
There is strong experimental evidence that guiding the arm toward a
visual target involves an initial vectorial transformation from
direction in visual space to direction in motor space. Constraints on
this transformation are imposed (i) by the neural codes for incoming
information: the desired movement direction is thought to be
signalled by populations of broadly tuned neurons and arm position
by populations of monotonically tuned neurons; and (ii) by the
properties of outgoing information: the actual movement direction
results from the collective action of broadly tuned neurons whose
preferred directions rotate with the position of the arm. A neural
network model is presented that computes the visuomotor mapping,
given these constraints. Appropriate operations are learned by the
network  in  an unsupervised fashion through repeated action–
perception cycles by recoding the arm-related proprioceptive
information. The resulting solution has two interesting properties: (i)
the required transformation is executed accurately over a large part
of the reaching space, although few positions are actually learned;
and (ii) properties of single neurons and populations in the network
closely resemble those of neurons and populations in parietal and
motor cortical regions. This model thus suggests a realistic scenario
for the calculation of coordinate transformations and initial motor
command for arm reaching movements.

Introduction
The preparation for an arm movement toward a visual target can

be described as a series of sensorimotor coordinate transforma-

tions between the retinal position of the target and arm muscle

activities. It is generally believed that the first stages of this

process involve the computation of a vectorial representation of

the movement [hand-to-target vector (Georgopoulos, 1995)].

This vector is then used to calculate a set of motor commands

which will move the arm along the desired trajectory. In this

framework, one task of neuronal populations in the central

nervous system (CNS) is to calculate for each arm position a

linear transformation from direction in visual space to direction

in motor space (Mel, 1991; Burnod et al., 1992, 1999; Bullock et

al., 1993).

Burnod et al. and Bullock et al. (Burnod et al., 1992; Bullock

et al., 1993) have shown that a linear superposition of inde-

pendent solutions of the vectorial visuomotor mapping obtained

at each arm position by Hebbian synaptic changes leads to

the correct transformation. However, these models rely on the

construction of a code in which neurons are tuned to specific

postures of the arm (a labelled-line code), which is necessary

for Hebbian learning to work appropriately. There are two main

difficulties with such an approach. First, models using tabular

representations suffer in general from exponential complexity,

i.e.the number of necessary neurons increases exponentially

as the required precision or the number of degrees of freedom

increases (Atkeson, 1989; Olson and Hanson, 1990). Secondly,

there is no experimental evidence for a labelled-line representa-

tion of arm position. In fact, single unit recordings at different

levels of the somatosensory pathway reveal that neuronal

discharge is modulated by static limb posture in a monotonic

fashion, with saturation at extreme joint angles [reviewed by

Helms Tillery et al. (Helms Tillery et al., 1996)].

An alternative method is to use a function-approximating

network, i.e. a neural network model which uses some optimiz-

ation-based learning algorithm to approximate any input–output

function. In the present case, basis functions could be con-

structed as the product of (monotonic) arm position detectors

and visual direction detectors (Fig. 1A), and their combinations

could be made to converge toward a set of command units

through weights that can be adapted by error correction (Pouget

and Sejnowski, 1994). Learning can become unsupervised and

local if training examples from the desired mapping are actually

samples of the inverse mapping (Kuperstein, 1988; Burnod

et al., 1992; Bullock et al., 1993; Salinas and Abbott, 1995).

The main criticism against this model concerns the locus of

adaptation: learning occurs through a synaptic reorganization

at the level of motor commands. In fact, studies involving the

learning of new visuomotor transformations emphasize the

existence of a proprioceptive component in the adaptation

process (Redding, 1978; Welch, 1986; Inoue et al., 1997). For

instance, optical rotation during a visually guided pointing task

induces adaptation accompanied by activation of the postcentral

gyrus (Inoue et al., 1997).

These observations inspire a different model (Fig. 1B). The

basic principle is to learn a reorganization of the proprioceptive

information (recoding) through local activity-dependent synap-

tic adaptations before combining it with visual information and

calculating motor commands. This latter network model is the

object of this article for which we present theoretical analysis

and computer simulations. We show that (i) the network learns

the appropriate transformation over the whole reaching work-

space after training at only a few positions; and (ii) discharge

properties of neurons in the network, which are by-products of

the model architecture and the acquisition of the appropriate

transformation, closely resemble those of parietal and motor

cortical neurons.

Part of this paper appeared as a conference proceeding

(Baraduc et al., 1999).

Materials and Methods
The model consists of a neural network that controls the movement of

a planar two-link arm toward visual targets. The network combines

information on arm position and target direction to produce motor

commands. The mathematical formulation of this vectorial visuomotor

transformation  is  a Jacobian  matrix. Populations of neurons in the

network compute a distributed representation of this Jacobian. This

principle is described in detail in Appendix A (it is recommended that this

be read before continuing this section). However, several implementation

details differ from this principle, without affecting the behavior of the

model. In the following sections, we describe the model of the arm, the
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coding of input and output information, and neural processing and

learning in the network.

Model of the Arm

A planar, two-link right arm, with limited (160°) joint excursion at the

shoulder and elbow was used (Fig. 2; in the following figures, unless

otherwise specified, the workspace of the arm is set so that full extension

of the shoulder and elbow corresponds to the horizontal on the page).

Input and Output Coding

Arm Position

The form of proprioceptive inputs is crucial to the functioning of the

network (Appendix A). These inputs must have two properties. The first

is monotonicity, which is dictated by experimental observations (Helms

Tillery et al., 1996) (see also Introduction). The second is nonlinearity,

which is required by nonlinear variations of the Jacobian matrix of the

coordinate transformation with arm position. Nonlinearity may not be

found in static muscle spindles since a fusimotor drive can adjust the

range of receptor sensitivity and avoid saturation, but it is present in

somatic neurons in the form of variable recruitment thresholds and

saturations (Tanji, 1975; Gardner and Costanzo, 1981) or more complex

dependences (Helms Tillery et al., 1996). We have chosen variable-

threshold linear saturating functions as a model of proprioceptive input

(see below). Other nonlinear functions would be applicable [e.g. a single

(lower or upper) saturation]. In this representation of proprioception,

some neurons signal a highly restricted range of posture at extreme joint

angles. Simulations show that removing these neurons leads to degraded

performances at the border of the workspace. Thus, afferents from

articular receptors which actually discharge at extreme angular positions

(Clark and Burgess, 1975) could provide appropriate information for

using full ranges of joint angles.

In the model, limb position was represented by the population activity

of Np proprioceptive neurons coding for the lengths of agonist or

antagonist muscle at the shoulder and elbow (Fig. 2). To avoid unnec-

essary complexities, the mechanics of the muscle fiber was likened to a

rope-and-pulley system.

Here and in the following, the activity of a model neuron is equated

with its mean firing rate. To each of the four muscles corresponded the

activity of the same number of units (Np/4). The firing of a proprioceptive

neuron k (noted pk) was defined by a piecewise linear sigmoid of muscle

length [for details, see Baraduc et al. (Baraduc et al., 1999)]. Recruit-

ment thresholds were set so that any muscle stretch is signaled by at least

one (moderately) strong activity and so that no neuron (except those

recruited at extreme muscle lengths) fires for a narrow band of length.

Desired Direction of Movement

Psychophysical and electrophysiological studies suggest that arm move-

ment trajectories are initially specified by the direction and amplitude of

the hand-to-target vector (Gordon et al., 1994; Georgopoulos, 1995;

Vindras and Viviani, 1998). The frame of reference and coordinate system

in which the vector is represented are still debated. In the model,

movement direction was described in Cartesian coordinates by a unit

visual vector V parallel to the hand-to-target vector. The term visual

employed here is conventional and gives no information on the origin of

the directional signal. The vector V entered the network as a distributed

neuronal representation over a set of Nv unit vectors, Vj, uniformly

distributed in Cartesian space

vj = (1 + Vj · V)/2.

The set of firings vj that encode a vector V will be subsequently termed a

cosine population code or, when no ambiguity is possible, a population

code.

Representation of desired movement direction as the hand–target

vector in a body-centered Cartesian reference frame was motivated by its

simplicity but is not essential. In fact, the network implements a generic

vectorial coordinate transformation scheme, and the coordinate system of

the visual input can be changed (e.g. to an oculocentric code) as long as

this input remains vectorial.

Motor Command

Reaching movements are produced by complex coordinated patterns of

muscular activity. Descending commands that drive the arm toward a

target are elaborated in part by motor cortical circuits (Hoffman and

Strick, 1995) and, based on anatomical and physiological arguments, their

initial effect can be described as a weighted combination of muscle

activations (Schwartz et al., 1988). These activations result in angular

displacements, which can be taken as the initial contribution of a

command. This functional representation of the motor command relies

on the hypothesis that the command system is linear, that is, the resulting

effects of commands combine vectorially. We make the assumption that

sources of nonlinearity that exist between the command level and arm

displacement can be suppressed by dedicated mechanisms (Bullock and

Grossberg, 1991).

In the model, commands were emitted by a layer containing Nc

neurons, which contributed to the initial direction of movement by a

displacement along a direction in joint space. The individual inf luence of

a command neuron is proportional to its discharge level. The collective

effect of the layer is

Figure 1. Two network architectures for visuomotor transformation. Arm position
information (P) and desired direction of movement (V) are combined to produce a motor
command (C). Double lines indicate adaptive pathways. Dashed lines indicate feedback
pathways. Strong lines indicate error cortection pathways. (A) Systematic products
between arm and direction detectors are calculated (Q = PV). Weighted sums of
products lead to a command (C = WQ). Appropriate weights are obtained by correction
of error between a random command C*, which elicits a directional visual feedback, and
a command C calculated by the network from the visual feedback and current arm
position to obtain the same effect as C*. (B) Weighted combinations of arm position
detectors (S = WP) and direction detectors are combined (Q = SV) to calculate the
command. Weights are calculated by correction of error between C*V and S. The
purpose of this rule is explained in Principle of the Model.

Figure 2. Geometry of the two-link planar arm. One of the distances between the
center of rotation of a joint and a muscle insertion (here, in the elbow flexor) is labeled
(dELf). Learning (✳ ) and test (�) positions are marked. A reference position Pref (�) was
chosen in front of the subject. A central position Pcen (�) and a remote position Prem
(�) are shown (see text for explanation).
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(1)

where ci is the activity of command neuron i, Ci is its command direction

(CD) in joint space and C is the resulting movement direction in joint

space. In general, CDs must be considered as a function of arm position

[C = C(P)]. How the CDs depend on posture is determined by the

mechanical properties of underlying muscles (e.g. moment arms), and

the neuronal properties of supraspinal and spinal circuits. Although

experimental data indicate that the mechanical actions of shoulder

muscles depend almost linearly on arm posture (Buneo et al., 1997), the

full inf luence of mechanical and neural constraints on the CDs cannot be

assessed easily.

The model authorizes arbitrary variations in command directions

with posture, as long as the Jacobian matrix of the transformation

(see Appendix A) can be correctly approximated from proprioceptive

inputs. The choice of the CDs inf luences the distribution of directional

properties of command neurons (preferred directions; PDs) and the way

PDs change with arm position (equation A4). It is thus constrained

by experimental observations. First, PDs are uniformly distributed in a

central part of the workspace (Caminiti et al., 1990, 1991). Secondly,

PDs shift in an orderly fashion with the upper arm (Caminiti et al., 1990,

1991; Sergio and Kalaska, 1997). Thirdly, population vectors calculated at

a remote posture deviate from movement direction (Scott and Kalaska,

1995). The use of CDs which are invariant in angular space is appropriate

to meet these requirements (see Results).

In the model, the CDs were independent of posture and selected such

that the distribution of PDs is uniform for a central position of the arm

(Pref, Fig. 2). The method is explained in Appendix B.

Functioning of the Network

The theoretical principle of the model was implemented in the neural

network shown in Figure 3. The structure and functioning of the network

are described and then compared to the theory.

The network proceeded in three steps. First, a layer of somatic

neurons (Nc × Nv) formed a distributed representation of the Jacobian of

the visuomotor transform from the activities of the Np proprioceptive

neurons. Adjustable feedforward weights Wijk were used to learn the

dependence of the Jacobian on arm position. Although full feedforward

connectivity leads to accurate performance, a different solution was

retained. A fraction q of randomly chosen somatic units received full

proprioceptive inputs, and lateral interactions between somatic units

were used to compensate for this partial connectivity. This solution

presents two benefits: it reduces the number of adjustable synapses and

provides resistance to noise (Douglas et al., 1995; Salinas and Abbott,

1996). In the simulations, q = 0.15 and horizontal cosine connections lead

to correct performances. Theoretical justifications of this choice can be

found elsewhere (Baraduc and Guigon, 2001). Activity of somatic units

was given by

(2)

where the lateral connections are defined by

ljn = cos(2π(j – n)/Nv)

and the function g(u) takes the positive part of u (g(u) = [u]+, i.e. g(u) = u

if u > 0, otherwise g(u) = 0). This function is actually a better model of

the neuronal current–frequency transfer characteristics than the classic

sigmoid (Baranyi et al., 1993; Schwindt et al., 1997). Equation (2) was

evaluated iteratively starting with sij = 0. In theory, the dynamics of

this equation are stable and lead to a cosine distribution of activity that

stabilizes after two iterations if the feedforward input is removed after the

first iteration (Baraduc and Guigon, 2001). Computer simulations show

that a permanent proprioceptive input does not alter the beneficial effect

of lateral connections.

In a second step, the activity in the somatic layer was combined with

the visual directional information in an Nc × Nv multimodal layer (Fig. 3).

The multimodal layer realized a recurrent thresholded additive somato-

visual combination, which approximates a multiplication (Salinas and

Abbott, 1996)

(3)

Equation (3) was evaluated as described for equation (2). Lateral

interactions were restricted to the rows of the multimodal layer since the

required operation is the row-by-row multiplication of somatic layer

activity by visual information (Salinas and Abbott, 1996).

Third, command neurons summed rows of the multimodal layer

(4)
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Figure 3. Network architecture. Inputs are the arm position P and the desired direction of movement derived from vision V. A somatic layer (S) produces a novel arm representation
adapted to the mapping from P through weights Wijk. Then the multimodal layer M combines it with the directional information V. The results of this combination are collected by the
command layer (C). In the S and M layers, lateral connections within rows help maintain a consistent population activity. Lines indicate connections between layers. Each unit of P
projects to S with a diverging pattern (equation 2; see text). Each unit of V projects to a full column of M with unit weights (equation 3). Each unit of S projects to the corresponding
unit of M with a unit weight (equation 3). Each unit of C receives projections from a full row of M with unit weights (equation 4). An extra layer combining efference copy of commands
(C*), reafferent visual information (V*) and somatic information (dashed lines) projects to the somatic layer to convey learning-related signals. Parameters were l1 = 0.3, l2 = 0.4,
r = 0.03, θmax = 2.8, dSHf = 0.22, dSHe = 0.26, dELf = 0.29, dELe = 0.26, Lmin = 0.25, Lmax = 0.35, Np = 40, Nv = 50, Nc = 50, Nconnex = 380, τ = 0.16, η = 0.001, σc

2 =
10, q = 0.15.
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where τ is a fixed threshold. These activities were then used to calculate

actual movement direction (equation 1).

The network implementation differs from the theory by one aspect.

Exact multiplication between somatic and visual information was

replaced by a pseudo-multiplication. There are two reasons for this:

(i) there is no need to invoke cellular or subcellular mechanisms for

neuronal multiplication; and (ii) the multimodal layer has interesting and

realistic physiological properties which remain hidden at a dendritic level

if sigma-pi neurons (neurons that compute the sum of the products sijvj)

are assumed to combine visualand proprioceptive inputs.

Training

The network was trained by correlating its motor commands with the

visual effect of the movement (‘motor babbling’) (Kuperstein, 1988;

Bullock et al., 1993). For a given starting position of the arm, movements

were made in random directions. The directions in joint space (as given

by an efferent copy of the command) were then associated with direc-

tions in visual space (visual feedback) and the current arm position. The

requirement of uniformly distributed training examples in visual space

(equation A6) is problematic since these examples are not chosen freely

but result from random commands in angular space. This constraint is

relieved by replacing equation (A10) by a different learning rule (Baraduc

and Guigon, 2001). The learning scheme translates into the algorithm,

which is a repetition of the following cycle:

1. Random choice of an initial arm position among five (indicated by

stars in Fig. 2). This small number of training positions was decided

from initial simulations which showed that larger training sets do not

lead to better performance.

2. Random emission of a motor command corresponding to a random

direction in external space. The motor commands were Gaussian

distributions of activity over the command layer, with random peak

position and variance σc
2.

3. Calculation of the efferent copy of the motor command (ci*), the visual

feedback (vj) and the somatic activity (sij). The efferent copy was

calculated as

ci* = Σq
cos(2π(i – q)/Nc)cq

where cq is the motor command. This transform changed the Gaussian

distribution of activity into a cosine distribution which is appropriate

for learning (a Gaussian activity profile can be used with a slightly

more complicated learning rule). Note that ci and ci* actually

represent the same command, i.e. the same direction of movement.

4. Weight modification in the somatic layer, according to the rule

∆Wij′k = η(ci*vj′ – sij′)pk (5)

where η is a parameter and j′ = arg maxjvj. At each time, learning

occurs only for the most active visual input. This rule can be com-

pared to equation (A10). A possible architecture to implement

equation (5) is shown in Figure 3 and is addressed in Discussion.

Training was stopped once the mean absolute error measured at the

five positions and for 16 uniformly distributed movement directions

stabilized. It took ∼ 20,000 iterations.

Results

Performance

We first tested if the network solves the coordinate trans-

formation with reasonable accuracy. We calculated the direction

of the movements produced by the network for each of 16

uniformly distributed directions in Cartesian space. This was

done for 21 starting positions of the arm (recall that one position

in space corresponds to only one position of the arm). The

results are displayed in Figure 4. The bold arrow shows the initial

direction of the hand in response to the desired direction 0°.

Accurate learning should result in an isotropic distribution of the

arrows (as are the desired directions in Cartesian space); their

deviation from the desired direction can be grossly appreciated

by judging the horizontality of the reference arrow (bold).

Except in the extreme limb configurations (near-maximum

extension  backwards or near-maximum f lexion of the two

joints), the network solved the problem accurately. Mean

directional error over the workspace (arm position was sampled

every 2.5 cm for both Cartesian axes) was –0.6 ± 16.8° (mean ±

SD); mean absolute error was 10.1°. When restricted to a central

zone (dashed), the absolute directional errors and the variability

dropped (mean directional error: –1.6 ± 5.4°; mean absolute

error: 4.2°). One can observe that movements originating from

the left of the workspace (lower left region in Fig. 4) show

a counterclockwise bias, whereas the contrary is seen in the

right part of the workspace. The errors thus reveal a consistent

deviation toward the shoulder.

Global performance depends on the size of the learning set.

Learning in only one position was clearly not sufficient to obtain

a correct behavior on the whole workspace. However, learning

in the 21 test positions did not give the best results. Trying

to reduce the errors on an extreme position (such as when the

arm is nearly fully extended) deteriorated the performance at the

center of the workspace. As movements are generally executed

in front of the body, the learning positions were placed in the

central zone. Using more than five positions in this zone did not

lead to a significant improvement, so this number was retained

for all simulations.

The distributed coding of the information in the network was

expected to provide robustness to lesion and noise. This was

confirmed by random suppression of units or addition of noise to

the inner layers. This robustness indicates that performance is

not due to the selectivities of critical neurons whose death would

be fatal to the operation of the network.

Single Neuron Discharge

We will now focus on the firing properties of isolated model

neurons. Discharge of the somatic layer units over the work-

space was analyzed to understand the nature of the somatic

recoding. For multimodal layer units, directional tuning revealed

no surprise as they derived directly from the properties of the

Figure 4. Performance of the network illustrated for 21 starting positions of the arm.
Arrows represent the initial direction actually taken by the arm when pointing in 16
equally distributed directions in Cartesian space. Thick arrows correspond to the desired
0° direction. A zone frontal to the subject has been outlined in a dashed rectangle (see
text).
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visual layer neurons. We thus only delineated their quasi-

multiplicative behavior. In the command layer of the network,

directional selectivities were studied for each unit. As in numer-

ous experimental studies, they were computed in Cartesian

space through a multilinear regression.

Three vectors can be associated with single command

neurons. The first is the preferred direction, defined by the

direction of the hand for which the neuron fires maximally. The

second vector is the command direction (CD, introduced in

Materials and Methods): it is defined as the direction in joint

space in which the cell drives the arm. For example, a command

neuron equally facilitating the shoulder and elbow flexors will

have a CD oriented at 45° in {shoulder,elbow} joint space. Lastly,

the same command cell has a direction of action (DA). This DA

is the direction in extrinsic Cartesian space in which the cell

displaces the hand. This direction obviously depends both on

the CD and on arm posture: the effect of an elbow f lexion

changes with the orientation of the upper arm. It is generally

believed that the PD of a neuron is the direction in which this

cell alone would produce the hand movement (the DA); how-

ever, this need not be true.

Proprioceptive Neurons

The properties of proprioceptive neurons are close to those of

a fraction of somatic neurons (see below). They will not be

described further.

Somatic Neurons

The activity of somatic layer neurons changes in a monotonic

fashion with hand position over the whole workspace. It should

be emphasized that the model equations do not force the somatic

unit to fire monotonically. Indeed, the weights Wijk are not

constrained to be positive, and a broad selectivity for a given arm

position could potentially emerge. This was, however, never the

case.

Six broad classes of neurons can be delineated. Determination

was done de visu and is only an attempt to structure a con-

tinuum of response properties, as in physiological studies. In the

‘Off-center radial’ (Fig. 5A) as in the ‘Radial’ (Fig. 5B) type, the

discharge increased or decreased in concentric rings, roughly

centered at the shoulder, or at the position of the elbow when in

full extension. The activity was roughly a weighted combination

of shoulder and elbow angles. Other units behaved the same

way, but were silent in the central part of the workspace and

fired only for large f lexion (‘Left’, Fig. 5C) or extension (‘Right’,

Fig. 5D) of the shoulder. These features ref lect the properties of

proprioceptive inputs (Table 1).

The last two classes of neurons showed a more complex

behavior. Some showed a left-right activity gradient (‘Gradi-

ent’, Fig. 5E) while the remaining had no particular property

(‘Atypical’, Fig. 5F). In these last two classes, the proprioceptive

signal is most strongly transformed: the discharge is not a simple

combination of muscle lengths and can vary in a nonlinear

fashion with arm position. In these cases, the inf luence of the

lateral connections in the layer is maximal. These types were not

actually found in the proprioceptive layer (Table 1).

Changes in discharge frequency with arm position (positional

selectivity) are generally quantified by a preferred axis, i.e. the

direction of displacement that leads to a posture at which the

discharge frequency is maximal (Kalaska et al., 1983; Kettner et

al., 1988). We calculated distributions of positional selectivities

for the somatic units for comparison with observed distributions

in sensorimotor regions. Multiple regression analysis was used to

calculate best fitting planes over the workspace (Kalaska et al.,

1983). Joint angles were restricted to 20–140° to avoid nonlinear

effects at extreme positions and allow comparisons with

experimental data which generally concern limited parts of the

workspace. Mean R2 over the population was 0.49 (n = 2500).

The distribution of positional selectivity, calculated over neurons

for which R2 > 0.7 (n = 904, 36%), was bimodal, with a preferred

axis along 40–220°.

Multimodal Neurons

Multimodal neurons combine in a pseudo-multiplicative way the

activities of somatic and visual neurons. As the somatic units ex-

hibit monotonic firing profiles, the global effect on multimodal

neurons is roughly a gain field. Figure 6 illustrates more precisely

this pseudo-multiplicative property. The multimodal neuron has

the same preferred direction as its visual input neuron, and its

Figure 5. Activity of eight neurons of the somatic layer for hand positions over a part of
the workspace depicted at the bottom: Off-center radial (A), Radial (B), Left (C), Right
(D), Gradient (E), Atypical (F). The discharge level is figured in shades of gray (arbitrary
units; black = maximum discharge).
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peak activity scales linearly with the somatic input, as for an

exact multiplication. However, this multimodal interaction does

not reduce to a gain effect as an increase in the somatic input

leads to a decrease in the multimodal neuron discharge for the

non-preferred direction. In other words, the tuning width of

such a neuron is not fixed, but depends on arm posture. The

visual–proprioceptive interaction in such a multimodal neuron

can thus be described as an arm position-dependent modulation

of visual selectivity.

Command Neurons

As expected from the theory (equation A3), command neurons

were broadly tuned to movement direction in Cartesian space.

This is shown for one neuron in Figure 7A. At each of the 21

tested positions, 95% of the neurons were directionally tuned

(linear regression; mean R2 = 0.93). Preferred directions rotated

with the upper arm, as shown for the same neuron in Figure 7.

In this case, the PD shifted clockwise as the arm extended.

The theory also predicts (equations A4 and A5) that the PD of

a neuron is in general different from the direction (in Cartesian

space) in which the neuron drives the arm (direction of action,

DA). This is clearly illustrated for the same neuron in Figure 7B.

The same results were true for the population. For a half-

extended elbow, the PDs closely followed the rotation of the

shoulder (Table 2). We tested the model on the paradigm used by

Sergio and Kalaska (Sergio and Kalaska, 1997). Shift of PDs

between a central position (Pcen) and eight peripheral hand

locations uniformly distributed over a circle of 8 cm radius was

calculated. Shifting was clockwise (mean 9°) for rightward

targets and counterclockwise (mean 6°) for leftward targets.

These results are qualitatively consistent with those of Sergio and

Kalaska (Sergio and Kalaska, 1997).

The angular differences between PDs and DAs in the

population ranged between 0 and 72° at central positions and 1

and 165° at extreme positions. The mean angular difference was

slightly lower in the central zone (dashed box in Fig. 8) than in

the whole workspace (central zone: 20.6°; global mean: 28.1°).

A comparison of PD and DA distributions is shown in Figure 8.

By definition, the distribution of DAs is uniform in a very central

part of the workspace (Fig. 8A). Outside this region, the DAs

tended to cluster along a specific axis. An analogous if more

noisy pattern was observed  for the  PDs (Fig. 8B).The best

performance obtained in the central zone was not related to an

Table 1
Classification of proprioceptive and somatic units (values given are %)

Off-center
radial

Radial Left
activated

Right
activated

Left–right
gradient

Atypical

P 50 50 0 0 0 0
S 36 8 26 14 8 8

Figure 6. Activity of a multimodal neuron as a function of its somatic input and the
desired direction of movement. The neuron’s PD is 180°.

Figure 7. (A) Activity of an output unit at three different positions (a, b, c in B). (B)
Difference between preferred direction for the same unit (PD, solid arrows) and direction
in which it drives the arm (DA, dashed arrows) for the 21 test positions.

Table 2
Mean rotation (SD) of command unit PDs with shoulder angle (15–145°) at different elbow
positions (in degrees)

Elbow angle (°) Rotation PD/rotation
shoulder

Regression coefficient Population
(% of tuned neurons)

5 0.51 (0.70) 0.92 (0.12) 88
45 0.75 (0.59) 0.93 (0.15) 90
75 0.89 (0.44) 0.98 (0.03) 90

100 0.97 (0.12) 0.98 (0.03) 86
145 0.67 (0.66) 0.91 (0.15) 92
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isotropy of the DAs. The distribution of DAs was anisotropic

in 56% of the whole workspace (Rayleigh test on orientations,

P < 0.01). This was still true in 40% of the central zone. Inter-

estingly, the PD distribution showed the same global anisotropy

(P < 0.01 in 48% of the workspace), but was more uniform than

the DAs in the central zone (P < 0.01 in 25% of the zone).

Population Activity

Results obtained in the command layer at the single cell level

were collected to obtain a view of the population activity.

Neural Population Vector

A population vector, defined as

was calculated at each of the 21 arm positions and for the 16

desired directions used for the estimation of performance. The

direction of the neural population vector (NPV) was compared

with the desired and actual directions of movement at a central

arm position (Pcen) and at a remote position (Prem) chosen among

the tested positions (Fig. 2). At Pcen (Fig. 9A), the NPV was close

to both desired (mean error calculated over the 16 directions:

9.0°, range: 0.02–17.8°) and actual direction of  movement

(mean: 9.9°, range: 0.12–22.9°). Larger errors were found at Prem

(error for NPV-desired direction, mean: 25.2°, range: 1.63–53.2;

for NPV-actual direction, mean: 28.1°, range: 1.67–61.3°), as can

be seen in Figure 9B. These errors can be explained by a cluster-

ing of PDs along a 130° axis. Note that there was only a slight

decrease in performance between the two positions. Over the

21 positions, mean discrepancy between the NPV and the actual

movement ranged between 4.0 and 40.3°.

We performed a second analysis based on the idea that

different types of neurons (visual, multimodal, command) could

be intermingled spatially (Crammond and Kalaska, 1996;

Johnson et al., 1996). The population vector was calculated with

Nc/2 randomly chosen command neurons and Nc/2 randomly

chosen visual and multimodal neurons. In this case, the

procedure yields mean errors < 9°. This is not unexpected since

the NPV calculated on visual units only is exact.

Movement Direction

Actual movement direction is in general close to the desired

direction, while the NPV errs substantially (Fig. 9). The behavior

of the NPV is dictated by the distribution of PDs. Errors in NPV

are found whenever the distribution is not uniform (Figs 8A

and 9A). These errors do not preclude a correct calculation of

movement direction. This is explained for a theoretical case

in Figure 10. We generated theoretical distributions of PDs

(equation A4) and DAs (equation A5) for a 20-neuron output

layer (to obtain a more legible plot). Arm position was chosen to

obtain a clear-cut effect. The distributions are shown in Figure

10A,B. Reconstruction of the NPV for a given desired direction

fails since individual contributions of neurons along their PDs

c PDi i

i

Nc

=
∑

1

Figure 8. (A) DA distribution in the workspace. (B) PD distribution in the workspace.
Bars are graduated according to the number of neurons per 20° sector. The dashed box
outlines the central region (see text).

Figure 9. Comparison between desired direction of movement, actual movement
and population vector for two arm configurations Pcen (A) and Prem (B). Results for
directions at 90° are enlarged.
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tend to cluster (Fig. 10C). Contributions along the DAs are also

not in the desired direction of movement, but they are organized

so as to nullify their effect on an axis orthogonal to this direction

(Fig. 10D). In fact, command neurons must fire more to produce

the movement in directions where theDA vectors are sparse and

short. This links PDs and DAs in such a way that the preferred

directions cluster along an axis for which DAs are sparse and

thus the PD of a cell is nearly orthogonal to its motor effect

(equation B1).

Discussion
The present model deals with calculation of coordinate

transformations and motor commands that initially drive a non-

redundant arm toward a visual target. Appropriate operations are

learned in an unsupervised fashion through repeated action–

perception cycles by recoding arm-related proprioceptive

information. The resulting solution has two interesting proper-

ties: (i) the required transformation is executed accurately over a

large part of the reaching space, although few positions are

actually learned; and (ii) properties of single neurons and

populations closely resemble those of neurons and populations

in parietal and motor cortical regions. Before discussing these

results, we need to define exactly what is the scope of the model.

Our model is concerned with neuronal processes involved in

preparatory and early phases of arm reaching movements before

occurrence of peripheral feedback. As such, relevant compari-

sons can be made with single unit recordings during reaction

time periods of reaching tasks. Correspondence between layers

of the network and brain regions can be made tentatively based

on anatomical and physiological arguments.

We also need to explain why the observed properties are truly

emergent characteristics of the model and not simple conse-

quences of the specific architecture of the network. Discharge

properties of somatic units are a by-product of the acquisition

of the vectorial visuomotor transformation. Multimodal units are

constrained to perform a multiplication, but their modulation

by arm position derives from the somatic activities. Last, the

discharge behavior of command units is dictated by the non-

trivial relationship between the PDs and CDs.

Comparison with Experimental Data

Performance

The network calculates correct commands over most of the

workspace. Poorer performances are found in regions where the

transformation is strongly position-dependent. Furthermore,

there is a trend for clockwise errors in the right part of the

workspace and counterclockwise errors in the left part. This

pattern of errors is not a characteristic of the model, but only of

the simulations (the theory predicts perfect performances). The

errors are due to imperfect approximation of nonlinearly varying

coefficients of the Jacobian matrix from quasi-linear proprio-

ceptive inputs, and could be reduced using a more complex

proprioceptive code, e.g. multiarticular inputs. It is interesting

that misrepresentation of arm position has been invoked to

explain similar biases during reaching movements (Ghilardi et

al., 1995).

A property of the model is its capacity to learn a global

transformation from a restricted training set and thus to

generalize appropriately to untrained positions. Where does this

property come from? To simplify, suppose that the coefficients

of the Jacobian matrix are linear functions of muscle lengths,

and all response functions in the network are linear so that

reconstruction of a coefficient of the Jacobian matrix from

positional inputs following training (equation A8) is linear,

whatever the  training positions. In fact, knowledge of the

Jacobian matrix at a restricted number of positions (i.e. enough

to identify the coefficients of the linear relationship) is sufficient

to determine how the coefficient of the Jacobian matrix varies

with the muscle lengths. Thus the model can learn the appropri-

ate matrix with only a few training positions and exhibits strong

generalization capacities. A similar phenomenon occurs in the

network, limited by the nonlinearities present at various stages.

Thus the generalization comes from the structure of the somatic

layer. Its lateral connections that contribute to the accuracy of

the population computation  play only a  minor  role in  the

generalization process per se.

Trying to learn the mapping for each arm posture leads to a

decrease in the overall performance. This reveals a destructive

interference when learning at the extremes of the arm range.

Interestingly, the performance of human subjects follows a

similar pattern: training on the right side of the workspace

to improve locally the visuomotor mapping leads to a mean

increase of the angular error over the workspace (Ghilardi et al.,

1995).

Somatic Neurons

The somatic layer builds a new representation of arm configur-

ation from proprioceptive inputs. However, the shape of somatic

receptive field (sRFs) is defined by constraints of the visuomotor

transformation, but not by the proprioceptive information (see

equation A2). As the coefficients of the Jacobian matrix, the

theoretical sRFs vary in a monotonic way over the workspace: no

broad selectivity for a given arm position indeed emerges in the

somatic layer.

Possible cortical regions containing neurons similar to som-

atic units  are  primary  somatosensory  cortex  (Gardner and

Costanzo, 1981; Cohen et al., 1994; Prud’homme and Kalaska,

1994; Helms Tillery et al., 1996), anterior parietal cortex

(Kalaska et al., 1983; Lacquaniti et al., 1995), motor cortex

(Kettner et al., 1988; Caminiti et al., 1990) and premotor cortex

(Caminiti et al., 1991), but also earlier stages in the somato-

sensory pathway (Bosco et al., 1996). An observed difference

between the cortical areas is related to their sensitivity to

Figure 10. Theoretical reconstruction of movement direction based on 20 neurons at a
non-central arm position (145°, 30°). Movement direction is 30°. (A) Distribution of
PDs. (B) Distribution of DAs. (C) Population vector (strong line), desired movement
direction (dashed line) and individual contributions of the neurons to the NPV (arrow).
(D) Actual movement direction (strong line). Arrows: individual contributions of the
neurons to the movement.
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changes in arm position. Distributions of positional selectivities

are uniform anterior to the central sulcus (Kettner et al., 1988;

Scott and Kalaska, 1997), but are biased along an anterior–

posterior axis in the somatosensory and parietal regions (Kalaska

et al., 1983; Cohen et al., 1994; Prud’homme and Kalaska,

1994; Helms Tillery et al., 1996). Our results showing that the

distribution of selectivities in the somatic layer is actually biased

along this axis suggest that the somatic layer may be located in

anterior regions of the parietal cortex.

A critical test of the model would involve showing that, in

monkeys, single neurons modulated by static arm position but

unmodulated by visual directional information change their

discharge behavior following rotation of the optical display

(optical tilt). This is a difficult, but feasible experiment (Wise et

al., 1998).

Multimodal Neurons

The multimodal layer contains neurons which are broadly tuned

to movement direction and modulated by arm position. The

modulation was characterized by an absence of shift in preferred

direction and a monotonic effect (gain field) on discharge. This

fixed PD is an immediate consequence of multiplying a cosine

tuning function (visual) with a monotonic one (somatic) and

thus is clearly due to both the preset properties of the model and

the emergent features of the somatic layer. Similar neurons have

been reported recently in a study of motor cortical cells during

wrist movements (Kakei et al., 1999). Our model provides

insights into the origin of this discharge behavior and its role in

visuomotor processing.

Command Neurons

Command neurons are broadly tuned to movement direction and

their PD changes in an orderly fashion with shoulder angle

(Caminiti et al., 1990, 1991; Sergio and Kalaska, 1997) [for wrist

movements see also (Kakei et al., 1999)]. This is an immediate

consequence of the model of command neuron activity. The

same principle (combination of nonshifting gain fields and

shifting receptive fields to compute coordinate transformations)

is found in Salinas and Abbott (Salinas and Abbott, 1995). In fact,

our theory of coordinate transformations (Baraduc and Guigon,

2001) is an extension to the multidimensional case of the one-

dimensional case developed by Salinas and Abbott (Salinas and

Abbott, 1995).

Variations in arm posture not only cause rotation of the PDs

but more generally modulate their distribution. There is no

direct experimental evidence for this. Scott and Kalaska (Scott

and Kalaska, 1997) compared distributions of PDs for a ‘natural’

and an ‘abducted’ posture. They found that both distributions

were nonuniform, although it is generally reported that the

former is uniform (Schwartz et al., 1988; Caminiti et al., 1990a)

[but see (Georgopoulos et al., 1982)]. According to the model,

these discrepancies could result from the inf luence of arm

position on PDs.

The model raises a dissociation between the preferred

direction of a unit and its direction of action. This is the motor

formulation of the distinction between receptive and projective

fields in vision (Lehky and Sejnowski, 1988). Neuronal receptive

fields are shaped by the spatial distribution of the afferent

synaptic weights. In contrast, their projective fields are shaped

by the weight distribution of their efferent projections to another

layer of retinotopic neurons. Informally, the projective field

characterizes the meaning of the cell’s discharge for the down-

stream layers. Here and similarly, the PD is a property of the

receptive field of a command neuron, whereas the DA is the

main descriptor of its projective field. The relationship between

PDs and DAs is dictated by the choice of the CDs (equations

A4 and A5). Accordingly, the two directions need not be the

same in general and are not same in the present case. In fact, CDs

could be crafted to obtain the same distribution of PDs and DAs.

However, this would lead to inappropriate patterns of shift in

Pds with arm position. There can be only indirect experimental

support to our result since directions of action are not easy to

measure in vivo (Lemon, 1988). One supporting argument is

discussed below in relation to the population vector. More

generally, the measure of PD distribution could give a hint on the

distribution of DAs: it could be checked if the latter is compatible

with the known anatomical and physiological properties of the

muscles.

Population Vector

Reconstruction of movement direction from neuronal activities

relies on the assumption that the neurons contribute to move-

ment along their preferred direction (Georgopoulos et al., 1986),

that is, the PDs are the DAs. Since PDs and DAs were not the

same in our model, deviations of the NPV from the movement

or target direction were observed, particularly at extreme arm

postures. We noted previously that an adequate choice of the

CDs could equate PDs and DAs and thus remove the errors of the

NPV. Using equations (A5) and (A4), we see that the CDs should

vary with arm position to satisfy

CCT = J(P)J(P)T

which has infinitely many solutions. However, it is unclear if

some solutions would lead to appropriate shift in PDs.

Scott and Kalaska (Scott and Kalaska, 1995) reported that the

population vector of motor cortical neurons calculated at an

‘unnatural’ arm posture deviated from the movement direction

whereas the same vector calculated at a ‘natural’ posture was

correct. This is an immediate consequence of the nonuniform

distribution of PDs (Salinas and Abbott, 1994). This result could

also be interpreted in terms of the dissociation between PDs

and DAs suggested by the model. However, alternative inter-

pretations would need to be considered before drawing firm

conclusions.

Redundancy

Our learning scheme is a case of direct inverse modeling (Jordan

and Rumelhart, 1992), that is, the transformation is learned from

samples of its inverse. This technique may be unable to find an

appropriate solution for a nonlinear one-to-many mapping since

the mean of correct outputs is not necessarily a correct output

itself [convexity problem (Jordan and Rumelhart, 1992)]. There

is no such problem here as the mapping is linear. The difficulty

of the redundant case is to find a proprioceptive code which

efficiently discriminates arm postures. Simulations show that

(i) the representation used here is not sufficient; and (ii) non-

linear interactions between afferents from different articulations

greatly improve the neural coding of posture and allow the

visuomotor transformation for a redundant arm to be learned.

Details can be found elsewhere (Baraduc, 1999).

Learning and Locus of Adaptation

The learning rule employed here belongs to the family of error-

correction rules. However, it is also an unsupervised rule since

there is actually a single source of information for learning

[random outputs (Hertz et al., 1991)] and the error term can be

computed by the network. The target activity of somatic neurons
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is the product of visual and command signals, which are

available during the training period. A possible biological

implementation involves a layer of error units (error layer) that

calculate the difference between required and actual somatic

activity (Fig. 3). These neurons would be strongly active during

early phases of training and would dictate the postsynaptic

activity of somatic neurons. Other implementations could also

be considered as there are no experimental data to assess the

existence of error units. Note that the visual signal can be either

the actual visual effect of the command or a predicted effect

provided by an internal (forward) model of the direct mapping

(C → V). This mapping is a position-dependent linear trans-

formation which can be learned in the same way as the inverse

mapping.

Functional Representation of Directional Visuomotor

Transformations

A neuroimaging study showed that a region of the superior

parietal lobule activates during early exposure to optical tilt

whereas the postcentral gyrus is active during late exposure

(Inoue et al., 1997). Since the acquisition curve of tilt adaptation

is a negatively accelerated exponential (Ebenholtz, 1966), a

possible interpretation relates the parietal activity  to error

reduction (in the error layer) in the rapidly varying phase of the

curve and postcentral activation to consolidation of learning.

The exact significance of the latter activation is unclear. Inoue

et al. (Inoue et al., 1997) trained their subjects for 12 min, even

though asymptotic performance during adaptation to optical

tilt is reached after 1–2 h (Welch, 1986). Thus the cerebral

activation might well ref lect an ongoing adaptive process

instead of a steady state. This interpretation is consistent with a

recoding of postural information in a somatosensory region, as

used in the model.

Our model can be compared to an approach relying on basis

functions (Poggio, 1990; Pouget and Sejnowski, 1994, 1997;

Salinas and Abbott, 1995). A common property is the ability to

learn directional visuomotor transformations from a restricted

training set. In both cases, the network contains three types

of broadly tuned neurons: (i) not modulated by arm position;

(ii) modulated by arm position with nonshifting PD; and

(iii) modulated by arm position with shifting PD. Dissociation of

PDs and DAs is a feature of the two types of models. There is,

however, a significant difference between the models. Learning

is a reconfiguration of inputs in one case and of outputs in the

other. This makes little actual difference as long as a single

adaptation is used. Whenever several distortions are applied

simultaneously (e.g. optical tilt and prismatic deviation), manipu-

lation of the output layer prevents concomitant adaptation to

the perturbations. Alternatively, separate recodings of proprio-

ceptive inputs for directional and positional visual information

permit simultaneous compensation for tilt and displacement, as

expected from psychophysical studies (Redding, 1975).

Conclusion
The present paper describes a realistic model of coordinate

transformations and motor command calculation for arm

reaching movements. However, a simplification was adopted

which will need to be relieved: desired movement direction

was represented as the hand–target vector in a body-centered

Cartesian reference frame. A more general model should assume

that direction of movement is coded in oculocentric coordinates

(Henriques et al., 1998; Batista et al., 1999) and should use eye

and head position signals to calculate the appropriate trans-

formation (Burnod et al., 1999). Predictions of such an eye-

to-hand model would depend on actual implementation of the

transformation. There are at least two possibilities. The first is a

direct transfer from eye to hand coordinates. In this case, the

network should learn the Jacobian matrix of the whole kinematic

chain between the eye and the hand. The problem is formally

similar to the original one, though it might be more difficult to

solve due to redundancy (see above). The corresponding somatic

layer would contain neurons tuned to both arm and eye position,

and the preferred direction of command neurons would shift

with eye position. The second possibility involves two kinematic

chains: eye to a body-centered frame and hand to this frame.

First, direct kinematics could be used to build a body-centered

representation of movement direction when eye and head are

immobile. Next, a network learns to reconstruct a body-centered

representation of direction for different oculocentric vectors,

eye and head positions. In this case, eye and head signals would

not directly inf luence the command neurons. These models will

need to be confronted with experimental results.
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Appendix A: Mathematical Bases of the Model
Consider a nonredundant multijoint arm (D degrees of freedom). Its

inverse kinematic transformation can be written ψ = φ(χ), where χ
contains the Cartesian coordinates of the arm endpoint and ψ the joint

angles. Changes in endpoint position following changes in joint angles are

related through the Jacobian of the transformation ψ = J(ψ)χ, which can

be rewritten

C = J(P)V (A1)

where P, V and C are D-dimensional vectors corresponding to notations of

Figure 1B, and J is a D × D matrix. The following derivations explain how

equation (A1) can be represented in a neural network. Assuming that

vectors C and V are represented by the activity of populations of

cosine-tuned neurons, we will show that it is possible to learn to compute

the matrix product J(P)V in a population of neurons receiving the input

P. This is a simplified account of a general theory which can be found

elsewhere (Baraduc and Guigon, 2001).

Consider distributed neuronal representations v (Nv-dimensional

vector) and c (Nc-dimensional  vector)  of V and C defined by their

coordinates

vj = Vj · V

and

. .
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ci = Ci · C

where Vj is a set of Nv uniformly distributed vectors in Cartesian space

and Ci is a set of Nc uniformly distributed vectors in angular space termed

command direction (CD). Neuronal representations v and c are

respectively the firing rates of the visual and command neurons of the

network. We note V (resp. C) the matrix of column vectors Vj (resp. Ci).

Uniform distribution translates into V VT ∝ I and CCT ∝ I where I is the D

× D identity matrix (Sanger, 1994; Baraduc and Guigon, 2001). For the

sake of simplicity, we assume that VVT = I and CCT = I. The vectors v and

c are called a cosine population code since their associated vectors V and

C can be uniquely recovered as Vv and Cc.

For a given  arm  configuration P, equation (A1) defines a linear

mapping which can be represented in a distributed manner by the Nc × Nv

matrix

J(P) = C
TJ(P)V (A2)

i.e. C = J(P)V if and only if c = J(P)v. This is easily verified using VVT = I
and CCT = I. In case the CDs are nonuniformly distributed, we define C′ =

(CCT)–1C and C′ is used instead of C in equations (A2), (A3) and(A4).

From the point of view of neural networks, the matrix J(P) can be

considered as weights between an input layer (Nv neurons) and an output

layer (Nc neurons). From equation (A2), the activity of an output neuron

i is

ci = Ci
TJ(P)V (A3)

Three attributes are attached to a neuron i of the output layer (Baraduc

and Guigon, 2001):

• the command direction Ci defined above;

• a preferred direction PDi, defined as the vector of the visual space that

maximizes ci, i.e.

PDi = J(P)TCi

In matrix notation, the PDs are the column vectors of

PD = J(P)
T
C (A4)

• a direction of action DAi, defined as the direction in which the arm

moves when command Ci is applied, i.e.

DAi = J(P)–1Ci

The DAs are the column vectors of

DA = J(P)
–1

C (A5)

The distributed representation J(P) can be constructed by Hebbian

learning from a set of Nex training pairs of unit vectors {Vν,Cν = J(P)Vν)

provided that the input examples are uniformly distributed (Baraduc and

Guigon, 2001), i.e.

(A6)

In this case, the entries of J(P) writes

(A7)

where vj
ν and ci

ν are the population codes associated to the training

examples.

Since c = J(P)v holds at each arm position P, a general solution at all

positions is obtained by considering the matrix J(P) as neuronal activities

J(P) = Wp (A8)

where p is a neuronal representation of P. The weights W are then

adapted so that equation (A8) is true at all arm positions. A learning rule

is

(A9)

where pν are the neuronal representations of arm positions used during

training. Equation (A9) is a Widrow–Hoff rule which states that Jij(P)

is made to converge toward its desired value defined by equation (A7).

Online learning is possible using a stochastic version of equation (A9):

(A10)

Note that there is no a priori guarantee that equation (A8) can be made

exact for all arm positions. It depends on how complex the changes of

the Jacobian matrix with arm position are, and how precisely the arm

positions can be discriminated based on their neuronal representations.

In the model presented in this paper, the somatic layer computes

matrix J through the weights W: after learning, we have sij = Jij. The role

of the multimodal layer is to compute an approximate mij of the products

Jijvj. A few details have been modified from the theory presented here.

Lateral connections have been added to provide resistance to noise

and permit a large saving in terms of adjustable weights, and transfer

functions g constrain the firing rates to be positive. These changes from

the present mathematical framework do not affect the operation of the

network noticeably.

These theoretical derivations are limited here to the case of cosine

tuning curves and uniform distributions. The case where the CDs are

not uniformly distributed are treated in this appendix; other cases are

discussed elsewhere (Baraduc and Guigon, 2001). This theory extends

to the case of a redundant arm using the Moore–Penrose inverse of the

Jacobian of the direct kinematics in equation (A1) (Baraduc and Guigon,

2001). Again the difficulty is in the mapping defined by equation (A8).

Appendix B: Invariant Command Directions in Angular Space
The CDs of  the  command  layer were  chosen  to  obtain  a uniform

distribution of PDs for a central position of the arm (Pref, Fig. 2). If U is a

2 × Nc matrix of uniformly distributed unit vectors Ui, then C = JrU, where

Jr = J(Pref), guarantees the required property. From C′ = (CCT)–1C, we

obtain C′ = (Jr
–1)TU. Thus, at any position P, PD = JT C′ = (Jr

–1J)TU, where

J = J(P). This proves that the PD distribution is uniform at Pref. Using

equation (A5), we obtain the relationship between PDs and DAs

PD = (Jr
–1J)

T
(Jr

–1J)DA (B1)
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