# MOVEMENT DISORDERS 

## Emmanuel Guigon

Institut des Systèmes Intelligents et de Robotique
Université Pierre et Marie Curie
CNRS / UMR 7222
Paris, France

```
    emmanuel.guigon@upmc.fr
e.guigon.free.fr/teaching.html
```

$3$

# 3. Stroke and rehabilitation BCI/BMI 

## DEFINITION - EPIDEMIOLOGY

- Acute focal injuries to the brain
- in $-85 \%$ of the cases, interruption to the blood supply (ischemic): neuronal degeneration (infarct) - bleeding (hemorhagic): no tissue destruction, possible restitution
- Prevalence
- -700 ooo/year in the United States
- 3rd leading cause of death
- leading cause of disability
- $90 \%$ of stroke survivors have a deficit
- $2 / 3$ in people older than 65


## "MOTOR" STROKES

## Territory of the middle cerebral artery

—blood supply to sensory and motor systems, temporal and parietal cortex, thalamus, basal ganglia


## MOTOR SYMPTOMS

- Paresis/hemiparesis
- loss of power of any muscle group
- abnormally slow and clumsy movements
- complete loss: plegia or paralysis
- Spasticity
- change in reflexes to muscle stretch with
a strong velocity component
- emergence of pathological reflexes and
uncontrolled spasms
- increase in muscle tone
- impairment of voluntary motor function


## SYMPTOMS

| SYMPTOMS | DEFINITION | stroke | PwPD | cbm |
| :---: | :---: | :---: | :---: | :---: |
| akinesia | paucity of movements, delayed movement initiation |  | X |  |
| apraxia | difficulties in movement planning |  |  |  |
| ataxia | lack of coordination in absence of muscular weakness |  |  | X |
| bradykinesia | slowness and reduced amplitude of movements |  | X |  |
| dysdiadochokinesia | impaired repetitive alternating movements |  |  | X |
| dysmetria | irregularity of movements with undershoots/overshoots |  |  | X |
| hypotonia | low muscle tone |  |  | X |
| hyperreflexia | reduced sensory threshold and larger reflex amplitudes | X |  |  |
| paresis | weakness of voluntary movements | X |  |  |
| postural instability | wide base stance and gait, inability to stand without support |  |  | X |
| rigidity | steady increase in resistance to passive stretch |  | X |  |
| spasticity | hypertonia, increased resistance to passive stretch | X |  |  |
| tremor | intention (during movement) or resting |  |  | $\mathrm{X}{ }^{1}$ |

${ }^{(1)}$ rest tremor
${ }^{(2)}$ intention tremor: absent during rest, provoked by voluntary movements

## MOTOR DEFICITS

## Coordination

 arm movements in 2 D space
healthy control
non-affected arm
affected arm



[^0]
## MOTOR DEFICITS

## Segmentation

 arm movements in $2 \mathrm{D} / 3 \mathrm{D}$ space
— Krebs et al., I999, Proc Natl Acad USA 96:4645

— Trombly, I993, J Neurol Neurosurg Psychiatr 56:40

— Dejong et al., 2012, Neurorehabil Neural Repair 26:362

## STROKE RECOVERY

## - Definition

improvements in abilities over time, at any of the ICF levels (World Health Organization's International Classification of Functioning, Disability, and Health), regardless of how these improvements occurred

- Restitution/substitution (true recovery)
undamaged brain regions are recruited, which generate commands to the same muscles as were used before the injury
e.g. unmasking, through training, of pre-existing corticocortical connections (redundant pathways)


## - Compensation

use of structures and/or functions different from those used before the injury to achieve a movement goal e.g. using the less-affected arm

## STROKE RECOVERY

- Spontaneous recovery (-) plasticity, brain reorganization (e.g. activation of undamaged regions in the opposite hemisphere)


## - Training-dependent recovery (-)

task-specific targeted training
learned nonuse

- concurrent decrease of spontaneous used of the impaired side
- preference for the less affected side learned as a result of unsuccessful repeated attempts in using the affected side
long-term
functional
limitations
- amount and
type of injury
- initial level
of recovery
GLOBAL
- compensatory use of the lessaffected limb (learned nonuse)
- unilateral impairements
- ~50\% of patients stop here
- reduced QoL
irrespective of the kind of intervention
$\begin{array}{ll:ll} \\ \text { early } & & & \\ \text { acute } & \begin{array}{l}\text { injury-induced changes in } \\ \text { the potential for plasticity }\end{array} & \text { prolonged critical } & \text { period of plasticity }\end{array}$


## PLASTICITY

## Localized lesion in primary motor cortex

behavioral retraining: retrieve food pellets from small wells


— Nudo et al., I996, Science 272: I79|
microstimulation maps

## STROKE RECOVERY ASSESSMENT

## Scores

- Fugl-Meyer Assessment to quantify the sensorimotor impairment (motor function, sensory function, balance, range of motion of joints, joint pain) on an ordinal scale (o=no; $\mathrm{I}=$ partial; $2=$ full $)$ - Barthel ADL index: io variables describing activities of daily living (ADL) and mobility


— Duncan et al., I992, Stroke 23:I084


## STROKE RECOVERY ASSESSMENT

## Time-dependent recovery




FM = Fugl-Meyer
(balance: sitting, standing)

MI = Motricity Index
( measure of strength)

BI = Barthel Index (ADL)

FAC = Functional Ambulation Capacities (walking)

ARAT = Action Research Arm Test ( recovery of dexterity)

LCT = Letter Cancellation Task (presence of neglect)
— Kwakkel et al., 2006, Stroke 37:2348

## STROKE RECOVERY ASSESSMENT

Individual variability in arm use after motor training normalized use in immediate group of EXCITE data

Normalized MAL AOU (Motor Activity Log Amount of Use)


— Hidaka et al., 2012, PLoS Comput Biol 8:e I002343

## STROKE RECOVERY

## - Smoothness

robot therapy - $5 \mathrm{~h} /$ week for 4 weeks (acute), $3 \mathrm{~h} /$ week for 6 weeks (chronic)

- Rohrer et al., 2002, J Neurosci 22:8297




Subject number


negative of the number of velocity peaks


## SMOOTHNESS METRICS

## 1. normalized mean absolute jerk

2. peak metrics

$$
\begin{aligned}
\eta_{\mathrm{nmaJ}} & \stackrel{\Delta}{\left(t_{2}-t_{1}\right) v_{\text {peak }}} \int_{t_{1}}^{t_{2}}\left|\frac{d^{2} v}{d t^{2}}\right| d t \\
v_{\text {peak }} & \triangleq \max _{t \in\left[t_{1} ; t_{2}\right]} v(t)
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{\mathrm{pm}} \triangleq \\
& \text { where }\left\{v_{\text {maxima }}\right\} \triangleq\left\{v v_{\text {maxima }}\right\} \\
&\left.\triangleq v(t): \frac{d v}{d t}=0 \text { and } \frac{d^{2} v}{d t^{2}}<0\right\}
\end{aligned}
$$

3. dimensionless jerk

$$
\eta_{\mathrm{dj}} \triangleq-\frac{\left(t_{2}-t_{1}\right)^{3}}{v_{\text {peak }}^{2}} \int_{t_{1}}^{t_{2}}\left|\frac{d^{2} v}{d t^{2}}\right|^{2} d t
$$


4. spectral arc length

$$
\eta_{\mathrm{sal}} \triangleq-\int_{0}^{\omega_{c}} \sqrt{\left(\frac{1}{\omega_{c}}\right)^{2}+\left(\frac{d \hat{V}(\omega)}{d \omega}\right)^{2}} d \omega
$$

5. log dimensionless jerk

$$
\eta_{\text {ldj }} \triangleq-\ln \left(\frac{\left(t_{2}-t_{1}\right)^{3}}{v_{\text {peak }}^{2}} \int_{t_{1}}^{t_{2}}\left|\frac{d^{2} v}{d t^{2}}\right|^{2} d t\right)
$$

6. speed arc length

$$
\eta_{\text {spal }} \triangleq-\ln \left(\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{1}{t_{2}-t_{1}}\right)^{2}+\left(\frac{d \hat{v}}{d t}\right)^{2}} d t\right) \quad \hat{v}(t) \triangleq \frac{v(t)}{v_{\text {peak }}}
$$

## STROKE REHABILITATION

- Goals
- general: relearning how to move to carry out essential needs - specific: improve function and use of the affected arm, avoid learned nonuse to prevent "rehabilitation in vain"
- Methods
- physical and occupational therapy
- robot-aided rehabilitation
- Principles
"relearn" motor control through motor learning (as in development and skill acquisition)


## REHABILITATION METHODS

- Arm ability training
developed for patients who complain of clumsiness or decreased coordination even though they have normal neurological examination; oriented toward ADLs (activities of the daily life)
- Constraint-induced movement therapy restraint of the less-affected limb for $90 \%$ of waking hours, massed practice with the affected limb for 6 hours a day
- Interactive robotic therapy
intensive, real-time assistive or resistive interactions with a robotic device which induce motor learning


## EFFECTS OF ROBOTIC THERAPY

- Conclusion from a multicentre, parallel-group trial training with an arm robot is safe and improves body functions, activities, and participation (i.e., social functioning) equally as well as the same amount of conventional therapy offered by a therapist
- Avantage
robots do not get tired, can generate more repetitions than can a therapist in the same time, offer accurate feedback about patients' performance, and can be fun to use
- Drawback
cost-effectiveness trade-off?


## MODELING RECOVERY

## The threshold hypothesis

- if therapy (or spontaneous recovery) sufficiently increases performance above a threshold, patient will enter a virtuous cycle, in which motor performance and spontaneous arm use reinforce each other
- if not, patient enters a vicious cycle in which compensatory movements with the other limb further develops, and rehabilitation can be "in vain"



## MODELING RECOVERY

## Description of the model

- reach to random targets on a circle
- Action Choice Module: decide which arm to use (directional bias)
$\rightarrow$ reward-based learning

- Motor Cortex: calculate movement direction (directional error)
$\rightarrow$ error-based learning
- stroke = lesion of motor cortex

- recovery = relearning after stroke


## MODELING RECOVERY

Neural coding in the motor cortex set of directionally tuned neurons

$$
\begin{array}{cr}
y^{i}=\left[\cos \left(\theta_{\mathrm{d}}-\theta_{\mathrm{p}}^{i}\right)+\text { noise }\right]^{+} \\
\theta_{\mathrm{p}}^{i} & \text { preferred direction } \\
\theta_{\mathrm{d}} & \text { reaching direction }
\end{array}
$$



## MODELING RECOVERY

- Plasticity in the motor cortex
a learning rule induces changes in cells' preferred direction

$$
\theta_{\mathrm{p}}^{i} \leftarrow \theta_{\mathrm{p}}^{i}+\alpha_{\mathrm{SL}}\left(\theta_{\mathrm{d}}-\theta_{\mathrm{e}}\right) y^{i}+\alpha_{\mathrm{UL}}\left(\theta_{\mathrm{d}}-\theta_{\mathrm{p}}^{i}\right) y^{i} \underset{\mathrm{p}^{i}}{\substack{\theta_{\mathrm{d}}^{i} \\
\theta_{\mathrm{e}}}} \begin{array}{r}
\text { preferred direction } \\
\text { reaching direction } \\
\text { population direction }
\end{array}
$$

```
    supervised learning
minimize directional error
```

```
    unsupervised learning
orient the preferred direction
    toward the reaching direction
```

- Action Choice Module
- select one movement by comparing action values
- reward = accuracy + comfort


## MODELING RECOVERY



## MODELING RECOVERY



## MODELING RECOVERY

A affected (left) hemisphere


2


B non-affected (right) hemisphere


## BRAIN COMPUTER/MACHINE INTERFACE

- Principle
record electrical signals directly from the nervous system to enable communication or control over technological devices
- Electrical signals
- myoelectric interfaces: controlled by signals recorded from muscles
- neural interfaces: controlled directly from the brain (EEG/MEG, neurons)
- Devices
- computer (e.g. move a cursor, select a letter)
- prosthesis
- external robotic system


MOTOR
IMAGERY
movement
intention
movement parameters
healthy
stroke
SCI
amputation


## BCI/BMI AND NEUROFEEDBACK

- Principle
provide real-time feedback of certain features of brain signals
- Goal
learn to modulate brain activity through operant conditioning
- Consequence
promote therapeutic neuroplasticity?


## BCI/BMI AND NEUROFEEDBACK

## Training of sensorimotor rhythms <br> e.g. translation of SMR into proportional control grasping



End


_ Foldes et al., 2015, J Neuroeng Rehabil 12:85

## BCI/BMI AND STROKE

## BCI-based motor imagery decoding as an integrative therapy

EEG-gated EMG control - the EEG decoder detects a user intention the exoskeleton provides assistance to the movement based on EMG


## BCI/BMI AND AMPUTATION

## Interfacing spinal motor neurons

- nerves are surgically redirected to innervate accessory muscles
- the discharge timings
of the innervating motor neurons are decoded by deconvolution of the EMG signals
- the series of discharge timings are then mapped into degrees of freedom of the prosthesis

_ Farina et al., 20I7, Nat Biomed Eng I:0025


## BCI/BMI AND AMPUTATION


task - increase and decrease the intensity of muscle activity of the missing limb


- Farina et al., 2017, Nat Biomed Eng I:0025
- Person and Kudina, 1972, Electroencephalogr Clin Neurophysiol 32:47 I


## BMI/BCI IN MONKEYS

## Self-feeding task

 transform neural activity into control signals for 5 -dof robot armendpoint velocity and gripper command extracted from the instantaneous firing rates of simultaneously recorded neurons in M1 in real-time


_Velliste et al., 2008, Nature 453: 1098

## BCI/BMI AND PARALYSIS

## Neural Bypass System (NBS) in a patient with SCI

 training to use cortical motor activity to control a neuromuscular electrical stimulatorUtah microelectrode array


NMES

wavelet decomposition
$\rightarrow$ mean wavelet power
$\rightarrow$ decoding

—Bouton et al., 2016, Nature 533:247

## BCI/BMI AND PARALYSIS




[^0]:    — Levin, I996, Brain II9:28I

