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3. Stroke and rehabilitation
BCI/BMI



DEFINITION — EPIDEMIOLOGY

* Acute focal injuries to the brain

— in ~-85% of the cases, interruption to the blood
supply (ischemic): neuronal degeneration (infarct)
— bleeding (hemorhagic): no tissue destruction,
possible restitution

* Prevalence

— ~700 oool/year in the United States
— 3rd leading cause of death

— leading cause of disability

— 90% of stroke survivors have a deficit
— 2/3 in people older than 65



“MOTOR” STROKES
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MOTOR SYMPTOMS

* Paresis’/hemiparesis

— loss of power of any muscle group

— abnormally slow and clumsy movements
— complete loss: plegia or paralysis

* Spasticity

— change in reflexes to muscle stretch with
a strong velocity component

— emergence of pathological reflexes and
uncontrolled spasms

— increase in muscle tone

— impairment of voluntary motor function



SYMPTOMS

SYMPTOMS DEFINITION stroke PwPD cbm
akinesia paucity of movements, delayed movement initiation X
apraxia difficulties in movement planning
ataxia lack of coordination in absence of muscular weakness X
bradykinesia slowness and reduced amplitude of movements X
dysdiadochokinesia impaired repetitive alternating movements X
dysmetria irregularity of movements with undershoots/overshoots X
hypotonia low muscle tone X
postural instability wide base stance and gait, inability to stand without support X
rigidity steady increase in resistance to passive stretch X
spasticity hypertonia, increased resistance to passive stretch X
tremor intention (during movement) or resting X1 X2

(M) rest tremor

(?) intention tremor: absent during rest, provoked by voluntary movements




MOTOR DEFICITS

End-point trajectory

o o E
Coordination 5’“
arm movements in 2D space gEo
= t
oFor § \ .\
| T as0 —
Ipsilataral E Contralateral > Horlzontal dl‘mm (l'ﬂ!‘l‘l) 50 men
;

\\‘ \/

Elbow angle
s (degrees) g
/
o

. healthy control
non-affected arm affected arm Shoulder angle (degrees) 800
0

A
Ffor @ . O " 100 ° on |
= 80 “/s
— — Q
£ £ = ,\’\,fd‘f
E lcontra |lNear S Ipsi E Contra S
> > %
80°H |
0 x(mm) 520 0 x(mm) 520 E

— Levin, 1996, Brain 119:281




MOTOR DEFICITS

Segmentation

arm movements in 2D/3D space
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STROKE RECOVERY

* Definition

improvements in abilities over time, at any of the ICF levels (Wor/d
Health Organization’s International Classification of Functioning, Disability,
and Health), regardless of how these improvements occurred

* Restitution/substitution (true recovery)

undamaged brain regions are recruited, which generate commands
to the same muscles as were used before the injury

e.g. unmasking, through training, of pre-existing corticocortical
connections (redundant pathways)

e Compensation

use of structures and/or functions difterent from those used
before the injury to achieve a movement goal

e.g. using the less-affected arm



STROKE RECOVERY

* Spontaneous recovery (——)
plasticity, brain reorganization (e.g. activation of
undamaged regions in the opposite hemisphere)

* Training-dependent recovery (——)
task-specific targeted training
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PLASTICITY

Localized lesion in primary motor cortex
behavioral retraining: retrieve food pellets from small wells
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STROKE RECOVERY ASSESSMENT

Scores

— Fugl-Meyer Assessment to quantify the sensorimotor
impairment (motor function, sensory function, balance, range of motion of
Joints, joint pain) on an ordinal scale (0=no; 1=partial; 2=full)

— Barthel ADL index: 10 variables describing activities of daily
living (ADL) and mobility
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STROKE RECOVERY ASSESSMENT

Time-dependent recovery
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STROKE RECOVERY ASSESSMENT

Individual variability in arm use after motor training
normalized use in immediate group of EXCITE data

Normalized MAL AOU (Motor Activity Log Amount of Use)

increasing decreasing no change

20 0 10 20 0 10 20

10
Months

— Hidaka et al., 2012, PLoS Comput Biol 8:e1002343



STROKE RECOVERY
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SMOOTHNESS METRICS
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STROKE REHABILITATION

e Goals

— general: relearning how to move to carry out essential needs
— specific: improve function and use of the affected arm, avoid
learned nonuse to prevent “rehabilitation in vain”

e Methods

— physical and occupational therapy
— robot-aided rehabilitation

* Principles
“relearn” motor control through motor learning (as in development
and skill acquisition)



REHABILITATION METHODS

* Arm ability training

developed for patients who complain of clumsiness or decreased
coordination even though they have normal neurological
examination; oriented toward ADLs (activities of the daily life)

e Constraint-induced movement therapy
restraint of the less-affected limb for 9o% of waking hours,
massed practice with the affected limb for 6 hours a day

* Interactive robotic therapy
intensive, real-time assistive or resistive interactions with a
robotic device which induce motor learning



EFFECTS OF ROBOTIC THERAPY

* Conclusion from a multicentre, parallel-group trial
training with an arm robot is safe and improves body functions,
activities, and participation (i.e., social functioning) equally as well
as the same amount of conventional therapy offered by a therapist

* Avantage

robots do not get tired, can generate more repetitions than can a
therapist in the same time, offer accurate feedback about patients’
performance, and can be fun to use

* Drawback
cost-effectiveness trade-off?

— Kwakkel and Meskers, 2014, Lancet Neurol 13:132



MODELING RECOVERY

The threshold hypothesis

— if therapy (or spontaneous recovery) sufficiently increases
performance above a threshold, patient will enter a virtuous
cycle, in which motor performance and spontaneous arm use
reinforce each other

— if not, patient enters a vicious cycle in which compensatory
movements with the other limb further develops, and
rehabilitation can be “in vain”

Spontaneous Virtuous Motor
arm use cycle performance

hbmtatlon in vain

— Han et al., 2008, PLoS Comput Biol 4:e1000133



MODELING RECOVERY

target

Description of the model
— reach to random targets on a circle

— Action Choice Module: decide

which arm to use (directional bias)
=> reward-based learning

reward-based error-based

— Motor Cortex: calculate learning N
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MODELING RECOVERY

Neural coding in the motor cortex intact
set of directionally tuned neurons
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MODELING RECOVERY

* Plasticity in the motor cortex
a learning rule induces changes in cells’ preferred direction

. . . . . 0; preferred direction
(9;’) <— (9; -+ g, (9d — ee)yz —|— QL (9d — eg)yz 04 reaching direction
0. population direction
supervised learning unsupervised learning
minimize directional error orient the preferred direction

toward the reaching direction

e Action Choice Module

— select one movement by comparing action values
— reward = accuracy + comfort



MODELING RECOVERY

3 » e
_‘& \ 1
» X
- = -
1 . 2 : no therapy & \
- 4 ‘,f « - . p ) /7’ ’ _
N\ a & W N g \
N e Qg ‘. v four phases
— —_——— .=

> iS5 7 aaa L.
-2 - - f(f 4 R (1) acquisition of
f’ﬂ ﬂﬁ &\\ lz’fw}g\\ ,\ T . normal bilateral
g | \V.a, i/ reaching = 2000 free
v ' therapy » «

5
ol . stroke 9 | e
Xe K

choice trials

= (2) acute stroke
4 8 . phase = 500 free
v choice trials

(3) rehabilitation,
forced use condition
= variable number of

trials [0-3000]

no therapy

o’

(4) chronic stroke
phase = 3000 free
choice trials

 left
arm




MODELING RECOVERY

(*)]
o

—~

'y « stroke  « therapy starts

g

~ 0

§ 40+

®

.§_ 20+ 400

(&)

- 800
©

OE 1 1 : 1 1 3000
0 500 1000 1500 2000 2500 3000

_p 1001 learned 3000
§°; 80 nonuse e
8

§ 40 400
c ---a- =

Q 20

@ AL 200

0 -
0 500 1000 1500 2000 2500 3000
# of trials
therapy duration 0, 200, 400, 800, 3000

3500

3500

# of rehabilitation trials

slope

1400
1200
1000
800
600
400
200

0 50 100
% of loss

x 10

0% 200 400 600 800 1000

# of rehabilitation trials



MODELING RECOVERY

A affected (left) hemisphere

B non-affected (right) hemisphere



BRAIN COMPUTER/MACHINE INTERFACE

* Principle
record electrical signals directly from the nervous system to
enable communication or control over technological devices

* Electrical signals

— myoelectric interfaces: controlled by signals
recorded from muscles

— neural interfaces: controlled directly from

the brain (EEG/MEG, neurons)

* Devices

— computer (e.g move a cursor, select a letter)
— prosthesis

— external robotic system
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BCI/BMI AND NEUROFEEDBACK

* Principle
provide real-time feedback of certain features of brain signals

e Goal

learn to modulate brain activity through operant conditioning

* Consequence
promote therapeutic neuroplasticity?



BCI/BMI AND NEUROFEEDBACK
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BCI/BMI AND STROKE

BCl-based motor imagery decoding
as an integrative therapy

EEG-gated EMG control — the EEG decoder detects a user intention —
the exoskeleton provides assistance to the movement based on EMG
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BCI/BMI AND AMPUTATION

Interfacing spinal motor neurons
— nerves are surgically redirected to innervate accessory muscles

Neural drive Decoding of the neural drive

— the discharge timings
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BMI/BCI IN MONKEYS
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BCI/BMI AND PARALYSIS

Neural Bypass System (NBS) in a patient with SCI
training to use cortical motor activity to control
a neuromuscular electrical stimulator

Utah microelectrode array NMES
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BCI/BMI AND PARALYSIS
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