer, 2008, Exp Brain Res 185:359

CENTRAL NERVOUS SYSTEM

central nervous system	86x10 ⁹ neurons
cerebellum	69x10 ⁹ neurons
cerebral cortex	16x10 ⁹ neurons
motor cortex	~10 ⁹ neurons
basal ganglia	~10 ⁷ neurons
spinal cord	$\sim 10^9$ neurons

- Herculano-Houzel, 2009, Front Hum Neurosci 3:31

SPINAL CORD

Minimal view

first relay for somatic sensory information
last station for motor processing
monosynaptic reflexes (e.g. *stretch reflex*)
polysynaptic protective reflexes (e.g. *flexion reflex, wiping reflex in the spinal frog*)
central pattern generator (e.g. *stepping*)

More « active » view

— coordination (e.g. *wiping reflex*)
— transformation of kinematic representations into dynamics (in the framework of the equilibrium point theory)
— postural force fields

SPINAL CORD

Microstimulation in spinal frogs

position control and equilibrium point mechanisms in the spinal cord

parallel force field for stimulation of a MN

convergent force fields
derived from activation
 of interneurons

— Bizzi et al., 1991, Science 253:287

COMPUTATIONAL NEUROANATOMY

MOTOR CORTEX

Intracortical microstimulation

— Park et al., 2001, *J Neurosci* 21:2784

— Humphrey & Tanji, 1991, in Motor Control: Concepts and Issues, Wiley

— Evarts, 1968, J Neurophysiol 31:14

— Georgopoulos et al., 1982, J Neurosci 2:1527

- Sergio & Kalaska, 1998, J Neurophysiol 80:1577

Muscle

Sergio & Kalaska,1998, J Neurophysiol80:1577

50 ips

0 ips

- Griffin et al., 2008, J Neurophysiol 99:1169

INTERNAL MODEL IN REFLEXES

single-joint torque perturbations that induce equal shoulder motion but different elbow motion in a postural task

long-latency
activity in the
shoulder extensor
muscle does not
depend only on
stretching of the
muscle

— Kurtzer et al., 2008, Curr Biol 18:449

150

INTERNAL MODEL IN REFLEXES

multi-joint torque perturbations that induce large elbow motion and negligible shoulder motion in a postural task

long-latency
activity in the
shoulder extensor
muscle does not
depend only on
stretching of the
muscle

— Kurtzer et al., 2008, Curr Biol 18:449

MOTOR CORTEX — INTERNAL MODEL

M1 recordings

- Pruszynski et al., 2011, Nature 478:387

MOTOR CORTEX — PLASTICITY

MOTOR CORTEX — LESIONS

Focal lesions

— from weakness, slowing, discoordination to temporary/ permanent paralysis

- effect related to the represented body part, diminished use of this part, distal extremities more affected

— loss of fine motor skills (e.g. independent movements of the fingers, precision grip), clumsiness in most motor functions

• Large lesions

pyramidal syndrom — paralysis, spasticity (increase in muscle tone), increase of deep reflexes, disappearance of superficial reflexes, altered posture

Species-specific

cat, monkey, human

MOTOR CORTEX — LESIONS

- Hoffman and Strick, 1995, J Neurophysiol 73:891

MOTOR CORTEX — LESIONS

A Normal

- Lawrence and Kuypers, 1968, Brain 91:1

COMPUTATIONAL NEUROANATOMY

GLOBAL CEREBELLAR ORGANISATION

Anatomy

- cerebellar cortex, deep cerebellar nuclei

CORTEX

OLIVE

SPINAL

CORD

OUTPUT ORGANISATION

LOCAL CEREBELLAR ORGANIZATION

granular layer — **input** Purkinje cell layer — **output**

connectivity granule/Purkinje ≈ 0.2-1x10⁶ climbing fiber/Purkinje = 1 Purkinje/climbing fiber ≈ 1-10

CEREBELLAR MICROCIRCUIT

CEREBELLAR DISEASES

Distinctive symptoms and signs

— **no paralysis**, hypotonia, astasia/abasia (*inability to stand and walk*), ataxia (*abnormal execution of multijoint movements*, e.g. dysmetria, dysdiadochokinesia), tremor (*action* or *intention*, series of erroneous corrections at the end of the movement)

CEREBELLAR DEFICITS

Deficits in the control of rapid movements abnormal triphasic EMG — abormal timing

CEREBELLUM — MOTOR THEORY

Storage of inverse models

the cerebellum computes a function that creates or modifies the patterns of muscle activations that underlie coordinated movement

CEREBELLUM — SENSORY THEORY

Arguments

strong parallelism in the phylogeny between the size of the cerebellum and the complexity of sensory systems (Paulin 1993)
the discharge pattern of Purkinje cells is not modulated by forces applied during movement execution

incompatible with a representation of an internal inverse model

storage of a forward model?

- Paulin, 1993, Brain Behav Evol 41:39

CEREBELLAR PREDICTION DEFICIT

Predictive grip force control

— Nowak et al., 2007, Neuropsychologia 45:696 experimenter-release condition

PREDICTING SENSORY CONSEQUENCES

The cerebellum signals

sensory discrepancy between the *predicted* and *actual* sensory consequences of movements

- Blakemore et al., 2001, NeuroReport 12:1879

COMPUTATIONAL NEUROANATOMY

— Scott, 2004, Nat Rev Neurosci 5:534 — Shadmehr and Krakauer, 2008, Exp Brain Res 185:359

GLOBAL BASAL GANGLIA ORGANISATION

LOCAL BASAL GANGLIA ORGANISATION

— Chevalier & Deniau, 1990, Trends Neurosci 13:277

CORTICO-BASAL GANGLIA LOOPS

— Alexander et al., 1986, Annu Rev Neurosci 9:357

BASAL GANGLIA DYSFUNCTION

normal motor control

hypokinetic motor control

— Lozano et al., 2017, Annu Rev Neurosci 40:453

BASAL GANGLIA DYSFUNCTION

normal motor control

— Lozano et al., 2017, Annu Rev Neurosci 40:453 hyperkinetic motor control

BASAL GANGLIA — MOTOR DEFICITS

Movements and EMG are segmented

in patients with Parkinson's disease (PwPD)

elbow flexion movements — Hallett & Khoshbin, 1980, Brain 103:301

thumb movements — Berardelli et al., 1984, Neurosci Lett 47:47

BASAL GANGLIA — MOTOR DEFICITS

BASAL GANGLIA — MOTOR DEFICITS

PARKINSON'S DISEASE AND MOTIVATION

 increased motivation urge to make a vigorous squeeze

- Schwab et al., 1959, Neurology 9:65

PARKINSON'S DISEASE AND MOTIVATION

C 10C 50C

2 3 Time (b) — Schmidt et al., 2008, Brain 131:1303

COMPUTATIONAL NEUROANATOMY

— Scott, 2004, Nat Rev Neurosci 5:534 — Shadmehr and Krakauer, 2008, Exp Brain Res 185:359