DDPG versus CMA-ES: a comparison

Olivier Sigaud
http://people.isir.upmc.fr/sigaud

Joint work with Arnaud de Froissard de Broissia

September 12, 2016
Motivation: why compare DDPG to CMA-ES?

- Towards “blind” policy search (CMA-ES) + DMPs (small domain)
- Requires DMP engineering
- In principle, actor-critic should be more data efficient
- But sensitive to value function approximation error
- DDPG brings accurate value function approximation and no feature engineering

Families of methods

- **Critic**: (action) value function → evaluation of the policy
- **Actor**: the policy itself
- **Critic-only methods**: iterates on the value function up to convergence without storing policy, then computes optimal policy. Typical examples: value iteration, Q-learning, Sarsa
- **Actor-only methods**: explore the space of policy parameters. Typical example: CMA-ES
- **Actor-critic methods**: update in parallel one structure for the actor and one for the critic. Typical examples: policy iteration, many AC algorithms
- **Q-learning and Sarsa** look for a global optimum, AC looks for a local one
Quick history

- Those methods proved inefficient for robot RL

Main messages

- All the processes rely on efficient backpropagation in deep networks
- DDPG is gradient-based, this improves efficiency
- Gradient calculation involves some averaging that is somewhat related to reward-weighted averaging in BB methods
DDPG: The paper

- Continuous control with deep reinforcement learning
- Timothy P. Lillicrap Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra
- Google Deepmind
- On arXiv since September 7, 2015
- Already cited >45 times

DDPG: ancestors

- DQN: Atari domain, Nature paper, small discrete actions set
- Most of the actor-critic theory for continuous problem is for stochastic policies (policy gradient theorem, compatible features, etc.)

General architecture

- Any neural network structure
- Actor parametrized by w, critic by θ
- All updates based on backprop, available in TensorFlow, theano… (RProp, RMSProp, Adagrad, Adam?)
The Q-network in DQN

- Requires one output neuron per action
- Select action by picking the max
DDPG versus CMA-ES: a comparison

- Introduction: motivation
- Explaining DDPG

The critic in DDPG

- Used to update an actor
- Background: DDPG more sample efficient than CMA-ES
- But does not solve the exploration issue
Training the critic

In DPG (and RL in general), the critic should minimize the RPE:

\[\delta_t = r_t + \gamma Q(s_{t+1}, \pi(s_{t+1})|\theta) - Q(s_t, a_t|\theta) \]

- We want to minimize the critic error using backprop on critic weights \(\theta \)
- Error = difference between “some target value” and network output \(Q(s_t, a_t|\theta) \)
- Thus, given \(N \) samples \(\{s_i, a_i, r_i, s_{i+1}\} \), compute \(y_i = r_i + \gamma Q(s_{i+1}, \pi(s_{i+1})|\theta') \)
- The target value for sample \(i \) is \(y_i \), minimizing the error minimizes \(\delta_i \)
- So update \(\theta \) by minimizing the loss function (i.e. squared error) over the batch

\[L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta))^2 \] (1)
Training the actor

Deterministic policy gradient theorem: the true policy gradient is
\[\nabla_w \pi(s, a) = \mathbb{E}_{\rho(s)}[\nabla_a Q(s, a|\theta) \nabla_w \pi(s|w)] \tag{2} \]

\[\nabla_a Q(s, a|\theta) \] is obtained by computing the gradient over actions of \(Q(s, a|\theta) \) in the critic.

The gradient over actions is similar to the gradient over weights (symmetric roles of weights and inputs)

\[\nabla_a Q(s, a|\theta) \] is used as an error signal to update the actor’s weights through backprop again.

Comes from NFQCA

DDPG versus CMA-ES: a comparison

Introduction: motivation

Explaining DDPG

General algorithm

1. Feed the actor with the state, outputs the action
2. Feed the critic with the state and action, determines $Q(s, a|\theta^Q)$
3. Update the critic, using (1) (alternative: do it after 4?)
4. Compute $\nabla_a Q(s, a|\theta)$
5. Update the actor, using (2)
Subtleties

- The actor update rule is

\[
\nabla_w \pi(s_i) \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta)|_{s=s_i, a=\pi(s_i)} \nabla_w \pi(s)|_{s=s_i}
\]

- Thus we do not use the action in the samples to update the actor.

- Could it be

\[
\nabla_w \pi(s_i) \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta)|_{s=s_i, a=a_i} \nabla_w \pi(s)|_{s=s_i}?
\]

- Work on \(\pi(s_i) \) instead of \(a_i \)

- Does this make the algorithm on-policy instead of off-policy?

- Does this make a difference?
Trick 1: Sample buffer (from DQN)

- In most optimization algorithms, samples are assumed independently and identically distributed (iid)
- Obviously, this is not the case of behavioral samples \((s_i, a_i, r_i, s_{i+1})\)
- Idea: put the samples into a buffer, and extract them randomly
- Use training minibatches, to make profit of GPU
- The replay buffer management policy is an issue

Trick 2: Stable Target Q-function (from DQN)

- Compute the critic loss function from a separate target network $Q'(\ldots | \theta')$
- So compute $y_i = r_i + \gamma Q'(s_{i+1}, \pi(s_{i+1}) | \theta')$
- In DQN, the θ is updated after each batch
- In DDPG, they rather allow for slow evolution of Q' and π'

$$\theta' \leftarrow \tau \theta + (1 - \tau) \theta'$$

- The same applies to μ, μ'
- From the empirical study, this is the critical trick
Trick 3: Batch Normalization (new)

- Covariate shift: as layer N is trained, the input distribution of layer $N + 1$ is shifted, which makes learning harder
- To fight covariate shift, ensure that each dimension across the samples in a minibatch have unit mean and variance at each layer
- Add a buffer between each layer, and normalize all samples in these buffers
- Makes learning easier and faster
- Makes the algorithm more domain-insensitive
- But poor theoretical grounding, and makes network computation slower

Algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ.
Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$
Initialize replay buffer R

for episode = 1, M do
 Initialize a random process \mathcal{N} for action exploration
 Receive initial observation state s_1
 for $t = 1, T$ do
 Select action $a_t = \mu(s_t|\theta^\mu) + \mathcal{N}$ according to the current policy and exploration noise
 Execute action a_t and observe reward r_t and observe new state s_{t+1}
 Store transition (s_t, a_t, r_t, s_{t+1}) in R
 Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R
 Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$
 Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q)^2)$
 Update the actor policy using the sampled gradient:
 \[
 \nabla_{\theta^\mu} \mu|_{s_i} \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta^Q)|_{a=s, a=\mu(s_i)} \nabla_{\theta^\mu} \mu(s|\theta^\mu)|_{s_i}
 \]
 Update the target networks:
 \[
 \theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau) \theta^{Q'} \\
 \theta^{\mu'} \leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'}
 \]
 end for
end for

- Notice the slow Q' and π' updates (instead of copying as in DQN)
Applications: impressive results

- End-to-end policies (from pixels to control)
- Works impressively well on “More than 20” (27-32) such domains
- Coded with MuJoCo (Todorov) / TORCS
Comparison

- Based on the mountain car benchmark
- Cost = squared acceleration per time step
- Reward if goal reached
- Very simple actor: two input, one output, 2 hidden layers with 20 and 10 neurons respectively
- No batch normalization nor weight normalization
DDPG versus CMA-ES: a comparison

Empirical comparison to CMA-ES

Performances

Collected reward

Length of an episode

- \(X = \) number of calls to simulator, \(Y = \) number of steps to reach goal, average over 10 trials
- The time to compute both results is similar
- This illustrates that DDPG is much more sample efficient
Final policies

- Similar trajectories
- DDPG has a more complex policy
Scalability

From 51 parameters to 281
- No visible effects on DDPG
- Slower convergence for CMA-ES
Influence of minibatches

More training at each steps

- Faster convergence
Second Experiment : Application partially observable task

- The task : Collectball
- Information through sensors : incomplete information
- DDPG : no memory of previous observations
- Complexe environement : The goal requires several sub-goals to be completed

Methods

We used four different methods:

- Direct application of DDPG (reward when a ball is collected, 0 otherwise)
- DDPG with bootstrap
- DDPG with an improved reward (positive reward for picking up a ball, negative reward when dropping a ball, and when not moving)
- DDPG with an horizon of 3 observations and an improved reward
First results and analysis

Direct application

Improved reward

Bootstrap

3 observations

- No ball collected
- Partial observability does not prevent interesting behaviors
- Exploration limits
DDPG is more sample efficient than CMA-ES (and probably other black-box optimization algorithms)

- Analytic gradient descent versus stochastic gradient-free search
- Better reuse of samples

But DDPG is limited by its exploration power

- Noise on actions
- Gradient of increasing rewards
Need for better exploration

- DDPG still looks for a local minimum, like any actor-critic method
- DDPG does not help to find scarce rewards (the needle in the stack): no specific exploration
- Source of randomness in CMA-ES: drawing the samples
- Source of randomness in DDPG: exploration noise in the policy
- Despite the name, stochastic gradient descent (SGD) is not a source of exploration
- Exploration noise in the policy: in DDPG, action perturbation rather than policy parameter perturbation
- In previous work, we have shown that the latter performs better in gradient-free methods
- Get inspired by diversity search in evolutionary techniques

Approximate the advantage function

- Other option: encode the advantage function
 \[A_\theta(s_i, a_i) = Q(s_i, a_i | \theta) - \max_a Q(s_i, a | \theta) \]
- Very good recent paper
- Or see GProp...

Back to natural gradient

- Batch normalization
- Weight normalization
- Natural Neural networks

DDPG versus CMA-ES: a comparison
- Empirical comparison to CMA-ES
- Improving DDPG: alternatives for the critic

Any question?
Compatible value gradients for reinforcement learning of continuous deep policies.

The importance of experience replay database composition in deep reinforcement learning.
In Deep RL workshop at NIPS 2015.

Natural neural networks.
In Advances in Neural Information Processing Systems (pp. 2062–2070).

Continuous deep q-learning with model-based acceleration.

Reinforcement learning in feedback control.
Machine learning, 84(1-2), 137–169._

Batch normalization: Accelerating deep network training by reducing internal covariate shift.

Continuous control with deep reinforcement learning.

Human-level control through deep reinforcement learning.
Nature, 518(7540), 529–533._

