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Reinforcement Learning

Introduction

Why this class (1)?

I A lot of buzz about deep reinforcement learning as an engineering tool
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Reinforcement Learning

Introduction

Why this class (2)?

I The reinforcement learning framework is relevant for computational
neuroscience

I This aspect will be left out
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Reinforcement Learning

Introduction

Outline

I Goals of this class:
I Present the basics of discrete RL and dynamic programming

I Dynamic programming
I Model-free Reinforcement Learning
I Actor-critic approach
I Model-based Reinforcement Learning

I Then give a quick view of recent deep reinforcement learning research

4 / 78



Reinforcement Learning

Introduction

Introductory books

1. [Sutton & Barto, 1998]: the ultimate introduction to the field, in the discrete
case

2. New edition available: https:
//drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view

3. [Buffet & Sigaud, 2008]: in french

4. [Sigaud & Buffet, 2010]: (improved) translation of 3

Sutton, R. S. & Barto, A. G. (1998) Reinforcement Learning: An Introduction. MIT Press.
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Reinforcement Learning

Different learning mechanisms

Supervised learning

I The supervisor indicates to the agent the expected answer

I The agent corrects a model based on the answer

I Typical mechanism: gradient backpropagation, RLS

I Applications: classification, regression, function approximation...
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Reinforcement Learning

Different learning mechanisms

Cost-Sensitive Learning

I The environment provides the value of action (reward, penalty)

I Application: behaviour optimization
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Reinforcement Learning

Different learning mechanisms

Reinforcement learning

I In RL, the value signal is given as a scalar

I How good is -10.45?

I Necessity of exploration
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Reinforcement Learning

Different learning mechanisms

The exploration/exploitation trade-off

I Exploring can be (very) harmful

I Shall I exploit what I know or look for a better policy?

I Am I optimal? Shall I keep exploring or stop?

I Decrease the rate of exploration along time

I ε-greedy: take the best action most of the time, and a random action from time
to time

9 / 78



Reinforcement Learning

Dynamic programming

Markov Decision Processes

I S : states space

I A: action space

I T : S × A→ Π(S): transition function

I r : S × A→ IR: reward function

I An MDP defines s t+1 and r t+1 as f (st , at)

I It describes a problem, not a solution

I Markov property : p(s t+1|s t , at) = p(s t+1|s t , at , s t−1, at−1, ...s0, a0)

I Reactive agents at+1 = f (st), without internal states nor memory

I In an MDP, a memory of the past does not provide any useful advantage
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Reinforcement Learning

Dynamic programming

Markov property: Limitations

I Markov property is not verified if:
I the state does not contain all useful information to take decisions
I or if the next depends on decisions of several agents
I or if transitions depend on time
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Reinforcement Learning

Dynamic programming

Counter-example: tic-tac-toe

I The state is not always a location

I The opponent can be seen as a stochastic part of the environment

I Better framework = Markov games
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Reinforcement Learning

Dynamic programming

A stochastic problem

I Deterministic problem = special case of stochastic
I T (s t , at , s t+1) = p(s ′|s, a)
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Reinforcement Learning

Dynamic programming

A stochastic policy

I For any MDP, there exists a deterministic policy that is optimal
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Reinforcement Learning

Dynamic programming

Rewards over a Markov chain: on states or action?

I Reward over states

I Reward over actions in states

I Below, we assume the latter (we note r(s, a))
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Reinforcement Learning

Dynamic programming

Policy and value functions

I Goal: find a policy π : S → A maximizing the agregation of reward on the
long run

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S × A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action

I In the remainder, we focus on V , trivial to transpose to Q
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Reinforcement Learning

Dynamic programming

Agregation criteria

I The computation of value functions assumes the choice of an agregation
criterion (discounted, average, etc.)

I The sum over a infinite horizon may be infinite, thus hard to compare

I Mere sum (finite horizon N): V π(S0) = r0 + r1 + r2 + . . .+ rN
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Reinforcement Learning

Dynamic programming

Agregation criteria

I The computation of value functions assumes the choice of an agregation
criterion (discounted, average, etc.)

I Average criterion on a window: V π(S0) = r0+r1+r2
3

...
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Reinforcement Learning

Dynamic programming

Agregation criteria

I The computation of value functions assumes the choice of an agregation
criterion (discounted, average, etc.)

I Discounted criterion: V π(st0 ) =
∑∞

t=t0
γtr(st , π(st))

I γ ∈ [0, 1]: discount factor
I if γ = 0, sensitive only to immediate reward
I if γ = 1, future rewards are as important as immediate rewards

I The discounted case is the most used
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Reinforcement Learning

Dynamic programming

Bellman equation over a Markov chain: recursion

I Given the discounted reward agregation criterion:

I V (s0) = r0 + γV (s1)
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Reinforcement Learning

Dynamic programming

Bellman equation: general case

I Generalisation of the recursion V (s0) = r0 + γV (s1) over all possible
trajectories

I Deterministic π:

V π(s) = r(s, π(s)) + γ
∑
s′

p(s ′|s, π(s))V π(s ′)
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Reinforcement Learning

Dynamic programming

Bellman equation: general case

I Generalisation of the recursion V (s0) = r0 + γV (s1) over all possible
trajectories

I Stochastic π:

V π(s) =
∑
a

π(s, a)[r(s, a) + γ
∑
s′

p(s ′|s, a)V π(s ′)]
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Reinforcement Learning

Dynamic programming

Bellman operator and dynamic programming

I We get V π(s) = r(s, π(s)) + γ
∑

s′ p(s ′|s, π(s))V π(s ′)

I We call Bellman operator (noted Tπ) the application

V π(s)← r(s, π(s)) + γ
∑
s′

p(s ′|s, π(s))

I We call Bellman optimality operator (noted T ∗) the application

V π(s)← max
a∈A

[
r(s, a) + γ

∑
s′

p(s ′|s, a)V (s ′)]

I The optimal value function is a fixed-point of the Bellman optimality
operator T ∗: V ∗ = T ∗V ∗

I Value iteration: Vi+1 ← T ∗Vi

I Policy Iteration: policy evaluation (with V π
i+1 ← TπV π

i ) + policy
improvement with
∀s ∈ S , π′(s)← arg maxa∈A

∑
s′ p(s ′|s, a)[r(s, a) + γV π(s ′)]
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Reinforcement Learning

Dynamic programming

Value Iteration in practice
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Reinforcement Learning

Dynamic programming
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Reinforcement Learning

Dynamic programming

Value Iteration in practice
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Reinforcement Learning

Dynamic programming

Value Iteration in practice
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Reinforcement Learning

Dynamic programming

Value Iteration in practice

π∗(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′

p(s ′|s, a)V ∗(s ′)]
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Reinforcement Learning

Dynamic programming

Policy Iteration in practice

∀s ∈ S ,Vi (s)← evaluate(πi (s))
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Reinforcement Learning

Dynamic programming

Policy Iteration in practice

∀s ∈ S , πi+1(s)← improve(πi (s),Vi (s))
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Reinforcement Learning
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Reinforcement Learning

Dynamic programming

Policy Iteration in practice

∀s ∈ S , πi+1(s)← improve(πi (s),Vi (s))
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Reinforcement Learning

Dynamic programming

Any question?
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Reinforcement Learning

Model-free Reinforcement learning

Reinforcement learning

I In Dynamic Programming (planning), T and r are given

I Reinforcement learning goal: build π∗ without knowing T and r

I Model-free approach: build π∗ without estimating T nor r

I Actor-critic approach: special case of model-free

I Model-based approach: build a model of T and r and use it to improve
the policy
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Reinforcement Learning

Model-free Reinforcement learning

Families of methods

I Critic : (action) value function → evaluation of the policy

I Actor: the policy itself

I Critic-only methods: iterates on the value function up to convergence
without storing policy, then computes optimal policy. Typical examples:
value iteration, Q-learning, Sarsa

I Actor-only methods: explore the space of policy parameters. Typical
example: CMA-ES

I Actor-critic methods: update in parallel one structure for the actor and
one for the critic. Typical examples: policy iteration, many AC algorithms

I Q-learning and Sarsa look for a global optimum, AC looks for a local one
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Reinforcement Learning

Model-free Reinforcement learning

Temporal difference methods

Incremental estimation

I Estimating the average immediate (stochastic) reward in a state s

I Ek(s) = (r1 + r2 + ...+ rk)/k

I Ek+1(s) = (r1 + r2 + ...+ rk + rk+1)/(k + 1)

I Thus Ek+1(s) = k/(k + 1)Ek(s) + rk+1/(k + 1)

I Or Ek+1(s) = (k + 1)/(k + 1)Ek (s)− Ek (s)/(k + 1) + rk+1/(k + 1)

I Or Ek+1(s) = Ek(s) + 1/(k + 1)[rk+1 − Ek(s)]

I Still needs to store k

I Can be approximated as

Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)] (1)

I Converges to the true average (slower or faster depending on α) without
storing anything

I Equation (1) is everywhere in reinforcement learning
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Reinforcement Learning

Model-free Reinforcement learning

Temporal difference methods

Temporal Difference error

I The goal of TD methods is to estimate the value function V (s)

I If estimations V (st) and V (st+1) were exact, we would get:

I V (st) = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + ...

I V (st+1) = rt+2 + γ(rt+3 + γ2rt+4 + ...

I Thus V (st) = rt+1 + γV (st+1)

I δk = rk+1 + γV (sk+1)− V (sk): measures the error between current values
of V and the values they should have
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Reinforcement Learning

Model-free Reinforcement learning

Temporal difference methods

Monte Carlo methods

I Much used in games (Go...) to evaluate a state

I Generate a lot of trajectories: s0, s1, . . . , sN with observed rewards
r0, r1, . . . , rN

I Update state values V (sk), k = 0, . . . ,N − 1 with:

V (sk)← V (sk) + α(sk)(rk + rk+1 + · · ·+ rN − V (sk))

I It uses the average estimation method (1)
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Reinforcement Learning

Model-free Reinforcement learning

Temporal difference methods

Temporal Difference (TD) Methods

I Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

I in Monte Carlo, T and r are unknown, but the value update is global,
trajectories are needed

I in DP, T and r are known, but the value update is local

I TD: as in DP, V (st) is updated locally given an estimate of V (st+1) and
T and r are unknown

I Note: Monte Carlo can be reformulated incrementally using the temporal
difference δk update
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Reinforcement Learning

Model-free Reinforcement learning

Temporal difference methods

Policy evaluation: TD(0)

I Given a policy π, the agent performs a sequence
s0, a0, r1, · · · , st , at , rt+1, st+1, at+1, · · ·

I V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

I Combines the TD update (propagation from V (st+1) to V (st)) from DP
and the incremental estimation method from Monte Carlo

I Updates are local from st , st+1 and rt+1

I Proved in 1994

Dayan, P. & Sejnowski, T. (1994). TD(lambda) converges with probability 1. Machine Learning, 14(3):295–301.
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Reinforcement Learning

Model-free Reinforcement learning

Temporal difference methods

TD(0): limitation

I TD(0) evaluates V (s)

I One cannot infer π(s) from V (s) without knowing T : one must know
which a leads to the best V (s ′)

I Three solutions:
I Work with Q(s, a) rather than V (s).
I Learn a model of T : model-based (or indirect) reinforcement learning
I Actor-critic methods (simultaneously learn V and update π)
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Reinforcement Learning

Model-free Reinforcement learning

Action Value Function Approaches

Value function and Action Value function

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S × A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action
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Reinforcement Learning

Model-free Reinforcement learning

Action Value Function Approaches

Sarsa

I Reminder (TD):V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

I Sarsa: For each observed (st , at , rt+1, st+1, at+1):
Q(st , at)← Q(st , at) + α[rt+1 + γQ(st+1, at+1)− Q(st , at)]

I Policy: perform exploration (e.g. ε-greedy)

I One must know the action at+1, thus constrains exploration

I On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement

Learning Algorithms. Machine Learning, 38(3):287–308.
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Reinforcement Learning

Model-free Reinforcement learning

Action Value Function Approaches

Q-Learning

I For each observed (st , at , rt+1, st+1):

Q(st , at)← Q(st , at) + α[rt+1 + γmax
a∈A

Q(st+1, a)− Q(st , at)]

I maxa∈A Q(st+1, a) instead of Q(st+1, at+1)

I Off-policy method: no more need to know at+1

I Policy: perform exploration (e.g. ε-greedy)

I Convergence proved given infinite exploration [Dayan & Sejnowski, 1994]

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge,

England.

34 / 78



Reinforcement Learning

Model-free Reinforcement learning

Action Value Function Approaches

Q-Learning in practice

(Q-learning: the movie)

I Build a states×actions table (Q-Table, eventually incremental)

I Initialise it (randomly or with 0 is not a good choice)

I Apply update equation after each action

I Problem: it is (very) slow
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Reinforcement Learning

Model-free Reinforcement learning

Actor-Critic approaches

From Q(s, a) to Actor-Critic (1)

state / action a0 a1 a2 a3

e0 0.66 0.88 0.81 0.73
e1 0.73 0.63 0.9 0.43
e2 0.73 0.9 0.95 0.73
e3 0.81 0.9 1.0 0.81
e4 0.81 1.0 0.81 0.9
e5 0.9 1.0 0.0 0.9

I In Q − learning , given a
Q − Table, one must determine
the max at each step

I This becomes expensive if there
are numerous actions

36 / 78



Reinforcement Learning

Model-free Reinforcement learning

Actor-Critic approaches

From Q(s, a) to Actor-Critic (2)

state / action a0 a1 a2 a3

e0 0.66 0.88* 0.81 0.73
e1 0.73 0.63 0.9* 0.43
e2 0.73 0.9 0.95* 0.73
e3 0.81 0.9 1.0* 0.81
e4 0.81 1.0* 0.81 0.9
e5 0.9 1.0* 0.0 0.9

I One can store the best value for
each state

I Then one can update the max by
just comparing the changed value
and the max

I No more maximum over actions
(only in one case)
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Reinforcement Learning

Model-free Reinforcement learning

Actor-Critic approaches

From Q(s, a) to Actor-Critic (3)

state / action a0 a1 a2 a3

e0 0.66 0.88* 0.81 0.73
e1 0.73 0.63 0.9* 0.43
e2 0.73 0.9 0.95* 0.73
e3 0.81 0.9 1.0* 0.81
e4 0.81 1.0* 0.81 0.9
e5 0.9 1.0* 0.0 0.9

state chosen action
e0 a1

e1 a2

e2 a2

e3 a2

e4 a1

e5 a1

I Storing the max is equivalent to storing the policy

I Update the policy as a function of value updates

I Basic actor-critic scheme
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Reinforcement Learning

Model-free Reinforcement learning

Actor-Critic approaches

Dynamic Programming and Actor-Critic (1)

I In both PI and AC, the architecture contains a representation of the value
function (the critic) and the policy (the actor)

I In PI, the MDP (T and r) is known
I PI alternates two stages:

1. Policy evaluation: update (V (s)) or (Q(s, a)) given the current policy
2. Policy improvement: follow the value gradient
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Reinforcement Learning

Model-free Reinforcement learning

Actor-Critic approaches

Dynamic Programming and Actor-Critic (2)

I In AC, T and r are unknown and not represented (model-free)

I Information from the environment generates updates in the critic, then in
the actor
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Reinforcement Learning

Model-free Reinforcement learning

Actor-Critic approaches

Naive design

I Discrete states and actions, stochastic policy

I An update in the critic generates a local update in the actor

I Critic: compute δ and update V (s) with Vk(s)← Vk(s) + αkδk

I Actor: Pπ(a|s) = Pπ(a|s) + αk ′δk
I NB: no need for a max over actions

I NB2: one must know how to “draw” an action from a probabilistic policy
(not straightforward for continuous actions)
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Reinforcement Learning

Model-free Reinforcement learning

Reinforcement learning and Monte Carlo

Reminder: TD error

I The goal of TD methods is to estimate the value function V (s)

I If estimations V (st) and V (st+1) were exact, we would get:

I V (st) = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + ...

I V (st+1) = rt+2 + γ(rt+3 + γ2rt+4 + ...

I Thus V (st) = rt+1 + γV (st+1)

I δk = rk+1 + γV (sk+1)− V (sk): measures the error between current values
of V and the values they should have
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Reinforcement Learning

Model-free Reinforcement learning

Reinforcement learning and Monte Carlo

Monte Carlo (MC) methods

I Much used in games (Go...) to evaluate a state

I Generate a lot of trajectories: s0, s1, . . . , sN with observed rewards
r0, r1, . . . , rN

I Update state values V (sk), k = 0, . . . ,N − 1 with:

V (sk)← V (sk) + α(sk)(rk + rk+1 + · · ·+ rN − V (sk))

I It uses the average estimation method (1)
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Reinforcement Learning

Model-free Reinforcement learning

Reinforcement learning and Monte Carlo

TD vs MC

I Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

I In Monte Carlo, T and r are unknown, but the value update is global,
trajectories are needed

I In DP, T and r are known, but the value update is local

I TD: as in DP, V (st) is updated locally given an estimate of V (st+1) and
T and r are unknown

I Note: Monte Carlo can be reformulated incrementally using the temporal
difference δk update
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Reinforcement Learning

Model-based reinforcement learning

Eligibility traces

I To improve over Q-learning

I Naive approach: store all (s, a) pair and back-propagate values

I Limited to finite horizon trajectories

I Speed/memory trade-off

I TD(λ), sarsa (λ) and Q(λ): more sophisticated approach to deal with
infinite horizon trajectories

I A variable e(s) is decayed with a factor λ after s was visited and
reinitialized each time s is visited again

I TD(λ): V (s)← V (s) + αδe(s), (similar for sarsa (λ) and Q(λ)),

I If λ = 0, e(s) goes to 0 immediately, thus we get TD(0), sarsa or
Q-learning

I TD(1) = Monte-Carlo...
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Reinforcement Learning

Model-based reinforcement learning

Model-based Reinforcement Learning

I General idea: planning with a learnt model of T and r is performing back-ups “in
the agent’s head” ([Sutton, 1990, Sutton, 1991])

I Learning T and r is an incremental self-supervised learning problem
I Several approaches:

I Draw random transition in the model and apply TD back-ups
I Dyna-PI, Dyna-Q, Dyna-AC
I Better propagation: Prioritized Sweeping

Moore, A. W. & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine

Learning, 13:103–130.
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Reinforcement Learning

Model-based reinforcement learning

Dyna architecture and generalization

(Dyna-like video (good model))
(Dyna-like video (bad model))

I Thanks to the model of transitions, Dyna can propagate values more often

I Problem: in the stochastic case, the model of transitions is in
card(S)× card(S)× card(A)

I Usefulness of compact models

I MACS: Dyna with generalisation (Learning Classifier Systems)

I SPITI: Dyna with generalisation (Factored MDPs)

Gérard, P., Meyer, J.-A., & Sigaud, O. (2005) Combining latent learning with dynamic programming in MACS. European Journal

of Operational Research, 160:614–637.

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006) Learning the Structure of Factored Markov Decision Processes in Reinforcement

Learning Problems. Proceedings of the 23rd International Conference on Machine Learning (ICML’2006), pages 257–264
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Reinforcement Learning

Model-based reinforcement learning

A few messages

I Dynamic programming and reinforcement learning methods can be split
into pure actor, pure critic and actor-critic methods

I Dynamic programming, value iteration, policy iteration are when you know
the transition and reward functions

I Actor critic RL is a model-free, PI-like algorithm

I Model-based RL combines dynamic programming and model learning
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Reinforcement Learning

Model-based reinforcement learning

Any question?

49 / 78



Reinforcement Learning

Model-based reinforcement learning

Questions

I SARSA is on-policy and Q-learning is off-policy
Right or Wrong ?

I The actor-critic approach is model-based
Right or Wrong ?

I In SARSA, the policy is represented implicitly through the critic
Right or Wrong ?
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Reinforcement Learning

Deep Reinforcement Learning

Parametrized representations

I To represent a continuous function, use
features and a vector of parameters

I Learning tunes the weights

I Linear architecture: linear combination of
features

I A deep neural network is not a linear architectures: deep layer parameters
tune the features

I Parametrized representations:
I In critic-based methods, like DQN: of the critic Q(st , at |θ)
I In policy gradient methods: of the policy πw(at |st)
I In actor-critic methods: both
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Reinforcement Learning

Deep Reinforcement Learning

Quick history of previous attempts (J. Peters’ and Sutton’s groups)

I Those methods proved inefficient for robot RL
I Keys issues: value function estimation based on linear regression is too

inaccurate, tuning the stepsize is critical

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000) Policy gradient methods for reinforcement learning with function

approximation. In NIPS 12 (pp. 1057–1063).: MIT Press.
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Deep Reinforcement Learning

DQN

General motivations for Deep RL

I Approximation with deep networks provided enough computational power
can be very accurate

I Discover the adequate features of the state in a large observation space

I All the processes rely on efficient backpropagation in deep networks

I Available in CPU/GPU libraries: TensorFlow, theano, caffe, Torch...
(RProp, RMSProp, Adagrad, Adam...)
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Deep Reinforcement Learning

DQN

DQN: the breakthrough

I DQN: Atari domain, Nature paper, small discrete actions set

I Learned very different representations with the same tuning

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., et al. (2015) Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
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Deep Reinforcement Learning

DQN

The Q-network in DQN

I Limitation: requires one output neuron per action

I Select action by finding the max (as in Q-learning)

I Q-network parameterized by θ
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Deep Reinforcement Learning

DQN

Learning the Q-function

I Supervised learning: minimize a loss-function, often the squared error
w.r.t. the output:

L(s, a) = (y∗(s, a)− Q(s, a|θ))2 (2)

by backprop on critic weights θ

I For each sample i , the Q-network should minimize the RPE:

δi = ri + γmax
a

Q(si+1, a|θ)− Q(si , ai |θ)

I Thus, given a minibatch of N samples {si , ai , ri , si+1}, compute
yi = ri + γmaxa Q(si+1, a|θ′)

I So update θ by minimizing the loss function

L = 1/N
∑
i

(yi − Q(si , ai |θ))2 (3)
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Deep Reinforcement Learning

DQN

Trick 1: Stable Target Q-function

I The target yi = ri + γmaxa Q(si+1, a)|θ) is itself a function of Q

I Thus this is not truly supervised learning, and this is unstable

I Key idea: “periods of supervised learning”

I Compute the loss function from a separate target network Q ′(...|θ′)
I So rather compute yi = ri + γmaxa Q

′(si+1, a|θ′)
I θ′ is updated to θ only each K iterations
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Deep Reinforcement Learning

DQN

Trick 2: Replay buffer shuffling

I In most learning algorithms, samples are assumed independently and identically
distributed (iid)

I Obviously, this is not the case of behavioral samples (si , ai , ri , si+1)
I Idea: put the samples into a buffer, and extract them randomly
I Use training minibatches (make profit of GPU when the input is images)
I The replay buffer management policy is an issue

Lin, L.-J. (1992) Self-Improving Reactive Agents based on Reinforcement Learning, Planning and Teaching. Machine Learning,

8(3/4), 293–321

de Bruin, T., Kober, J., Tuyls, K., & Babuška, R. (2015) The importance of experience replay database composition in deep

reinforcement learning. In Deep RL workshop at NIPS 2015

Zhang, S. & Sutton, R. S. (2017) A deeper look at experience replay. arXiv preprint arXiv:1712.01275
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Deep Reinforcement Learning

DQN

Rainbow

I A3C, distributional DQN and Noisy DQN presented later

I Combining all local improvements

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., & Silver, D.

(2017) Rainbow: Combining improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298
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Deep Reinforcement Learning

DQN

Any question?
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Deep Reinforcement Learning

DDPG

Deep Deterministic Policy Gradient

I Continuous control with deep reinforcement learning

I Works well on “more than 20” (27-32) domains coded with MuJoCo
(Todorov) / TORCS

I End-to-end policies (from pixels to control)

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015) Continuous control

with deep reinforcement learning. arXiv preprint arXiv:1509.02971 7/9/15
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Deep Reinforcement Learning

DDPG

DDPG: ancestors

I Most of the actor-critic theory for continuous problem is for stochastic
policies (policy gradient theorem, compatible features, etc.)

I DPG: an efficient gradient computation for deterministic policies, with
proof of convergence

I Batch norm: inconclusive studies about importance

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014) Deterministic policy gradient algorithms. In

ICML
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Deep Reinforcement Learning

DDPG

General architecture

I Actor parametrized by µ, critic by θ

I All updates based on SGD (as in most deep RL algorithms)

63 / 78



Reinforcement Learning

Deep Reinforcement Learning

DDPG

Training the critic

I Same idea as in DQN, but for actor-critic rather than Q-learning
I Minimize the RPE: δt = rt + γQ(st+1, π(st)|θ)− Q(st , at |θ)
I Given a minibatch of N samples {si , ai , ri , si+1} and a target network Q ′,

compute yi = ri + γQ ′(si+1, π(si+1)|θ′)
I And update θ by minimizing the loss function

L = 1/N
∑
i

(yi − Q(si , ai |θ))2 (4)
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Deep Reinforcement Learning

DDPG

Training the actor

I Deterministic policy gradient theorem: the true policy gradient is

∇µπ(s, a) = IEρ(s)[∇aQ(s, a|θ)∇µπ(s|µ)] (5)

I ∇aQ(s, a|θ) is used as error signal to update the actor weights.
I Comes from NFQCA
I ∇aQ(s, a|θ) is a gradient over actions
I y = f (w .x + b) (symmetric roles of weights and inputs)
I Gradient over actions ∼ gradient over weights

Hafner, R. & Riedmiller, M. (2011) Reinforcement learning in feedback control. Machine learning, 84(1-2), 137–169.
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Deep Reinforcement Learning

DDPG

Subtleties

I The actor update rule is

∇wπ(si ) ≈ 1/N
∑
i

∇aQ(s, a|θ)|s=si ,a=π(si )∇wπ(s)|s=si

I Thus we do not use the action in the samples to update the actor

I Could it be

∇wπ(si ) ≈ 1/N
∑
i

∇aQ(s, a|θ)|s=si ,a=ai∇wπ(s)|s=si ?

I Work on π(si ) instead of ai

I Does this make the algorithm on-policy instead of off-policy?

I Does this make a difference?
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Deep Reinforcement Learning

DDPG

Stability issue: TD3

I Very recent breakthrough

I Several ways to act against an overestimation bias

I Have two critics, always consider the min, to prevent overestimation

I Less problem knowledge than critic value clipping

I Gives a justification for target actor: slow update of policy is necessary

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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Other algorithms

Iterative versus Incremental

I Iterative: the critic is recomputed each time (Monte Carlo, e.g. TRPO)

I But still provides a value for each state, thus different from episode-based
methods

I Incremental: the critic is updated with new data (TD, e.g. DDPG, or
N-step TD, e.g. PPO, D4PG, A3C...)

I Incremental gives more sample reuse
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Other algorithms

Monte Carlo, One-step TD and N-step TD

I MC suffers from variance due to exploration (+ stochastic trajectories)
I MC is on-policy → less sample efficient
I One step TD suffers from bias
I N-step TD: tuning N to control the bias variance compromize

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015b) High-dimensional continuous control using generalized

advantage estimation. arXiv preprint arXiv:1506.02438

Sharma, S., Ramesh, S., Ravindran, B., et al. (2017) Learning to mix N-step returns: Generalizing λ-returns for deep

reinforcement learning. arXiv preprint arXiv:1705.07445
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Other algorithms

Combining N-step return and replay buffer

I N-step return introduced in A2C, A3C, but without a replay buffer

I Compatibility with shuffling and stochasticity: samples contain N+1 states
and N actions

I A bit “less off-policy”?

I Most reliable improvement factor in D4PG, used in PPO and SAC

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., & Kavukcuoglu, K. (2016) Asynchronous

methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783
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Other algorithms

Soft Actor-Critic (SAC)

I Comes from PPO, DDPG, A3C...

I Actor-critic with stochastic actor, off-policy

I Adds entropy regularization to favor exploration (follow-up of several papers)

I No annealing of regularization term, effect of entropy not much studied

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. arXiv preprint arXiv:1801.01290
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Other algorithms

ACKTR

I K-FAC: Kronecker Factored Approximated Curvature: efficient estimate of
natural gradient

I ACKTR: TRPO with K-FAC natural gradient calculation

I The per-update cost of ACKTR is only 10% to 25% higher than SGD

I Improves sample efficiency (more actor-critic)

I Not much excitement: does the natural gradient really matter?

Wu, Y., Mansimov, E., Liao, S., Grosse, R., & Ba, J. (2017) Scalable trust-region method for deep reinforcement learning using

Kronecker-factored approximation. arXiv preprint arXiv:1708.05144
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Other algorithms

D4PG

I Distributional policy gradient

I Uses a distribution over returns, and a deterministic policy

I Combined with Prioritized Experience Replay and N-step return

I One of the hotest topics

Barth-maron, G., Hoffman, M., Budden, D., Dabney, W., Horgan, D., TB, D., Muldal, A., Heess, N., & Lillicrap, T. P. (2018)

Distributional policy gradient. In ICLR (pp. 1–16).

Bellemare, M. G., Dabney, W., & Munos, R. (2017) A distributional perspective on reinforcement learning. arXiv preprint

arXiv:1707.06887
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The big picture

The big picture

I State-of-the-art: SAC, D4PG, Reactor, TD3?...

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016) Benchmarking deep reinforcement learning for continuous

control. arXiv preprint arXiv:1604.06778
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The big picture

Take home messages

I Off-policy Temporal Difference (TD) methods reuse samples but suffer
from bias and may run unstable

I MC methods suffer from variance, reuse less samples, but are more stable

I N-step return methods offer a compromize

I Stochastic policies are used for exploration, but combining deterministic
policies with dedicated exploration mechanisms may be preferred
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The big picture

Status

I Big companies are ruling the game, focus on performance

I Deep RL that matters: instabilities, hard to compare, sensitivity to
hyper-parameters

I Empirical comparisons based mostly on openAI, mujoco, deepmind control suite

I Lack of controlled experiments (e.g. [Amiranashvili et al., 2018])

I Still fast performance progress, but progress is now more in exploration,
multitask learning, curriculum learning, etc.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2017) Deep reinforcement learning that matters.

arXiv preprint arXiv:1709.06560
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Reinforcement Learning

The big picture

General conclusion

I Learning is required for controlling autonomous humanoids

I The Reinforcement Learning framework provides algorithms for
autonomous agents.

I It can also help explain neural activity in the brain.

I Such a pluridisciplinary approach can contribute both to a better
understanding of the brain and to the design of algorithms for autonomous
decision-making

I Deep reinforcement learning is bringing new efficient tools into the story
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The big picture

Any question?
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