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Many neurons of the central nervous system are broadly tuned to some
sensory or motor variables. This property allows one to assign to each
neuron a preferred attribute (PA). The width of tuning curves and the
distribution of PAs in a population of neurons tuned to a given variable
de�ne the collective behavior of the population. In this article, we study
the relationship of the nature of the tuning curves, the distribution of PAs,
and computational properties of linear neuronal populations. We show
that noise-resistant distributed linear algebraic processing and learning
can be implemented by a population of cosine tuned neurons assum-
ing a nonuniform but regular distribution of PAs. We extend these re-
sults analytically to the noncosine tuning and uniform distribution case
and show with a numerical simulation that the results remain valid for
a nonuniform regular distribution of PAs for broad noncosine tuning
curves. These observations provide a theoretical basis for modeling gen-
eral nonlinear sensorimotor transformations as sets of local linearized
representations.

1 Introduction

Many problems of the nervous system can be cast in terms of linear al-
gebraic calculus. For instance, changing the frame of reference of a vector
is an elementary linear operation in the process of coordinate transforma-
tions for posture and movement (Soechting & Flanders, 1992; Redding &
Wallace, 1997). More generally, coordinate transformations are nonlinear
operations that can be linearized locally (Jacobian) and become a simpler
linear problem (see the discussion in Bullock, Grossberg, & Guenther, 1993).
Vectorial calculus isalso explicitlyor implicitly used inmodels of sensorimo-
tor transformations for reaching and navigation (Grossberg & Kuperstein,
1989; Burnod, Grandguillaume, Otto, Ferraina, Johnson, & Caminiti, 1992;
Touretzky, Redish, & Wan, 1993; Redish & Touretzky, 1994; Georgopoulos,
1996).
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Although linear processing is only a rough approximation of generally
nonlinear computations in the nervous system, it is worth studying for
at least two reasons (Baldi & Hornik, 1995): (1) it displays an unexpected
wealthof behaviors, and (2) a thoroughunderstandingof the linear regime is
necessary to tackle nonlinear cases for which general properties are dif�cult
to derive analytically. The problem of the neural representation of vectorial
calculus can be expressed in terms of two spaces: a low-dimensional space
corresponding to the physical space of the taskand a high-dimensional space
de�ned by activities in a population of neurons (termed neuronal space)
(Hinton, 1992; Zemel & Hinton, 1995). In this framework, a desired op-
eration in the physical space (vectorial transformation) is translated into a
corresponding operation in the neuronal space, the result of which can be
taken back into the original space for interpretation. The goal of this article is
to describe a set of mathematical properties of neural information process-
ing that guarantee appropriate calculation of vectorial transformations by
populations of neurons (i.e., that computations in the physical and neuronal
spaces are equivalent).

An appropriate solution relies onthreemechanisms:a decoding-encoding
method that translates information between the spaces, a mechanism that
favors the stability of operations in the neuronal space, and an unsuper-
vised learning algorithm that builds neuronal representations of physical
objects. We will show that these mechanisms are closely related to common
properties of neural computation and learning: the distribution of tuning se-
lectivities in the population of neurons and the width of the tuning curves,
the pattern of lateral connections between the neurons, and the distribu-
tion of input-output patterns used to build synaptic interactions between
neuronal populations.

In this article, we present a theory that uni�es these three mechanisms
and properties (generally considered separately;Mussa-Ivaldi, 1988;Sanger,
1994; but see Zhang, 1996; Pouget, Zhang, Deneve, & Latham, 1998) into a
unique mathematical framework based on the neuronal population vec-
tor (PV; Georgopoulos, Kettner, & Schwartz, 1988) in order to explain how
neuronal populations can perform vectorial calculus. In contrast to our ex-
tensive knowledge of the representation of information by populations of
tuned neurons, little attention has been devoted to the learning processes
in these populations. Here we show how Hebbian and unsupervised error-
correcting rules can be used in association with lateral connections to allow
the learning of linear maps on the basis of input-output correlations pro-
vided by the environment. In this context, we reveal a trade-off between
the width of the tuning curves and the uniformity of the distribution of
preferred directions. Finally, a statistical approach validates our hypotheses
in realistic networks of a few thousand noisy neurons.

A particular application of this theoretical framework is the computing of
distributed representations of transpose or inverse Jacobian matrices which
play a central role in kinematic and dynamic transformations (Hinton, 1984;
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Mussa-Ivaldi, Morasso, & Zaccaria, 1988; Crowe, Porrill, & Prescott, 1998).
Recent results highlight the relevance of this theory to the understanding
of the elaboration of directional motor commands for reaching movements
(Baraduc, Guigon, & Burnod, 1999).

2 Notations and De�nition

In the following text, we consider a population of N neurons. We note E D
RN the neuronal space and E D RD (typically D D 2, 3) the physical space.
Lowercase letters (e.g.,x) arevectors of theneuronal space.Uppercase letters
(e.g., X) are vectors of the physical space. Matrices are indicated by upper-
case bold letters roman for E (e.g., M), calligraphic for E (e.g., M ), and italic
for D £ N matrices (e.g., E). A dot (¢) stands for the dot product in E or E.

Each neuron j is tuned to a D-dimensional vectorial parameter, that is, it
has a preferred attribute in E, which is noted Ej, and its �ring rate is given by

xj D fj (X ¢ Ej , bj), (2.1)

where fj is the tuning function of the neuron, X a unit vector of the physical
space (Georgopoulos, Schwartz, & Kettner, 1986), and bj a vector of param-
eters. The assumption is made that the distributions of these parameters
and the distribution of PAs are independent (Georgopoulos et al., 1988). In
the particular case of cosine tuning, the �ring rate of neuron j is

xj D X ¢ Ej C bj, (2.2)

where bj is the mean �ring rate of the neuron (Georgopoulos et al., 1986).
We note E the D £ N matrix of vectors Ej.

The PAs are considered either as a set of �xed vectors or as realizations
of a random variable with a given distribution PE (in this latter case, index
i is removed). The mean is denoted by hi and the variance by V.

3 Cosine Tuning and Vectorial Processing in Neural Networks

As a simple case of distributed computation, in this section, we derive con-
ditions that are suf�cient to represent and learn vectorial transformations
between populations of cosine-tuned neurons. The case of other tuning
functions will be treated later (section 4) in the light of this approach.

3.1 Encoding-Decoding Method: Distributed Representation of Vec-
tors. Here we address the representation of vectors by distributed activity
patterns in populations of cosine-tuned neurons. We show that a condition
on the distribution of preferred attributes is suf�cient to faithfully recover
information from the activity of the population. This condition is mathe-
matically exact for populations of in�nite size, but still leads to accurate
representations for populations of biologically reasonable size (e.g., > 103).
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The �ring frequency of the population in response to the presentation of
a vector X of the physical space is x D ETX C b, where x and b are vectors
in E (equation 2.2 written in matrix notation). Based on some hypotheses
on E and b, the vector X can be decoded by computing a population vector
(Georgopoulos et al., 1988; Mussa-Ivaldi, 1988; Sanger, 1994). The popula-
tion vector can be de�ned by

X¤ D
1
N

X

i
(xi ¡ bi )Ei D

1
N

E(x ¡ b).

A perfect reconstruction (X¤ / X) is obtained if thePAs are such that (Mussa-
Ivaldi, 1988; Sanger, 1994)

EET / ID, (3.1)

where ID is the D £ D identity matrix.
In a population of neurons, the offset b could be deduced from the activity

of the network over a suf�ciently long period of time and subtracted via an
inhibition mechanism (e.g., global inhibition if all neurons have the same
mean �ring rate). However, we will consider here the general case:

X¤ D QX C
1
N

Eb,

where Q D 1
N EET . We make the assumption that the components of the PAs

have zero mean, are uncorrelated, and have equal variance s2
E (regularity

condition). From our hypothesis, mean �ring rates b are independent of the
distribution of PAs. Then Q converges in probability toward s2

EID (see sec-
tion A.1). Using similar arguments, we can demonstrate that 1

N Eb converges
in probability toward 0.

In the following, we call a family of tuning properties fEi , big that satis�es
the regularity condition regular basis. We use the term basis to indicate that
a regular family can be used as a basis. However, it is not a basis in a math-
ematical sense. If X 2 E, x D ETX C b is called the distributed representation
of X, or simply a population code.

3.1.1 Finite N. The preceding equalities hold only at the limit N ! C1.
To ascertain if the proposed computational scheme has any relevance to
biology, we need to quantify the distortions introduced when populations
of �nite size are used.

Without loss of generality, we cansuppose the input to be X D (1, 0, . . . , 0).
The variance of the decoded output, normalized by 1/s2

E , is in this case

V

³
Ex

s2
E

´
D V

³
1

N2s4
E

EETX

´
D (d2 /s4

E , 1, . . . , 1)/N,

where d2 D V(E2
i1).
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Is this variance small enough in practice? For a uniform distribution
of PAs on a three-dimensional sphere, d2 /s4

E D 13/5, which results in an
angular variance of less than 0.55 degree for N D 1000. For a distribution
of PAs (of the same norm) clustered along the axes, d2 /s4

E D 2—hence,
an angular variance of less than 0.48 degree if N D 1000. This suggests
that this encoding scheme is reasonably accurate with small populations of
neurons.

The regularity condition thus guarantees that encoded information can
be recovered from actual �ring rates with an arbitrary precision in a suf-
�ciently large population of neurons. The regularity condition includes a
zero-mean assumption for PA components, which is not used in Sanger
(1994). Any departure from this requirement translates the output vectors
by a constant amount, which needs to be small in practice. The zero-mean
assumption is not a major constraint, since most experimentally measured
distributions of selectivity are roughly symmetrical (see section 6). In this
sense, our de�nition of regularity is more general than the previous ones
(Mussa-Ivaldi, 1988; Sanger, 1994; Zhang, Ginzburg, McNaughton, & Se-
jnowski, 1998), as it allows a proper probabilistic treatment when mean
�ring rate is nonzero.

3.2 Distributed Representation of Linear Transformations. The pre-
ceding section has shown how a correspondence can be established between
vectors in external space and population activity. In this section, we extend
this correspondence to linear mappings and de�ne the notion of input and
output preferred attributes.

Consider a linear map from E to F, which are real physical vectorial
spaces. Let M be its matrix on the canonical bases and E, F be regular bases
in E (NE neurons) and F (NF neurons), respectively. We de�ne

M D
1

NENF
FTME (3.2)

as the matrix of the distributed linear map.
In the limit NE, NF ! C1, and assuming that sE D sF D 1, we have

QE D QF D ID. Then M operates on the distributed representations
as M does in the original space. Let x be the distributed representation
of a vector X 2 E (i.e., x D ETX). Taking Y D MX, we have M x D
FTMEETX D FT (MX) D FTY. Thus, y D M x is the distributed representa-
tion of Y.

If we assume that the vectorial input (resp. output) is represented by the
collective activity of a population of neurons xj (resp. yi), and that a weight
matrix M links the input and output layers, then the network realizes the
transformation M on the distributed vectors. It is immediate that FM ET D
M . Thus, the distributed map can be read using the classical population
vector analysis.
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3.2.1 Finite NE and NF. As in the preceding section, it must be checked
whether this distributed computation is still precise enough in the case of
�nite populations. To answer this question while keeping the derivations
simple, we assume NE D NF D N, sE D sF D s, and take the identity
mapping for the transformation M.

The variance of the (normalized) decoded output Y/s2 writes in this case:

V
³

FIx
s2

´
D V

³
1

N2s4 FFTEETX
´

D
1

s8 [V(QF)hQEi2 C hQFi2V(QE) C V(QF)V(QE)] X2

D
µ

2
»

1
N

(ID,D ¡ ID) C
d2

Ns4 ID

¼
C

1
N

ID,D C ¢ ¢ ¢
¶

X2,

where Im,n is an m £ n matrix of ones and the ellipsis stands for terms dom-
inated by 1/N2. Here the notation Q2 means the matrix of ij-component Q2

ij.
For D D 3 and N D 1000, in the case of a uniform distribution, the

preceding equation translates into an angular variance of 0.84 degree; in
the clustered case, the variance is 0.74 degree. Our scheme of distributed
computation is thus viable with small populations of neurons.

Consequently, in the following sections, derivations will be made for
in�nite populations with EET D ID, which allows us to write equalities
instead of proportionalities. We will thereby ignore the s2N term, except
in the study of the effect of noise (see section 3.3.2). We will also assume
that b D 0, which makes proofs more straightforward. The general case is
considered in section A.3.

3.2.2 Selectivities of Output Units. In a network that computes y D M x,
how can one characterize the behavior of an output unit that �res with yi?

This output unit i can be described by its intrinsic PA Fi in the output
space F. However, this vector is independent of the mapping that occurs
between the input and output spaces, and thus does not fully de�ne the
role of the unit. In fact, two vectors can be associated with the output unit i.
The �rst is the vector of E for which the unit is most active (input PA). Since
the unit i �res with input X as FT

i MX, it is cosine tuned to the input, and its
input PA is the column vector MTFi.

The second vector (output PA) is M†Fi , where M† is the Moore-Penrose
inverse of M . In the case where the output layer is considered as a motor
layer whose effects can be measured in the input space through M†, the
output PA can be interpreted inan intuitive way. Indeed, the effect in sensory
space of the isolated stimulation of the unit i is precisely the vector M†Fi of
F. Thus, the output PA corresponds to projective properties of the cell while
input PA is related to receptive properties. Note that in general, the input
and output PAs of a unit do not coincide (Zhang et al., 1998).
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3.2.3 Weight and Activity Pro�les. The distributed representation M
has interesting structural properties. The transpose of the ith row of M
is (FT

i ME)T D ET (MTFi) 2 Im ET. In the same way, the jth column of M is
FT (MET

j ) 2 Im FT . Thus, the pro�le of the weight rows (resp. columns) is
identical to the pro�le of the input (resp. output) activities.

Later we will consider the case where the entries of the matrix M are
activities rather than static weights. We show below that “cosine” lateral
connections between rows (ETE) and columns (FTF) stabilize population
codes in E and F , respectively. Thus, lateral connections can help to build
an exact matrix of activities from an underspeci�ed initial state.

3.3 Neuronal Noise and Stabilization of Representations. Noise has
a strong impact on population coding (Salinas & Abbott, 1994; Abbott &
Dayan, 1999). Therefore, it is important to understand how noise affects the
reliability of our computational scheme. We will consider here two forms
of noise: additive gaussian and Poisson noise.

3.3.1 Additive Gaussian Noise. Assume that a gaussian noise g is added
to the population code x. How does this noise affect the encoding-decoding
scheme—that is, how large is the variance of the decoded quantity? If g is
independently distributed, we can show that the variance of the extra term
due to the noise (Eg/N) is proportional to 1/N (see section A.2). Conversely,
if the additive noise is correlated among neurons, as seems to be the case in
experimental preparations (Gawne & Richmond, 1993; Zohary, Shadlen, &
Newsome, 1994), it is easy to demonstrate that

V (Eg/N) D
(1 ¡ c)s2

g s2
E

N
, (3.3)

where s2
g is the variance and c the correlation coef�cient of the noise. Thus,

for this correlated noise as for the uncorrelated one, the variance of the
encoded quantity decreases with a 1/N factor. Besides, the decoding error
decreases as a function of c, as does the minimum unbiased decoding error
(Abbott & Dayan, 1999). In fact the correlations act to decrease the total
entropy of the system. The 1/N reduction of variance demonstrated for
additive gaussian noise no longer holds with multiplicative noise; in such
a case, an active (nonlinear) mechanism of noise control may be needed.

3.3.2 Poisson Noise. In the case of an uncorrelated Poisson noise, V(gi) D
xi. It is straightforward to show that the variance of the noise term is infe-
rior to xmax /N, where xmax is the highest �ring rate in the population (see
section A.2). Thus, as for the gaussian noise, the variance decreases linearly
with the number of neurons. Correlations in the noise alter this behavior,
and the variance becomes dominated by a term independent of N. This term
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can be computed for a few special cases of PA distribution; for example, we
have

V (Egi /N) · 0.035 c xmax (3.4)

for a uniform 3D distribution and

V (Egi /N) · 0.22 c xmax (3.5)

for PAs clustered along the 3D axes (see section A.2). A reduction of the
variance in the correlated case is thus obtained through the distributed
coding, even if scaling N does not result in any additional bene�t. It can
also be noted that uniform distributions of PAs seem more advantageous
as far as noise issues are concerned.

To sum up, for the two types of noise treated here, the variability in
the decoded quantity is inferior to the variability affecting individual neu-
rons. For gaussian or uncorrelated Poisson noise, using large populations
of cells limits even more the noise in the decoded vectors, as noise ampli-
tude depends on 1/

p
N. This is not the case with correlated Poisson noise,

and more powerful nonlinear methods could be employed (see, e.g., Zhang,
1996; Pouget et al., 1998).

3.3.3 Stabilizing Distributed Representations. The reduction of the noise
in the decoded vector shown in the preceding sections can inspire ways to
limit the noise inside a population. We show here that �ltering the popula-
tion activity through the matrix W E D ETE/N has this desirable effect.

Before proving this fact, we �rst note that W E is the distributed represen-
tation of ID in E (see equation 3.2). Matrix W E is a projection of E (Strang,
1988). If we note Ep the image of E by W E , then Ep is a D-dimensional
subspace of E . Elements of Ep are population codes since they can be writ-
ten ET (Ex0 ), x0 2 E . In fact, the operation of W E is a decoding-reencoding
process. As the variance of the decoded vector coordinates is inferior to
the neuronal variance (preceding sections), we can expect from W E good
properties regarding noise control.

To demonstrate them, we write W E (x C g) D W E x C ETEg/N. The term
W E x is in general different from x (except if x 2 Ep), but it preserves part
of the information on x, since the population vectors of x and W E x are the
same. The variance of W E g is the �rst diagonal of (ETEQETE)/N2, where
Q is the correlation matrix of the noise.

Building on the results of the previous sections, it is easy to demonstrate
that equations similar to equations 3.3, 3.4, and 3.5 apply. For additive gaus-
sian noise, we �nd that

V (W E g) D
(1 ¡ c)s2

g s2
E

N
IN.



Population Computation of Vectorial Transformations 853

Thus, the effect of W E is to limit gaussian noise in the population. For
Poisson noise, the formulas of section 3.3.2 generalize in the same way, lead-
ing to a decrease in the variance of the neuronal activity that is proportional
to 1/N for uncorrelated noise and independent of N in the correlated case.
Moreover, even if hgi 6D 0, for independent noise, we get hW E gi D 0 in
the limit N ! C1. This property, due to the fact that W E has balanced
weights, can be used to sort out the relevant information from a superposi-
tion of uncorrelated codes.

The matrix W E can be viewed as a weight matrix, either of feedforward
connections between two populations of NE neurons or of lateral interac-
tions inside a population, and extracts the population code of any input
pattern in a single step. However, if W E slightly deviates from the de�ni-
tion, it is no longer a projection, and iterations of W E are likely to diverge or
fade. A simple way to prevent divergence is to use a saturating nonlinearity
(e.g., sigmoid). A more realistic solution is to adjust the shape of a nonsat-
urating nonlinearity to guarantee a stable behavior (Yang & Dillon, 1994;
Zhang, 1996). In particular, an appropriate scaling of the gain of the neurons
(maximum of the derivative of the nonlinearity) to the largest eigenvalue of
W E leads to the existence of a Lyapunov function for continuous network
dynamics.

If the distribution of PAs is uniform, W E is a circulant matrix (Davis,
1979). Iterations of a circulant matrix can extract the �rst Fourier component
of the input, provided the �rst Fourier coef�cient of the matrix is greater
than 1 and all other coef�cients strictly less than 1 (Pouget et al., 1998). Here,
W E corresponds to the special case where the �rst Fourier coef�cient is 1
and all others are zero.

Wecouldas well consider W F D FTF as a matrix ofrecurrent connections
on the output layer to suppress noise on this layer.

3.4 Learning Distributed Representations of Linear Transformations.
Up to now, we have demonstrated that a correspondence between external
and neural spaces could be established and maintained. This correspon-
dence permits a faithful neural representation of external vectors and map-
pings. It remains now to be shown whether a distributed representation of
a linear mapping can be built from examples using a local synaptic learn-
ing rule. We prove below that it is indeed possible, provided the training
examples satisfy a part of the regularity condition.

3.4.1 Hebbian Learning of Linear Mappings. Let M be a linear transforma-
tion and (Xº, Yº D MXº) be training pairs in E £F,º D 1, . . . , Nex. Hebbian
learning writes

M¤
ij /

NexX

ºD1

yº
i xº

j ,



854 Pierre Baraduc and Emmanuel Guigon

where (xº, yº) are the distributed representations of the training samples.
Then,

M ¤ /
X

º

FTYº(Xº)TE /
X

º

FTMXº (Xº)TE / FTME

if the training examples satisfy

X

º

Xº (Xº)T / Idim E. (3.6)

In this case, the matrix M ¤ is proportional to the required matrix. Thus, any
distributed linear transformation can be learned modulo a scaling factor by
Hebbian associations between input and output activities if the components
of the training inputs are uncorrelated and have equal variances (zero mean
is not required). In practice, to control for the weight divergence implied by
standard Hebbian procedures, the following stochastic rule is used:

DM¤
ij / (yº

i xº
j ¡ M¤

ij). (3.7)

3.4.2 Nonregular Distribution of Examples and Tuning Properties. Regu-
larity may be a restricting condition in some situations. Distributions of
PAs are not necessarily regular, or it may not be possible to guarantee that
training examples are regularly distributed. This latter case can occur when
learning a (generally ill-de�ned) linear mapping from samples of its inverse
(Kuperstein, 1988; Burnod et al., 1992; Bullock et al., 1993). We denote M1
the inverse mapping. Training consists of choosing an output pattern yº,
calculating the corresponding input pattern xº D ETM1Fyº, and then using
(xº, yº) as examples. If the yº are regular, Hebbian learning leads to the rep-
resentation of MT

1 but not M¡1
1 (or a generalized inverse if M1 is singular or

noninjective).
An appropriate solution to this problem is obtained if the learning takes

place only for the Mij receiving maximal x input, that is, Mijmax (º), where
jmax (º) D arg max xº

j . If the vectors xº have the same mean norm, we can
assimilate xº whose largest coordinate is the jth to ej (distributed represen-
tation of Ej). Then the jth column of M writes

M¢j D
X

ET M1FyºDej

yº D FT

0

@
X

Yº2M¡1
1

(Ej)

Yº

1

A . (3.8)

It is clear that the latter sum is an element of M¡1
1 (Ej). Section A.4 shows

that when the Fi are regular, the sum converges toward M†
1Ej . The matrix M

is then exactly the distributed representation of the Moore-Penrose inverse
of M1. Informally, this winner-take-all learning rule works by equalizing
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learning over input vectors, whatever their original distribution. In pratice,
a soft competitive approach can be used (e.g., to speed up the learning),
but the proportion of winners must be kept low in the presence of strong
anisotropies. It must be noted that this applies only if the vectors xº have
the same norm on average. If this condition is not ful�lled, a correction by
1/kxºk2 must be applied.

This rule developed in a Hebbian context naturally extends to the param-
eter-dependent case.

3.4.3 Learning Parameter-Dependent Linear Mappings. We now treat the
more general case where a linear mapping depends on a parameter. Typ-
ically, such a mapping arises as a local linear approximation (Jacobian) of
a nonlinear transformation (see Bullock et al., 1993). Consider a nonlinear
mapping y D w (Â) (e.g., w is the inverse kinematic transformation for an
arm; Â are the cartesian coordinates of the arm end point and y the joint
angles). Linearization around Â0 gives Py D M (Â0) PÂ, M being the Jacobian
of w . If the value y0 D w (Â0) is given, the nonlinear mapping can be com-
puted by incrementally updating y with Py D M PÂ along any path starting at
Â0. Thus, the problem reduces to computing a parameter-dependent linear
mapping, which can be written, using previous notations, as Y D M (P)X,
where P is a parameter. We denote by P the physical space of parameters
and P the space of the neuronal representation of parameters (e.g., P is the
two-dimensional space of joint angles and P can be a set of postural signals).

A solution to this problem is to consider the coef�cients Mij correspond-
ing to the distributed representation of M not as weights, but as activities of
neurons modulated by the parameter P 2 P, and to assume a multiplicative
interaction between Mij and xj. In the simplest case where P modulates
linearly the coef�cients, this can be written

y D M x and M D V p

³
i.e., Mij D

X

k

V ijkpk

´
, (3.9)

where V is a set of weights de�ned over E £ F £ P and p 2 P .
Then the mapping is learned by retaining for each neuron of layer M

the relationship between the input p and the desired output M¤
ij D

P
º yº

i xº
j .

Thus, the weights V can be obtained by

D V ijk / (yº
i xº

j ¡ Mij)pº
k , (3.10)

which is a stochastic error-correcting learning rule. Contrary to the standard
delta rule, equation 3.10 does not require an external teacher, as the reference
signal is computed internally. Moreover, connectivity V ijk can be far from
complete, as lateral connections between Mij units can help to form the
desired activity pro�le (see section 3.3.3; Baraduc et al., 1999). Note that if
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the parameter P is coded by a population of cosine-tuned neurons (i.e., p is a
distributed representation of P), then equation 3.10 simpli�es to a Hebbian
rule:

D V ijk / yº
i xº

j pº
k .

In a more general case, the activities Mij can depend on p via a perceptron
or a multilayer perceptron. The learning rule, equation 3.10, can then be
transformed to include a transfer function and possibly be the �rst step of
an error backpropagation.

4 Generalization to Other Tuning Functions

It can be asked whether the mechanisms and properties of distributed com-
putation proposed here depend on the speci�c cosine tuning that has been
assumed (see equation 2.2). We now show that these results can be extended
to a broad class of tuning functions (see equation 2.1), if we assume that the
Ei have a uniform distribution. Following Georgopoulos et al. (1988), we use
a continuous formalism (see also Mussa-Ivaldi, 1988). Given the previous
assumptions, the uniformity guarantees that the population vector points
in the same direction as the encoded vector (Georgopoulos et al., 1988):

Z Z
f (X ¢ E, b )E dPE dPb D X. (4.1)

The independence of b and E allows writing (Georgopoulos et al., 1988)
Z Z

f (X ¢ E, b )E dPE dPb D
Z ³Z

f (X ¢ E, b )E dPE|b

´
dPb .

Thus, any demonstration made with constant b can be easily generalized
to varying b . Accordingly, we remove b in the following calculations.

4.1 Encoding-Decoding Method.

4.1.1 Distributed Representation of Vectors. The distributed representa-
tion of a vector X in E is no more a vector but a function x D x(E) D f (X ¢E).
According to our hypothesis, the vector X can be recovered from its dis-
tributed representation x (see equation 4.1).

The dot product of the distributed representations of two vectors X and
Z in E is de�ned by

h(X, Z) D
Z

f (X ¢ E) f (Z ¢ E) dPE. (4.2)

We �rst observe that h can be manipulated as a tuning function. A vector
can be reconstructed from tuning curve functions (see equation 4.1), as well
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as from h:
Z

h(X, E)E dPE D
Z Z

f (X ¢ E0 ) f (E ¢ E0 )E dPE dPE0

D
Z

f (X ¢ E0 )
Z

f (E ¢ E0 )E dPE

| {z }
E0

dPE0

D X. (4.3)

This property is immediate in the cosine case since h D f D dot product. In
the general case, it can be shown that h(X, Z) is a function of X ¢ Z and that
if f is nondecreasing, so is h (see section A.5).

4.1.2 Distributed Representation of Linear Transformations. There is a the-
oretical form (no longer a matrix, but a function) for the distributed repre-
sentation of a linear mapping M . It is de�ned by

M (E, F) D g(FTME)

and

y(F) D
Z

M (E, F) x(E) dPE, (4.4)

where y(F) is the distributed output corresponding to the distributed input
x(E) D f (X ¢ E) of a physical vector X. This exact counterpart of the cosine
case (see equation 2.2) is easily demonstrated by showing that

R

F
y(F)F dPF D

Y, with Y D MX.

4.2 Stabilizing Distributed Representations. In the same way, there is
a straightforward generalization of matrix W E (see section 3.3.3) de�ned by

W E (E, E0 ) D f (E ¢ E0).

However, unlike the cosine case, these theoretical forms are not particularly
useful since they are not in general similar to versions obtained by learning.
Thus, in the following section, we derive and use Hebbian versions M ¤

and W ¤
E of M and W E .

4.3 Learning Distributed Representation of Linear Transformations.
The learning rules for the �xed or the parameter-dependent mapping still
apply. We use a continuous formalism for both tuning functions and training
examples. A straightforward derivation proves that the distributed trans-
formation can be learned as before through input-output correlations. It can
be shown that the distributed map corresponding to a linear transformation
M between vectorial spaces E and F is represented by the function

M ¤ (E, F) D
Z

f (Xº ¢ E) g(MXº ¢ F) dPº, (4.5)
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where Pº is the distribution of training examples (see appendix A.6). It can
be seen that M ¤ (E, F) is a function of E ¢ F using the method developed for
equation 4.2.

Next we de�ne W ¤
E as the distributed representation of the identity map-

ping on E obtained by learning (see equation 4.5)

W ¤
E (E, E0 ) D

Z
f (Xº ¢ E) f (Xº ¢ E0 ) dPº.

From equation 4.2, we see that W ¤
E D h(E, E0 ).

The function W ¤
E can be used as a feedforward or lateral interaction

function. Any input distribution x(E) is transformed as

W ¤
E x(E) D

Z
h(E, E0 ) x(E0 ) dPE0 . (4.6)

If x is the distributed representation of a vector X of the physical space, it is
immediately clear that

W ¤
E x(E) D

Z
h(E, E0 ) f (X ¢ E0 ) dPE0 ,

which is a function of nondecreasing function X ¢ E (see the method in
section A.5). W ¤

E modi�es the pro�le of activity, but changes neither the
preferred attribute nor the center of mass of a population code.

If x is any distribution, the result of equation 4.6 depends on the shape
of the dot product function (and thus the tuning function since the two are
tightly related; see section 4.4). W ¤

E is a Fredholm integral operator with
kernel h. If the kernel is degenerate—that is, it can be written as a �nite sum
of basis functions (e.g., Fourier series)—Im W ¤

E is a �nite dimensional space
generated by these functions. Thus, W ¤

E suppresses all other harmonics. The
case of a cosine distribution of lateral interactions (see section 3) corresponds
to a two-dimensional space generated by cos and sin functions (and W ¤

E
is a projection). Gaussian distribution of weights, which contains a few
signi�cant harmonics, is known empirically to suppress noise ef�ciently
(Douglas, Koch, Mahowald, Martin, & Suarez, 1995;Salinas & Abbott, 1996).

However, W ¤
E is not in general a projection, which is problematic if W ¤

E
represents a transform through recurrent connections. Solutions in the dis-
crete spatial case have been discussed (see 3.3.3) and extend to this case
(Zhang, 1996). In particular, the scaling of the largest eigenvalue is possible
since W ¤

E has the largest eigenvalue, which is equal to kW ¤
E k.

After learning, the output neurons are not tuned to input vectors as they
are during the learning phase; that is, g(MX¢F) are not their tuning functions.
Indeed, activity of an output neuron is

y(F) D
Z

º

h(X, Xº) g(MXº ¢ F) dPº, (4.7)
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which is generally notequal to g(MX¢F). However,using thesamereasoning
as for equation 4.2 (see section A.5), we can show that

y(F) D Qg(MX ¢ F).

It follows that the y are still broadly tuned to MX; moreover, the PAs in
input space keep the same expression FTM as in the cosine case.

4.4 Numerical Results for 2D Circular Normal Tuning Functions. Con-
trary to the cosine case, learning with tuning function g leads to a different
output tuning Qg. Is this change important? How similar are these two tuning
curves?

We illustrate here the differences among the intrinsic tuning functions ( f
and g), the dot product (h), and the output tuning function ( Qg), using circular
normal (CN) tuning functions (Mardia, 1972) in R2. These functions have a
pro�le similar to a gaussian while being periodic. Their general expression
is f (cosh ) D AeK cosh C B. We used the following version for both input and
output tuning,

f (u) D g(u) D
eKu ¡ e¡K

eK ¡ e¡K ,

where K controls the width at half-height. Thus, f and g take values between
0 and 1 if the coded vectors and the PAs are unit vectors.

With these assumptions, h D f ¤ f , where ¤ is the convolution, and
thus their respective Fourier coef�cients verify Ohn D Of 2

n . Interestingly, the
distribution of the Fourier coef�cients of CN functions is such that h, once
normalized between 0 and 1, is very close to a broader CN function hCN. In
our numerical simulations, the relative error was

khnormalized ¡ hCNk
khnormalizedk

< 2%,

where khk denotes the L 2-norm of h. However, the convolution leads to
a widening of h compared to f (see Figure 1A), since it favors the largest
Fourier coef�cients, which happen to be the �rst for CN functions. This
broadening effect is maximal for f of width ¼ 110 deg (see Figure 1B). Since
Qg D h ¤ g (see equation 4.7), Qg is still broader than h (see Figure 1B).

These results show that feedforward or recurrent neural processing pre-
serves the general shape of intrinsic tuning functions but increases their
width. After about two to �ve feedforward steps, the tuning of output neu-
rons ( Qg) is close to a cosine.

5 Deviations for Nonuniform Distributions of PAs

The preceding results on noncosine tuning curves were obtained for a uni-
form distribution of PAs, whereas a weaker constraint (regularity condition)
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Figure 1: (A) Shape of the intrinsic tuning curve of input and output neurons
( f , dotted line), the distributed dot product (h, gray line), and input tuning of
output neurons (Qg, solid line). The width (at half-height) of f was 60± (K D 5.2).
The curves for h and Qg were constructed from the �rst 20 Fourier coef�cients of
f . (B) Width (at half-height) of h (gray line) and Qg (solid line) as a function of the
width of f (K D .01–45).

was suf�cient in the cosine case. Here we explore numerically to what ex-
tent the population computation can be accurate for a regular nonuniform
distribution of PAs. In relation to electrophysiological data (Oyster & Bar-
low, 1967; Lacquaniti, Guigon, Bianchi, Ferraina, & Caminiti, 1995; Wylie,
Bischof, & Frost, 1998), such a distribution was assumed clustered along
preferred axes (here in 2D).

To express the clustering along the axis h D 0, the probability density of
a vector E D (cosh, sinh ) was assumed to follow dPE /dh / exp(¡h2 /V) for
h 2] ¡ p /4I p /4]. The same density was used modulo p /2 for the directions
h D p /2, p , and 3p /2. The resulting densities for four different values of V,
from V D 3 (moderately clustered distribution) to V D 10¡12 (PAs aligned
on the axes), are plotted in the inset of Figure 2.
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Figure 2: Precision of the distributed computation as measured by the discrep-
ancy between the decoded input and output in the case of the distributed identity
mapping. The error in the transformation is plotted as a function of the tuning
width of f and the clustering of the 2D basis vectors E around the axes. The inset
shows the four distributions of E that have been tested (see the text). For each
condition, the error was calculated as the mean absolute difference between en-
coded and decoded vectors over 1000 trials (i.e. 1000 randomly chosen encoded
vectors).

To illustrate how the scheme of distributed computation proposed here
behaves in these conditions, we measured the errors induced by the dis-
tributed computation W E of the identity function. The population was sam-
pled exactly regular, so that heavy computations involving large numbers
of neurons could be avoided. Assuming tuning functions to be circular nor-
mal, we computed the angular difference between the decoded input and
output vectors for different distributions of E and different tuning widths.
The results shown in Figure 2 were obtained by computing the identity on
1000 random vectors on a regular population of 1000 neurons.

Asexpected, the most uniform distribution behaves best, generating very
small errors. The deviation of the population vector increases with the clus-
tering of the basis vectors. However, the more the tuning curves broaden,
the less this effect is pronounced. In particular, if the tuning width is greater
than 100 degrees, the directional error in the population vector is always
inferior to 5 degrees. We conclude that the distributed computation of linear
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mappings is still possible with minimal error in the case of clustered PAs
when tuning curves are suf�ciently broad.

6 Discussion

This article has addressed the calculation of vectorial transformations by
populations of cosine-tuned neurons in a linear framework. We have shown
that appropriate distributed representations of these transformations were
made possible by simple and common properties of neural computation
and learning: decoding with the population vector, regular distributions of
tuning selectivities and input-output training examples, Hebbian learning,
and cosine-tuned lateral interactions between neurons. We have analyti-
cally extended this result to the noncosine broadly tuned case for uniform
distributions and numerically to regular nonuniform distributions.

The use of the population vector may appear problematic because it
is in general not an optimal decoding method (Salinas & Abbott, 1994).
Statistical optimality is clearly an important theoretical issue (Snippe, 1996;
Pouget et al., 1998), but it is unclear whether it is also a relevant concept
for computation in the nervous system. As emphasized by several authors
(Paradiso, 1988; Salinas & Abbott, 1994), the use of a large number of cells to
estimate a parameter is likely to overcome variability in single-cell behavior.
In fact, accuracy (small bias and low variance compared to the coding range)
may be more important than optimality. Furthermore, the main dif�culty
with the PV method is its poor behavior when used for biased distributions
of preferred directions (Glasius, Komoda, & Gielen, 1997) or populations of
sharply tuned neurons (Seung & Sompolinsky, 1993). We have restricted our
theory to regular or uniform distributions and broadly tuned neurons. For
regular distributions, the PV method is an optimal linear estimator (Salinas
& Abbott, 1994). Broadly tuned neurons allow the PV method to approach
the maximum likelihood method for Poisson noise (Seung & Sompolinsky,
1993).

The question arises whether electrophysiological data actually satisfy the
regularity condition. This is clearly the case for uniform distributions (Geor-
gopoulos et al., 1986; Schwartz, Kettner, & Georgopoulos, 1988; Caminiti,
Johnson, Galli, Ferraina, & Burnod, 1991). However, not all distributions are
uniform (Hubel & Wiesel, 1962; Oyster & Barlow, 1967; van Gisbergen, van
Opstal, & Tax, 1987; Cohen, Prud’homme, & Kalaska, 1994; Prud’homme
& Kalaska, 1994; Lacquaniti et al., 1995; Rosa & Schmid, 1995; Wylie et al.,
1998), and it remained to be checked if these distributions are regular. A
particular distribution is a clustering of PAs along preferred axes (Oyster &
Barlow, 1967;Cohen et al., 1994; Prud’homme & Kalaska, 1994; Lacquaniti et
al., 1995; Wylie et al., 1998; see also Soechting & Flanders, 1992). Populations
of neurons in posterior parietal cortex of monkeys have such a distribution
of PAs and satisfy the regularity condition (p < 0.01, unpublished obser-
vations from the data of Battaglia-Mayer et al., 2000). The same was seen
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in anterior parietal cortex (E. Guigon, unpublished observations from the
data of Lacquaniti et al., 1995). This latter observation indicates that vec-
torial computation can occur not only in uniformly distributed neuronal
populations, but also at the different levels of a sensorimotor transforma-
tion where neurons are closely related to receptors or actuators (Soechting
& Flanders, 1992).

The regularity condition allows basic operations of linear algebra to be
implemented in a distributed fashion. A similar principle was �rst pro-
posed by Touretzky et al. (1993). They introduced an architecture called a
sinusoidal array, which encodes a vector as distributed activity across a neu-
ronal population (see equation 2.2), and they used this architecture to solve
reaching and navigation tasks (Touretzky et al., 1993; Redish, Touretzky, &
Wan, 1994; Redish & Touretzky, 1994). However, in their formulation, vector
rotation (which is a linear transformation) was implemented in a speci�c
way, using either shifting circuits (Touretzky et al., 1993) or repeated vec-
tor addition (Redish et al., 1994). In our framework, vector rotation can be
represented by a distributed linear transformation as any morphism (see
section 3.2).

We derived closely related results for a broad class of tuning functions
(see equation 2.1), although under more restricting hypotheses (uniform
distribution of PAs). A theoretically unbiased population vector can be con-
structed from a nonuniformly distributed population of neurons by adjust-
ing the distribution of tuning strength (Germain & Burnod, 1996) or tuning
widths (Glasius et al., 1997). However, these methods cannot be used to re-
lease the uniformity constraint since the hypothesis of independence of PAs
and parameters distribution is violated. A particular example of nonuni-
form distribution of PAs is their clustering along axes (Oyster & Barlow,
1967; Cohen et al., 1994; Prud’homme & Kalaska, 1994; Lacquaniti et al.,
1995; Wylie et al., 1998). In this case, although the operation of the network
is only exact for pure cosine tuning curves, we have shown numerically that
a good approximate computation is still possible if the tuning is suf�ciently
broad.

Salinas and Abbott (1995) derived a formal rule to learn the identity map-
ping in dimension 1 (i.e., x ¡! x through uniformly distributed examples).
Their demonstration relies on the fact that the tuning curves and synaptic
connections depend on only the magnitude of the difference between pre-
ferred attributes. Our results generalize this idea to arbitrary linear map-
pings in any dimension. The generalized constraint is that the tuning curves
and connections depend on the scalar product of preferred attributes, which
includes the one-dimensional case. Salinas and Abbott (1995) also provided
a solution to (x, y) ¡! x C y in dimension 1. However, their method may
not be generalizable to higher dimensions. In fact, this transformation is not
a (bi)linear transformation and is not easily accounted by our theory (ex-
cept in the cosine case; see also Touretzky et al., 1993). Interestingly, when
one asks how information is read out from distributed maps of directional
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signals, vector averaging and winner-take-all are more likely decision pro-
cesses than vector summation (Salzman & Newsome, 1994; Zohary, Scase,
& Braddick, 1996; Groh, Born, & Newsome, 1997; Lisberger & Ferrera, 1997;
Recanzone, Wurtz, & Schwarz, 1997).

An important application of our theory is learning a coordinate transfor-
mation from its Jacobian. This problem can be solved formally as an ensem-
ble of position-dependent linear mappings (Baraduc et al., 1999). However,
unlike previous models (Burnod et al., 1992; Bullock et al., 1993), it is not
required that position information be coded in a topographic manner. Ar-
bitrary codes for position can be used provided that the mapping between
the position and the distributed representation of the Jacobian (see equa-
tion 3.9) is correctly learned. The most interesting point is that neurons of the
network display realistic �ring properties, which resemble those of parietal
and motor cortical neurons. These results render the theory presented here
attractive for modeling sensorimotor transformations.

Appendix

A.1 Convergence of Q in Probability for Regular PAs. Here we show
that Q D 1

N EET converges in probability toward the identity matrix (up to
a multiplicative constant) if the distribution of the PAs ET

i is regular.
The kth (1 · k · D) diagonal term of Q is

Qkk D
1
N

NX

iD1

E2
ik,

which tends in probability toward s2
E when N tends to in�nity. Indeed,

V (Qkk) D
1

N2

NX

iD1

V(E2
ik) D

V
¡
E2

1k

¢

N
.

The off-diagonal element Qkl (k 6D l) of Q is Qkl D
1
N

NX

iD1

EikEil; hence,

lim
N!1

hQkli D 0 and lim
N!1

V (Qkl) D lim
N!1

V (EikEil) /N D 0.

Thus, Q converges in probability toward s2
EID.

A.2 Correlated Noise. Writing Q the correlation matrix of the noise,
the variance V (Eg/N) of the read-out vector can be expressed as the �rst
diagonal of matrix

V D
1

N2 EQET.
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For an independently distributed gaussian noise, Q is proportional to the
identity matrix and V (Eg/N) / 1/N. In the case of correlated gaussian
noise,

Q D s2
g

£
IN C c(IN,N ¡ IN)

¤
,

and we get

V D
1 ¡ c
N2 s2

g EET D
(1 ¡ c)s2

g s2
E

N
ID.

For Poisson noise, thenoise correlation matrix isQ ij D
£
(1 ¡ c)dijxi C cpxixj

¤
.

If there is no correlation (c D 0), matrix V is Ediag(xi )ET /N2, and its ith di-
agonal term writes

1
N2

X

k

xkE
2
ki ·

1
N

xmaxQEii D
xmax

N
.

For nonzero c, the term

Vc D
c

N2 diag
³

E
hp

xixj

i

ij
ET

´
D

c
N2

¡
E

p
x
¢2

must be added. This term is independent of N and can be evaluated nu-
merically for a few types of distribution of ET. For instance, if the PAs are
uniformly distributed in 3D space and the minimum �ring rate equals zero,
and assuming that the norms of the Ei and their directions are independently
distributed,

Vc D ckEk
"

1
4p

Z 1

¡1

Z

2p

p
1 C s

±p
1 ¡ s2 cosh ,

p
1 ¡ s2 sinh , s

²
ds dh

#2

· c xmax

"
1
2

Z 1

¡1
s
p

1 C s ds

#2

·
8

225
c xmax ,

hence, the upper bound of equation 3.4 (here kEk denotes the mean norm
of the Ei vectors). The derivation of equation 3.5 is left to the reader.

The demonstration of the properties of W E is analogous.

A.3 General Cosine Tuning. In most of the sections on coding and de-
coding, the baseline term b was 0. We now show how the results change for
a nonzero baseline.

We can use an approach similar to that in section 3.1 to show that

1
N

X
xiyi ¡! X ¢ Y C Ob in probability as N ! 1,



866 Pierre Baraduc and Emmanuel Guigon

where x, y are distributed representations of physical vectors X, Y, and

Ob D lim
N!1

bTb
N

depends only on b. Thus, the scalar product of two vectors deduces easily
from the scalar product of their distributed representations.

The expression for matrix W E (see section 3.3.3), which we write W for
simplicity, transforms to

W 0 D W C
b

N Nb
IT
N ,

where Nb the mean over i of bi. It can be checked that W 0 is a projection on
the af�ne subspace Ep C b and possesses the same properties as W .

Learning a linear transformation amounts to calculating the matrix

M ¤ D
X

º

(FTYº C bF) (ETXº C bE)T ,

where bE and bF denote the mean activity of input and output neurons,
respectively. If the training inputs satisfy the regularity condition, we have

M ¤ D FTM

³
X

º

Xº (Xº)T

´
E

| {z }
kM

C FTM

³
X

º

Xº

´
bT

E

| {z }
0

C bF

³
X

º

(Xº)T

´
E

| {z }
0

CNexbFbT
E ,

where k is a proportionality constant de�ned by equation 3.6. The regular-
ity condition leads to k D r2Nex/DE, where r is the mean norm of input
examples and DE D dim E. Hence,

M ¤ / M C
r2

DE
bFbT

E .

Thus, appropriate mapping occurs, although there is no guarantee that the
output baseline activity will equate the baseline activity of the training pat-
terns.

A.4 Nonuniform Xº:Convergence Toward the Moore-Penrose Inverse.
When Fi are uniformly distributed in F, learning from the examples of a
noninvertible mapping M1 between output and input converges toward
the distributed representation of its Moore-Penrose inverse.
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Start from equation 3.8, and take Yº 2 M¡1
1 (Ej). As the Moore-Penrose

inverse of M1 is zero on the kernel of M1, we can write Yº D M†
1Ej C Kº,

where Kº 2 ker M1.
If we assume that yº are uniformly distributed in Fp (index p is de�ned

in section 3.3.3), then the distribution of Yº is uniform. It follows that the
distribution of the Kº is symmetric with respect to zero. Hence,

X

M1YºDEj

Yº / M†
1Ej.

The proportionality factor is identical for all j if equation 3.7 is used, which
completes the proof.

A.5 Distributed Dot Product. We show now that h(X, Z) is a function
of X ¢ Z, assuming that the encoded vectors are unit vectors. We note S the
unit sphere of E and de�ne

Sa(X) D fU 2 S | U ¢ X D ag.

Then

h(X, Z) D
Z

a

Z

Sa (X)
f (a) f (Z ¢ (aX C E?)) dPE da

D
Z

a

f (a)
Z

Sa (X)
f (aZ ¢ X C Z ¢ E?) dPE

| {z }
ha (X,Z)

da,

where E? is the projection of E on the subspace orthogonal to X. Let us
de�ne

Sau D fE 2 S | Z ¢ E? D u and X ¢ E D ag,

and write

ha (X, Z) D
Z

u
f (aZ ¢ X C u)

Z

Sau

dPE

D
Z

u
f (aZ ¢ X C u) dPu,

which depends only on X ¢ Z. This is the required result. Moreover, if f
is nondecreasing (which is generally the case for a tuning function), it is
immediate that h is nondecreasing.

A.6 Hebbian Learning of Distributed Maps: General Case. The fol-
lowing derivation shows that Hebbian learning of linear mappings can still
be achieved.
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Using equation 4.4, we obtain

Z

F

y(F)F dPF D
Z

E

Z

F

Z

º

f (Xº ¢ E)g(MXº ¢ F)x(E)F dPE dPF dPº

D
Z

º

Z

F

2

4
Z

E

f (Xº ¢ E) f (X ¢ E) dPE

3

5

| {z }
h(X,Xº)

g(MXº ¢ F)F dPF dPº

D
Z

º

h(X, Xº)

2

4
Z

F

g(MXº ¢ F)F dPF

3

5

| {z }
MXº

dPº

D
Z

º

h(X, Xº)MXº dPº.

If we assume that the distribution of training examples has the same prop-
erties as the distribution of PAs, then Y D MX (using equation 4.3). This
proves that the vector represented in the output activities is correct.
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