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Regression for Robotics

Introduction

Learning one’s body

I Babies don’t know well their body
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Introduction

Motor adaptation

I Adapting one’s body model (kinematics, dynamics, ...) under changing
circumstances
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Introduction

Motor adaptation: standard experiment

I Standard view: Motor adaptation results from learning a model of the
dynamics
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Introduction

Interest for robotics

Learning interaction models

I Impossible to model unknown objects
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Introduction

Outline

non-linear
regression

model-based 
control

adaptive
control

research
at ISIR

mechanical
models

I Tools (regression + control framework) to give a basic account of motor
adaptation

I Quick recap on robotics model and control
I Tour of regression algorithms
I Applications
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Mechanical models

Kinematics

ξ: operational position
q: articular position

forward
kinematics

inverse
kinematics

ξx = l1cos(q1) + l2cos(q1 + q2) + l3cos(q1 + q2 + q3)
ξy = l1sin(q1) + l2sin(q1 + q2) + l3sin(q1 + q2 + q3)
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Mechanical models

Velocity kinematics - Jacobian

q̇: articular velocity
ν: operational velocity

forward
velocity

kinematics

inverse
velocity

kinematics

νx = −(l1sin(q1) + l2sin(q1 + q2) + l3sin(q1 + q2 + q3))q̇1 − (l2sin(q1 + q2) + l3sin(q1 + q2 +
q3))q̇2 − l3sin(q1 + q2 + q3)q̇3

νy = (l1cos(q1) + l2cos(q1 + q2) + l3cos(q1 + q2 + q3))q̇1 + (l2cos(q1 + q2) + l3cos(q1 + q2 +
q3))q̇2 + l3cos(q1 + q2 + q3)q̇3

ν = J (q) q̇
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Mechanical models

Dynamics: where forces come into play

inverse

dynamics

forward

dynamics

k

k+1

k+1

k

k

Forward and inverse dynamics (Lagrange or Newton-Euler equations)

q̈ = A (q)−1 (τ − n (q, q̇)− g (q)− ε (q, q̇) + τ ext
)

τ = A (q) q̈ + n (q, q̇) + g (q) + ε (q, q̇)− τ ext

A: inertia matrix
n: Coriolis and centrifugal effects
g: gravity
ε: unmodeled effects
τext: external forces

q: articular position
q̇: articular velocity
q̇: articular acceleration
τ : torques
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Control

Resolved Motion Rate Control (Whitney 1969)

Planning Inverse
Kinematics

Inverse
Dynamics

I Also called CLIK (Closed Loop Inverse Kinematics)

I From task to torques

I Three steps architecture

I Trajectory generation
I Inverse Kinematics and redundancy
I Inverse Dynamics
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Control

Resolve Motion Rate Control - Trajectory generation

Planning Inverse
Kinematics

Inverse
Dynamics

ξ: operational position

ξ†: desired operational position

ν?: desired operational velocity

First step, create a goal attractor. ν? = Kp

(
ξ† − ξ

)
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Control

Resolve Motion Rate Control - Inverse kinematics

q: articular position

ν: operational velocity

q̇: articular velocity

Second step, inverse the kinematics. ν = J (q) q̇ → q̇? = J (q)+ ν?
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Control

Control redundancy

q̇? = J (q)+ ν? q̇? = J1 (q)+ ν?1 + (J2 (q)PJ1)+ν?2

I redundancy : more actuated degrees of freedom than those necessary to
realise a task

I PJ is a projector used to control redundancy

I necessary to have access to J to compute PJ
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Control

Resolve Motion Rate Control - Inverse Dynamics

Inverse
Dynamics

Γ: torques

M : inertia matrix

b: Coriolis and centrifugal effects

g: gravity

ε: unmodeled effects

Γext: external forces

Third step, compute the inverse dynamics
τ con = M (q) q̈? + b (q, q̇) + g (q) + ε (q, q̇)− τ ext

τ con = ID (q, q̇, q̈?)
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Control

Questions

I For a redundant robot, there is an infinity of inverse dynamical models
Right or Wrong ?

I For a redundant robot, there is an infinity of forward kinematics models
Right or Wrong ?
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Learning methods: Regression

Outline of methods

I Two different approaches:
I Projecting the input space into a feature space using non-linear basis

functions (shown with RBFNs)
I Multiple local and weighted least square regressions (shown with LWR)

I We highlight the similarity between both approaches
I Then we list algorithms from each family

Stulp, F. and Sigaud, O. (2015). Many regression algorithms, one unified model: A review. Neural Networks, 69:60–79.
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Learning methods: Regression

Regression: basic process and notations

?

I Input: N samples xn ∈ IRD, yn ∈ IR,

I Stored in y = [y1, · · · , yN ], X = [x1, · · · ,xN ] (design matrix)

I Output: the latent function f such that y = f(X)
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Learning methods: Regression

Regression through Least Squares: the linear case

Least Squares
y

0

0.5

1

1.5

2

2.5

Least squares. Black dots
represent 20 training examples,
and the thick (red) line is the
learned latent function f(x).
Vertical lines represent
residuals.

I In the linear case, we get y = f(X) = wTX, where w is a vector of
weights (to deal with the offset, increase X with a row of ones).

I We minimize residuals, thus

w∗ = min
w
‖y −wX‖2︸ ︷︷ ︸

J(w)

I Min reached where derivative is null, thus w∗ = (XTX)−1XTy
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Learning methods: Regression

Regression through Least Squares: the linear case

Regularized Least Squares

I Potential singularities in XTX can generate very large w∗ weights

I Regularized Least Squares (Ridge Regression, RR): penalize large weights

I Optimize with lower weights (sacrifice optimality):

I

w∗ = arg min
w

λ

2
‖w‖2 +

1

2
‖y −XTw‖2, (1)

I Analytical solution:

w∗ = (λI +XTX)−1XTy. (2)
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Learning methods: Regression

Basis Function Network Methods

Basis Function Networks: general idea

I Project the non-linear function to a different space...

I ... where the latent function is linear

I General form: f(x) =
∑E
e=1 we · φ(x,θe)
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Learning methods: Regression

Basis Function Network Methods

Learning with features: example

I The function to be approximated is f(x1, x2) = |x1 − x∗1|2 + |x2|2

I We define features φi(x1, x2) over (x1, x2)

I We look for w such that f̂(x1, x2) = Σiwiφi(x1, x2)
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Learning methods: Regression

Basis Function Network Methods

With poor features

I If we take φ1(x1, x2) = x1 and φ2(x1, x2) = x2

I We cannot do better than f̂(x1, x2) = w1x1 + w2x2

I Very poor linear approximation
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Learning methods: Regression

Basis Function Network Methods

With good features

I If we take φ1(x1, x2) = |x1 − x∗1|2 and φ2(x1, x2) = |x2|2

I Then w1φ1(x1, x2) + w2φ2(x1, x2) = |x1 − x∗1|2 + |x2|2 → w1 = 1 and
w2 = 1

I Perfect approximation

I Finding good features is critical
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Learning methods: Regression

Basis Function Network Methods

Standard features: Gaussian basis functions

I The more features, the better the approximation

I ... but the more expensive the computation
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Learning methods: Regression

Basis Function Network Methods

Kernel Ridge Regression (KRR) = Kernel Regularised Least Squares (KRGLS)

I Define features with a kernel function k(x,xi) per point xi

I Define the Gram matrix as a kernel matrix:

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

. . .
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )

 . (3)

I Computing the weights is done with RR using

w∗ = (λI + K)−1y, (4)

I Note that K is symmetric

I The kernel matrix K grows with the number of points (kernel expansion)

I The matrix inversion may become too expensive

I Solution: finite set of features (RBFNs), incremental methods
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Learning methods: Regression

Basis Function Network Methods

Gaussian Process Regression (GPR)

I Predicting y for a novel input x is done by assuming that the novel output are y
also sampled from a multi-variate Gaussian with

k(x,X) = [k(x,x1), . . . , k(x,xn)], and[ y
y

]
∼ N0

[
K k(x,X)ᵀ

k(x,X) k(x,x)

]
(5)

I The best estimate for y is the mean, and the variance in y is

y = k(x,X)K−1y (6)

var(y) = k(x,x)− k(x,X)K−1k(x,X)ᵀ.

Ebden, M. (2008). Gaussian processes for regression: A quick introduction. Technical report, Department on Engineering Science,

University of Oxford
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Learning methods: Regression

Basis Function Network Methods

GPR ∼ KRR

I When computing the mean y, K and y depend only on the training data, not
the novel input x. Therefore, K−1y can be compacted in one weight vector,
which does not depend on the query x. We call this vector w∗ and we get

w∗ = K−1y, (7)

I We can rewrite (6) as follows:

y = k(x,X)K
−1

y (8)

= [k(x,x1), k(x,xN )] ·w∗ (9)

=
N∑
n=1

w
∗
n · k(x,xn). (10)

The mean of GPR is the same weighted sum of basis functions as in KRR, and
(10) has the same form as the unified representation in (21).

I KRR computes a regularized version of the weights computed by GPR, with an
additional regularization parameter λ.
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Learning methods: Regression

Basis Function Network Methods

Radial Basis Function Networks: definition and solution

I Radial Basis Functions versus Kernels (Gaussians

φ(x,θe) = e−
1
2

(x−ce)TΣ−1
e (x−ce) are both)

I We define a set of E basis functions (often Gaussian)

f(x) =

E∑
e=1

we · φ(x,θe) (11)

= wᵀ · φ(x). (12)

I We also define the Gram matrix

G =


φ(x1,θ1) φ(x1,θ2) · · · φ(x1,θE)
φ(x2,θ1) φ(x2,θ2) · · · φ(x2,θE)

...
...

. . .
...

φ(xN ,θ1) φ(xN ,θ2) · · · φ(xN ,θE)

 (13)

I and we get the least squares solution

w∗ = (GᵀG)−1Gᵀy. (14)
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Learning methods: Regression

Basis Function Network Methods

Incremental Receptive Fields Regularized Least Squares

W

W

W

W

1

2

3

4

I Approximate the function through its (approximate) Fourier transform

using random features zk(Xi) =
√

2√
D
cos(ωTkXi + bk), with

ωk ∼ N (0, 2γI) and bk ∼ U(0, 2π).
I As RBFNs, but with K cosinus features → global versus local
I Provides a strong grip against over-fitting (ignoring the high frequencies)
I In practice, efficient for large enough K, and easy to tune
I I-SSGPR: same tricks based on GPR

Gijsberts, A. & Metta, G. (2011) “Incremental learning of robot dynamics using random features.” In IEEE International

Conference on Robotics and Automation (pp. 951–956).
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Learning methods: Regression

Basis Function Network Methods

Least Square computation: summary

I Linear case

w∗ = (XᵀX)−1Xᵀy (LS) (15)

w∗ = (λI + XᵀX)−1Xᵀy. (RLS) (16)

I Gram matrix case

w∗ = (GᵀG)−1Gᵀy (RBFN) (17)

I Kernel matrix case

w∗ = K−1y, (GPR) (18)

w∗ = (λI + K)−1y. (KRR) (19)
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Learning methods: Regression

Basis Function Network Methods

Basis Function Networks: computation

I Solving w∗ = (GᵀG)−1Gᵀy requires inverting (GᵀG)

I That is cubic in the number of points

I Complexity can be reduced to O(N2) by using the Sherman-Morrisson
formula, giving rise to an incremental update of the inverse, but this
method is sensitive to rounding errors. A numerically more stable option
consists in updating the Cholesky factor of the matrix using the QR
algorithm.

I Other approaches: gradient descent on weights, Recursive Least Squares...

I True of all other BFN algorithms
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Learning methods: Regression

Basis Function Network Methods

Radial Basis Function Networks (Illustration)

−5 0 5 10 15
−3

−2

−1

0

1

2

3

4

5

I Instead of matrix inversion, use some incremental/iterative approach
(RLS, gradient descent...)

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems

(MCSS), 2(4):303–314.
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Learning methods: Regression

Basis Function Network Methods

Basis Function Networks: summary

A
lg

or
it

h
m

R
eg

u
la

ri
ze

d
?

N
u

m
b

er
o

f
B

F
s?

F
ea

tu
re

s?

rbfn Yes E RBFs
KRR Yes N kernels
GPR No N kernels
iRFRLS Yes E cosine
I-SSGPR Yes E cosine

Table: Design of all weigthed basis function algorithms.
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Learning methods: Regression

Basis Function Network Methods

The case of (feedforward) neural networks

I Shares the same structure as all basis function networks

I Sigmoids instead of Gaussians: better split of space in high dimensions
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Learning methods: Regression

Basis Function Network Methods

Tuning neural networks for regression

w = 1 w = -1w = 1/2
0 0 0

I Weight of output layer: regression

I Weight of input layer(s): tuning basis functions

I The backprop algo tunes both output and hidden weights

I Stochastic optimization of input weights, linear regression on output
weights? (see e.g. Reservoir computing)

I Deep neural nets: get more tunable features with less parameters

I Discovers the adequate features by itself
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Learning methods: Regression

Locally Weighted Regression Methods

Locally Weighted Regression

y

0

0.5

1

1.5

2

2.5
Least Squares Weighted Least Squares

re
si
du

al

Figure: The thickness of the lines indicates the weights.

I Linear models are tuned with Least Squares

I Their importance is represented by a Gaussian function

Atkeson, C. (1991). Using locally weighted regression for robot learning. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), vol. 2, pp. 958–963.
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Learning methods: Regression

Locally Weighted Regression Methods

LWR approximation: graphical intuition

I Each RF tunes a local linear
model

Ψe(x) = aᵀ
ex + be

I Gaussians tell you how much each
RF contributes to the output

y =

∑E
e=1 φ(x,θe)Ψe(x)∑E

e=1 φ(x,θe)

I The global output (green line) is a weighted combination of linear models
(straight lines)
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Learning methods: Regression

Locally Weighted Regression Methods

LWPR: general goal

I Non-linear function approximation in very large spaces

I Using PLS to project linear models in a smaller space

I Good along local trajectories

Schaal, S., Atkeson, C. G., and Vijayakumar, S. (2002). Scalable techniques from nonparametric statistics for real time robot

learning. Applied Intelligence, 17(1):49–60.
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Learning methods: Regression

Locally Weighted Regression Methods

XCSF: overview

I XCSF is a Learning Classifier System [Holland, 1975]
I Linear models weighted by Gaussian functions (similar to LWPR)
I Linear models are updated using RLS

I Gaussian functions adaptation: Σ−1
e and ce are updated using a GA

I Key feature: distinguish weights space and models space (example: x =< q, q̇ >)

LWPR: f(x) =
∑E
e=1 φ(x,θe) · (be + aᵀ

ex) XCSF: f(x) =
∑E
e=1 φ(q,θe) · (be + aᵀ

e q̇)

I Condensation: reduce population to generalize better

Wilson, S. W. (2001). Function approximation with a classifier system. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2001), pages 974–981, San Francisco, California, USA. Morgan Kaufmann.
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Learning methods: Regression

Locally Weighted Regression Methods

GMR

y =
K∑
k=1

hk(x)(µk,Y + Σk,Y XΣ−1
k,Y (x− µk,X))

With

µk = [µTk,X , µ
T
k,Y ]T and Σk =

(
Σk,X Σk,XY

Σk,Y X Σk,Y X

)
I From input-output manifold to input-output function

I Same representation as the others, using aᵀ
e = Σe,Y XΣ−1

e,Y and

be = µe,Y − Σe,Y XΣ−1
e,Xµe,X

I We get

ỹ =
E∑
e=1

πeφ(x,θe)∑E
l=1 πlφ(x,θl)

(aᵀ
ex + be),

I Same as usual + scaling with the priors πe → πe = 1 in standard model.

I Incorporates Bayesian variance estimation → The richest representation

Hersch, M., Guenter, F., Calinon, S., & Billard, A. (2008) “Dynamical system modulation for robot learning via kinesthetic

demonstrations.” IEEE Transactions on Robotics, 24(6), 1463–1467.
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Learning methods: Regression

Locally Weighted Regression Methods

LWR methods: main features

Algo LWR LWPR GMR XCSF
Number of RFs fixed growing fixed adaptive
Position of RFs fixed fixed adaptive adaptive

Size of RFs fixed adaptive adaptive adaptive

I The main differences are in meta-parameter tuning
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Learning methods: Regression

Summary

LWR versus RBFNs

f(x) =

E∑
e=1

φ(x,θe)·(be + aᵀ
ex) (20)

f(x) =
E∑
e=1

φ(x,θe)· we, (21)

I Eq. (21) is a special case of (20) with ae = 0 and be = we.

I RBFNs: performs one LS computation in a projected space

I LWR: performs many LS computation in local domains
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Learning methods: Regression

Summary

Take home messages

−5 0 5 10 15
−3

−2

−1

0

1

2

3

4

5

I Basis Function Networks vs Mixture of linear models

I Neural networks: tuning the features

I ISSGPR: easy tuning, no over-fitting

I LWPR: PLS, fast implementation, the reference method

I XCSF: distinguish Gaussian weights space and linear models space

I GMR: few features, the richest representation

I See tutorial paper

Sigaud. O. , Salaün, C. and Padois, V. (2011) “On-line regression algorithms for learning mechanical models of robots: a survey,”

Robotics and Autonomous Systems, 59:1115-1129.
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Learning methods: Regression

Summary

Questions

I In Locally Weighted Regression approaches, a single regression in a
projected space is performed
Right or Wrong ?

I GMR is a Locally Weighted Regression approach
Right or Wrong ?

I The model behind Locally Weighted Regression has more parameters than
the one behind Basis Function Networks
Right or Wrong ?
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Learning Robotics models

Learning mechanical models

I Forward kinematics: ξ̇ = Fθ(q, q̇) (ξ̇ = J (q) q̇)

I Forward dynamics: q̈ = Gθ(q, q̇,Γ) q̈ = A (q)−1 (Γ− n (q, q̇))

I Regression methods can approximate such functions

I The mapping can be learned incrementally from samples

I Can be used for interaction with unknown objects or users
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Learning Robotics models

Learning inverse kinematics with LWPR

I The model is learned with random
movements along an operational
trajectory

I Input dimension: dim(ξ + q) = 29

I Output dimension: dim(q̇) = 26

D’Souza, A., Vijayakumar, S., and Schaal, S. (2001b). Learning inverse kinematics. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), volume 1, pages 298–303.
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Learning Robotics models

Learning forward/inverse velocity kinematics with LWPR

Forward kinematics Inverse kinematics

I Learning inverse kinematics is conceptually simpler

I But one loses the opportunity to make profit of redundancy

I Rather learn forward kinematics and inverse it
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Learning Robotics models

Learning forward velocity kinematics with LWPR/XCSF

Forward kinematics with LWPR Forward kinematics with XCSF

I Learning the forward velocity kinematics of a Kuka kr16 in simulation.

I They add a constraint to inverse the kinematics and determine the joint
velocities.

Butz, M., Pedersen, G., and Stalph, P. (2009). Learning sensorimotor control structures with XCSF: redundancy exploitation and

dynamic control. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages 1171–1178. ACM.
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Learning Robotics models

Learning dynamics with XCSF

I Learning dynamics is more difficult

I In dynamics, there is no redundancy

I The dynamics model is 2/3 smaller with XCSF than with LWPR
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Learning Robotics models

Learning inverse dynamics with LWPR

I The model is learned along an
operational trajectory

I Input dimension:
dim(q + q̇ + q̈) = 90

I Output dimension: dim(Γ) = 30

I 7, 5.106 training data points and
2200 receptive fields

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). LWPR: A scalable method for incremental online learning in high

dimensions. Technical report, Edinburgh: Press of University of Edinburgh.
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Learning Robotics models

Learning inverse dynamics

q̈ = A (q)−1 (τ − n (q, q̇)− g (q)− ε (q, q̇) + τext
)

Learn Predict

Learning inverse dynamics Predict inverse dynamics
with random movements

along a trajectory
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Learning Robotics models

Learning inverse operational dynamics

I Peters and Schaal (2008) learn
inverse dynamics in the
operational space.

I The model is learned along an
operational trajectory.

I Input dimension :
dim(q + q̇ + ν) = 17

I Output dimension: dim(Γ) = 7

Peters, J. and Schaal, S. (2008). Learning to control in operational space. International Journal in Robotics Research,

27(2):197–212.
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Learning Robotics models

Optimal control with dynamics learned with LWPR

iLQG u plantlearned
dynamics model

+

feedback
controller

x, dx

L, x

u

u

perturbationsxcost function
(incl. target)

δ

-

- u +-
uδ

I The inverse dynamics model is learned in the
whole space.

I Input dimension :dim(q + q̇ + u) = 10 . Output
dimension : dim(q̈) = 2.

I 1, 2.106 training data points and 852 receptive
fields

I Learning a model of redundant actuation
Shoulder

Elbow

x

y

q
1

q
2

1

2

3

4

5

6

Mitrovic, D., Klanke, S., and Vijayakumar, S. (2008). Adaptive optimal control for redundantly actuated arms. In Proceedings of

the Tenth International Conference on Simulation of Adaptive Behavior.
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Learning Robotics models

Properties of models

I [D’Souza et al., 2001b], [Vijayakumar et al., 2005] and
[Peters & Schaal, 2008] learn kinematics and dynamics along a trajectory.

I [Butz et al., 2009] learn kinematics in the whole space but do not make
profit of redundancy to combine several tasks.

I [Mitrovic et al., 2008] learn dynamics in the whole space to control
redundant actuators.
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Learning Robotics models

Camille Salaün’s work: combining tasks

To perform several tasks with learnt models, we have chosen to

I learn separately forward kinematics and inverse dynamics

I use classical mathematical inversion to resolve redundancy

I learn models on whole space

I use LWPR and XCSF as learning algorithms
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Results

Learning kinematics with LWPR

Point to point task
500 steps babbling with the kinematics model we want to learn.

56 / 67



Regression for Robotics

Results

Controlling redundancy with LWPR

compatible task incompatible task
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Results

Learning kinematics of iCub in simulation

I Simulation of a three degrees of freedom shoulder plus one degrees of
freedom elbow
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Results

Learning kinematics on the real robot

iCub realising two tasks: following a circle and clicking a numpad
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Results

Inverse dynamics and motor adaptation

Applying a vertical force after 2 seconds during a point to point task.
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Results

Inverse dynamics and after effects

0.3

0.35

Releasing the force after 2 seconds during a point to point task.
I We reproduce Shadmehr’s experiments
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Results

Learning dynamics

I Simulation of a three degrees of freedom planar arm
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Results

Learning forward models
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I For complex robots, the CAD model is not so accurate (calibration issue)

Sicard, G., Salaün, C., Ivaldi, S., Padois, V., and Sigaud, O. (2011) Learning the velocity kinematics of icub for model-based

control: XCSF versus LWPR. In Proceedings Humanoids 2011, pp. 570-575.
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Results

Comparing algorithms

I Main difficulty: tuning parameters for fair comparison

I Many specific difficulties for robotics reproducibility

Droniou, A., Ivaldi, S., Padois, V., and Sigaud, O. (2012) Autonomous Online Learning of Velocity Kinematics on the iCub: a

Comparative Study. In IROS 2012, to appear
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Perspectives

Motor adaptation and the cerebellum

s

s

MGD

x(t)

I Structural similarity between LWPR-like algos and cerebellum: Purkinje
Cells = receptive fields

I + the problem of state estimation over time given delays
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Perspectives

Learning dynamical interactions with objects

I Using a force/torque sensor to detect exerted force on shoulder

I Using artificial skin to detect contact points

I Compliant control of motion (CODYCO EU project)

I Learning high-dimensional models
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Perspectives

Any question?
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