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The muscle

Muscle = ensemble of muscle fibers Sarcomere = smallest contractile
Muscle fiber = ensemble of myofibrils part = thin filaments (actin) +
Myofibril = ensemble of sarcomeres thick filaments (myosin)
Muscle
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Muscular contraction

Depolarization of a muscle fiber — increase in intracellular calcium —
mechanical contraction (excitation-contraction coupling)

Sliding-filament theory (cyclical interactions between

filaments): myosin heads bind on actin molecules to form a

cross-bridge; myosin heads undergo a transformation that
result in a force exerted on the thin filaments.
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Sarcomere force

Sarcomere tension depends on the degree of overlap between thin and thick

filaments.

Ideal sarcomere length
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Muscular force

A muscle behaves as a spring: it generates force
when it is stretched beyond a threshold length; the
force increases with length; the threshold changes
with the stimulation level.

— g — O "2~
As ¥ ¢
| R N E
Tersee =
lrarsd.cer -\ g 1
Mot
N
Tota oL
Physclogen tansan

Muscle extension (cm)

: rargs

TR o TR . 150" 120° 90" 60"
| ! Passve 1 i i i
| i lensian Angle of ankle juint

| 4.‘

!

|

A 1 1
10 20 30 40
Stimulus rate (Hz)

o Stiffness: slope of
o force/length
relationship

F = K(L — Ly)
Rack & Westbury (1969)



Muscular force (...)

Sarcomeres active

Muscular force depends on the frequency of ez
a“* release occurs
action potentials in the motor nerve. " Action potential
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Sensory receptors

* Spindles are structures arranged in parallel with the muscle. They transmit
information on the length and changes of length of the muscle.

* Golgi tendon organs are structured in series with the muscle, at the junction
bewteen the muscle and the tendon. They transmit information on muscular
tension.
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Muscle spindles

* They transmit information on the length and changes in the length of the muscle.
* Primary spindles: sensitive to length and velocity; secondary spindles: sensitive
only to length.
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Muscle spindle (...)

* The spindles innervate alpha motoneurons (MNs) through Ia (primary) and II
(secondary) fibers. The spindles are innervated by gamma MNs, which
modulate their sensitivity. Gamma modulation allows the sensitivity of spindles
to be modulated during muscular contraction.
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Golgi tendon organs

Their discharge closely reflects the tension
developed by the muscle.

Note: Articular receptors are active
only in a restricted range of
articular positions. However, the
majority of receptors are active only
at extreme articular positions. They
are not appropriate to transmit a
precise postural information.
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Motor unit

- Each muscle fiber is innervated by a
single MN.

- A MN innervates an ensemble of
muscle fibers.

- A MN and its associated muscle
fibers define a motor unit (MU).

- The number of muscle fibers
innervated by a MN is called the
innervation ratio. This ratio is roughly
proportional to the size of the muscle
(10 for extraocular muscles, 100 for
hand muscles). A small ratio
correspond to a finer control of
muscular force.




Motor unit (...)

- Three types of MU: slow (low force,
resistent to fatigue), fast and fatigue-
resistant (intermediate), fast and
fatiguable (large force, fast
contraction and relaxation, fast fatigue
for repeated stimulation).

- Each muscle contains a specific
proportions of the different types of
MU.

- In a MU, the properties of the MN
and fibers are related. The diameter
and conduction velocity of axons that
innervate fast fatiguable fibers are
larger that those for axons that
innervate slow fibers.

¥

IJl

i F

..lr

l] IJ

H

||||||

|||||

Kernell & Monster (1982)



Motor unit (end)

* Size principe: MNs are recruited by e SN .
synaptic input according to a fixed R s s
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order determined by their size. g
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used more occasionally.

 Force can also be modulated by

changes in the discharge frequency of
MN:es.
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Spinal cord

e Motoneurons are located in the

spinal cord. " Dorsal
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Stretch reflex

* Regulates the output of a MN through a negative feedback process. The feedback

gain can be modulated by the nervous system (e.g. gamma MNs). Minimum delay
~ 30 ms.
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Action of the stretch reflex

Negative feedback system: reduces deviations around a reference value.
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Spinal Mechanisms

* A motor act generally requires the
coordination of a large number of
muscles. Spinal circuits play a critical
role in this coordination. Spinal
reflexes form a set of elementary
coordination patterns (e.g. stretch
reflex). Most reflexes involve
complex circuits that link several
muscles or articulations.

e Interneurons (INs) are basic
elements of reflexes. Convergence,
divergence, gating, reverberation,
cyclic interactions, CPG (central
pattern generator).
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Spinal mechanisms (...)

* A flexion reflex that coordinates a set o Some reflexes are modulated by
of segments through a polysynaptic  pody posture. Flexion reflex in the
circuit 1s involved to avoid painful frog.

cutaneous stimulation. Flexor muscles
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Spinal mechanisms (...)

Spinal circuits generate rhythmic
patterns for locomotion. After spinal
cord transection that isolate
segments that control lower limbs,
cats walk normally on a treadmill.

When transection isolates the whole
spinal cord, electrical stimulation of
the mesencephalic locomotor region
generates locomotion. As
stimulation intensity increases,
locomotion becomes faster. Then
there is a transition between trot
(alterned flexions/extensions) and
gallop (simultaneous
flexions/extensions).
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Ascending systems

 There exist two main
ascending systems:

- dorsal column/median
lemniscus system: transmits
tactile and proprioceptive
information.

- anterolateral system:
transmits pain and temperature.




Descending systems

e Motor commands are transmitted through descending pathways. The cortico-
spinal tract is the larger pathway (1 million fibers, 30% from primary motor
cortex). The lateral pathway controls the distal and proximal muscles. The ventral
pathway controls axial muscles.
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Somatic

Representations

The somatosensory cortex
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Cortical anatomy

e, Pasterior paretsl




Architecture and functions

Brain stem
motor nuclei

Spinal
Interneurons

Motor
neurons

Movement
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Motor cortex
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Neural proprerties

Neural activity is motor cortex is modulated by muscular force.
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Neural proprerties (...)

A, Phasic-tonic (59%)

50

Hz [
0

. W

- W
cemL W

Torque \’/

(100)

A, Tonic (28%)

50
Unit ’V
0
U M
cbe M

— W
Torque ————

(100)

Tonic firing frequency (imp/s)

100 -

1 1 1 1 1
0 2 4 6 8 10 12 14
Static torque (x10° dyne-cm)

Cheney & Fetz (1980)

CM neuron EMG of muscle

imp/s
1s hold 1s hold

100
Light SOE /‘J“\L
0
0 . : i . . ‘
Power grip j\\'
. 3 P e
L L )

L 1 1L |
-1 0 1 2 -1 0 1 2

Time (s)

Precision grip

Motor cortical activity is task-
dependent.

Muir & Lemon (1983)



Neural proprerties (end)

Neural activity in motor cortex is modulated by movement direction.

= Georgopoulos et al. (1982)

L
Il
15 135 FE e
DHrecitan of movament




[Lesion of motor cortex

A Normal B After sectioning of
corticospinal fibers

The direct corticospinal tract is
necessary for fine control of
finger movements.

Lawrence & Kuypers (1968)




