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Dynamical systems

* Internal state. E.g: point mass subject to a force. To define
the movement of the point, its mass, the history of applied
forces, and 1nitial conditions (position, velocity) must be
known.

— Position and velocity are the states of the system.

- Why state? The human body includes ~600 muscles which are
contracted or not. There exists 2600 motor activations.

— Internal state provides a simplified and compact representation of
the state of the system.

z[n] state y[n]  output (observation)

uln]  input (control)
z[n+ 1] = f(z[n],u[n])  state equation
yln] = g(z[n)) output equation

Yy [73 + l] = ]L(:L‘ [’”‘].’ U [n])



Dynamical systems (end)

e Control. Find an input (control) in order to obtain a given

output (observation) behavior.

— Stay close to a reference value: regulator; stay close to a trajectory:
tracking problem.

 Estimation. Input can be calculated from the state if

available.

- In general, the state is unknown and can only be estimated.
Estimation builds a representation of the current state from the
history of outputs (observations).

 Feedback. An input has an expected effect that may not
occur due to perturbations or inexact knowledge of the

system.

- A feedback is necessary to compare the actual and desired
performance, and produce a compensatory input. Feedback should
be appropriate (instability, poor behavior).



Closed loop control

e Well-defined error, limit on the gain, delay in the loop, no
prediction. Used for slow movements, posture.

Movement command .
upe[n] = K(y*[n] —yln]) oo
“ 1 Feedback —_— —
e Types of control
- Proportionnal T(t) = K [A4(t) — 0()]

— Derivative: damping to reduce oscillations

T(t) = K, [0a(t) — 0(t)] — K, 8(t)
- Integral: to avoid steady state error

A
(1) = K, [0a(t) — 6(1)] — K, 0(t) + K-;./ [0a(t) — 6(1)] dt
to



Closed loop control (...)
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Open loop control

e E.g solution of the inverse dynamics

— Problem when (1) the model of the dynamics is not exact; (2) initial
conditions are different from what has been planned; (3)
unmodeled/unexpected perturbations are present. Complex calculus,
no generalization. Used for fast movements.

ussln] = ¢pp(&ln],y*[n+1]) brp=h"

e[n+1]=y*n+1] =h (.77[-77.], j1_1(.'f?[77.], y'n+ 1]‘;)

Movement commands

\ 4
Movement
effectors

Movement
control
center




Open loop control (...)
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Comparison

Characteristics

— Predictive control | error correction

— Model-based | no model

— Sensitive to modeling uncertainty | not sensitive

— Sensitive to unexpected/unmodeled perturbations | robust

Hybrid control
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Causality

e Choice of input and output variables. Relies on the nature of
causality.

- E.g., in a given model, a muscular activation is an input and the
corresponding joint torque is an output.

— In a different model, joint torque is an input, and the corresponding
displacement is an output.

e (Causality can be extended to functional relationships

between variables.
— Direct kinematics (joint coordinates — spatial coordinates). Direct
transformation.

- In the redundant case, inverse kinematics is not a function. Yet it
interesting and useful to use the notion of inverse kinematics.



Internal models

 Direct model: model of the causal relationship between
actions and their consequences. Useful to predict the

behavior of a system (body, world, ...).

— A direct model of arm dynamics combines the current state of the
arm (position, velocity), and the current input (control) to predict
the future state of the arm (position, velocity).

 Inverse Model: model of the relationship between desired

consequences and corresponding actions.

- An inverse model of the arm dynamics translates a desired
trajectory into appropriate inputs (controls) to drive the arm along
this trajectory.



Internal models (...)
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Wolpert & Ghahramani (2000)



Existence of direct models

To prevent a manipulated object to slip during movement, a grip force must be

exerted to compensate for the load force.
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Existence of direct models

A subject creates a tactile
stimulation on one hand
through a robotic device
actuated by the other hand.
When the transmission is
direct, the subject can subtract
the predicted sensory effect
from the actual sensory effect
due to the tactile stimulation.
The subject perceives no
tickling.

When a delay is added by the
device, the subject perceives a
prediction  error  that is
interpretated as a tickling
sensation.
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Existence of direct models

Subjects estimate the position of their hand at the
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Role of direct models

* A system can use a direct model
rather than an external feedfback to
evaluate the effect of command and
1ts associated error. Avoid the
instability due to delays in feedback
loops.

e Kalman filter.
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Existence of inverse models

When a subject encounters
a dynamical perturbation
for the 1st time (e.g. force
field), its movements are
modified. With training, the
movements  progressively
return to their normal shape.

When the perturbation is
removed, the movements
are again modified (after-
effects). These after-effects
indicate that an inverse
model of the system
dynamics has been
modified with training.
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Shadmehr & Mussa-Ivaldi (1994)



Existence of inverse models

EMG activity is observed in
muscles acting at non-moving
joints during shoulder or elbow
movements. This activity is
similar to agonist/antagonist
activity observed during
movement. It starts before the
movement and varies with the
velocity of the moving segment
(i.e. with the interaction torque
produced by the moving
segment).

Gribble & Ostry (1999)
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Optimality principle

e The interaction between the behavior and the environment leads a better
adaptation of the former to the latter. The tendency could lead to an optimal
behavior, i.e. the best behavior corresponding to a goal, according to a given
criterion.

e The idea 1s to describe a movement not in terms of its characteristics (kinematics,
dynamics), but in an abstract way, using a global value to be maximized or
minimized.

 E.g.smoothness, energy, variability, ...

Harris & Wolpert (1998)




Optimal control

Method to find the solution of an

optimal control problem (minimum of Cla(t)) = /
dtr

L! mn
L |:f,., T, E,Z, .. - ] dt
a cost function). L

E.g. Find the trajectory of maximum ELTEE SR e T
. dx dit \ Oz ) den \ 9z
smoothness between two points. The

optimal trajectory is straight with a
bell-shaped velocity profile.

Maximum of smoothness = minimum jerk
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Learning a forward model

A forward model uses a copy of
the command to predict the
consequences of an action. This
prediction can be compared to
the true consequence to
generate an error signal. The
error signal can be used to
update the model.

Wolpert & Flanagan (2001)
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Direct inverse learning

A transformation is learning by sampling the inverse transformation. E.g. learning
the relationship desired behavior — command from samples of the relationship
command — behavior. Learning and control phases are distinct.
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Direct inverse learning (...)

Difficulties

- The learned model does not guarantee the
correct execution of a desired behavior. In
fact, all the desired behaviors may not have
been encountered during the sampling
command — behavior.

- The model can fail to learn correctly the
inverse model of a redundant system. If the
set of commands associated to a given
behavior 1s not convex, the command,
obtained as the mean of admissible
commands, may not be admissible.
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Distal supervised learning

Actions are proximal
variables (directly controlled
by the student). The
consequences of action are proximal distal
distal variables.

intention action result

» student »  environment >

| 7] T "]
The student creates a direct
model of the environment by :
exploring the results e e R -
associated with different
actions. This model 1s used to
¥earn .the relat10n§h1p between > environment ,
intentions and actions. intention action actual
result
> student — Ly directmodel —————»
predicted
result
desired actual

result . action . result
——» inverse model ———» environment 77,



Distal supervised learning (...)

Learning of the inverse model is based on performance error (difference
between the expected and actual output). The direct model translates this
error in the distal space into an error in the proximal space. The proximal
error can be used to supervise learning of inverse model.

error of
: y
performance environment -
)v 2y _)v -\.:}: _-\,A .\': -
intention X WA
»  student »  direct model
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Distal supervised learning (end)

The structure of the model is a multilayered neural network. Learning is
performed using gradient backpropagation.

The model can learn the inverse kinematics of a redundant system.
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Feedback-error learning

A feedback controller is used to reduce
the error between the current and
desired state. A feedback command is
added to the feedforward command
generated by the inverse model.

The feedback command becomes null
when there is no more error. It can be
used as an error signal to train the
inverse model.
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Synthesis
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