
LETTER Communicated by Suzanna Becker

Supervised Learning in a Recurrent Network of Rate-Model
Neurons Exhibiting Frequency Adaptation

Pierre A. Fortier
pfortier@uottawa.ca
Department of Cellular and Molecular Medicine, Univ of Ottawa, Canada,
K1H 8M5

Emmanuel Guigon
guigon@ccr.jussieu.fr
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For gradient descent learning to yield connectivity consistent with real
biological networks, the simulated neurons would have to include more
realistic intrinsic properties such as frequency adaptation. However, gra-
dient descent learning cannot be used straightforwardly with adapting
rate-model neurons because the derivative of the activation function de-
pends on the activation history. The objectives of this study were to
(1) develop a simple computational approach to reproduce mathemati-
cal gradient descent and (2) use this computational approach to provide
supervised learning in a network formed of rate-model neurons that ex-
hibit frequency adaptation.

The results of mathematical gradient descent were used as a reference in
evaluating the performance of the computational approach. For this com-
parison, standard (nonadapting) rate-model neurons were used for both
approaches. The only difference was the gradient calculation: the math-
ematical approach used the derivative at a point in weight space, while
the computational approach used the slope for a step change in weight
space. Theoretically, the results of the computational approach should
match those of the mathematical approach, as the step size is reduced
but floating-point accuracy formed a lower limit to usable step sizes.
A systematic search for an optimal step size yielded a computational ap-
proach that faithfully reproduced the results of mathematical gradient
descent.

The computational approach was then used for supervised learning
of both connection weights and intrinsic properties of rate-model neu-
rons to convert a tonic input into a phasic-tonic output pattern. Learning
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produced biologically realistic connectivity that essentially used a
monosynaptic connection from the tonic input neuron to an output neu-
ron with strong frequency adaptation as compared to a complex network
when using nonadapting neurons. Thus, more biologically realistic con-
nectivity was achieved by implementing rate-model neurons with more
realistic intrinsic properties. Our computational approach could be ap-
plied to learning of other neuron properties.

1 Introduction

The building blocks of nervous systems evolved very early. Most of the
small neurotransmitters as well as peptides and their associated G-protein
coupled receptor systems are present in protozoa (Harris-Warrick, 2000;
Ranganathan, 1994). Furthermore, the major families of ion channels prob-
ably evolved from prokaryote precursors, and most of the major classes of
ion channels were present about a billion years ago by the time the first
nervous systems began to evolve (Harris-Warrick, 2000). Modern families
of animals share a similar set of ion channel genes, yet there has been consid-
erable evolution in channels. Changes have been in domains that are not re-
sponsible for channel formation but for voltage, kinetic, or other properties
of channels. Single neurons and even neuronal circuits can show dramatic al-
terations in activity with only minute changes in channel properties (Katz &
Harris-Warrick, 1999). Thus, evolutionary change has packaged enormous
information processing power by utilizing not only connectivity but also
intrinsic neuronal properties in the formation of nervous systems (Barish,
1988; Finlay & Darlington, 1995).

Neurobiologists are revealing more and more of the connectivity and
intrinsic properties of neurons in an attempt to reveal the representation
and processing of information by nervous systems and also to explain the
mechanisms underlying behavior. Among all the nervous systems that have
been studied, the cerebral cortex still continues to be one of the most in-
tensively studied nervous tissues because of its unique ability in humans
to implement adaptive measures and realize creative genius. Animal re-
search has provided considerable detail on the synaptic inputs to the cere-
bral cortex, the intrinsic cortical circuitry and neuronal firing properties,
and the output projections to extracortical regions (Jones, 2000; deCharms
& Zador, 2000). This detail is nonetheless insufficient to fully explain the
transformation of information and its ultimate contribution to behavior.
There is a need for simultaneous information on the connectivity and ac-
tivity of neurons contributing to cortical network behavior. The most direct
approach would be to obtain this information in live preparations of cortical
tissue, but this involves technically challenging experiments. A less direct
but more feasible approach would be to get a preview of this information
from neural network simulations of cortical tissue (Arbib & Erdi, 2000; Koch
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& Segev, 1989). The word preview is used to acknowledge the fact that insight
gained from simulations must be confirmed in neurobiological experiments.
However, less technically challenging experiments may suffice for confir-
mation.

The likelihood that the connectivity achieved after learning in a neural
network simulation will be recognizable within the true cortical architec-
ture giving rise to the biologically observed behavior is dependent on the
accuracy to which simulated neurons reproduce their biological counter-
parts. For example, a single monosynaptic connection to a regular-spiking
pyramidal cell is all that is required to convert a presynaptic tonic dis-
charge into a postsynaptic phasic-tonic discharge (Schwindt, Spain, & Crill,
1992); however, a complicated network architecture is required by a sim-
ulated neural network using rate-model neurons that do not exhibit the
frequency adaptation of regular-spiking pyramidal cells. The obvious so-
lution is to implement frequency adaptation in rate-model neurons, but
the consequence is that supervised learning using backpropagation or
other mathematical variations of gradient descent cannot be used straight-
fowardly because the standard form of these learning algorithms does not
take into account the activation history of a neuron that gives rise to the
frequency adaptation. The problem is that the derivative of the activa-
tion function depends on the activation history of a neuron with frequency
adaptation.

A straightforward solution to this problem was sought using a com-
putational approach that does not require defining the derivative of the
activation function in order to reproduce the mathematical implementa-
tion of gradient descent. The distinction between the mathematical and
computational approaches is that the mathematical approach uses calcu-
lus to derive the gradient, while the computational approach evaluates the
change in neuronal activity following a change in connection weight. The-
oretically, the derivative of the activation function is best approximated as
the tested change in connection weight approaches zero (i.e., lim �wi j → 0
where �wi j is the change in connection weight between neurons i and
j that is used to measure an effect on neuronal activity). However, our
initial attempts using minute changes in connection weight achieved min-
imal learning. It became obvious that more work was required before we
could use a computational approach to reproduce gradient descent learning.
Therefore, there were two objectives in this study. The first was to develop
a simple generalized computational gradient descent approach that repro-
duces the classical mathematical approach described by Williams and Zipser
(1989). Note that the purpose was to reproduce and not to validate the gra-
dient descent approach since this approach has been extensively studied
over the years (Hertz, Krogh, & Palmer, 1991). The second objective was to
demonstrate the ability of this computational approach to achieve super-
vised learning in a network composed of rate-model neurons with frequency
adaptation.
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2 Methods

The rate-model neuron with frequency adaptation will be described be-
fore the computational approach of gradient descent learning so that we
can highlight the features of the rate-model neuron that prohibit the use
of mathematical gradient descent. Among all the possible ways to model
frequency adaptation, the rate-model neuron of Cartling (1995, 1996) was
chosen because it is directly based on the biology of neurons, which use
calcium-sensitive potassium (KCa) channels to provide frequency adapta-
tion (Schwindt et al., 1992, 1988). This frequency adaptation is due to calcium
entry during membrane depolarization and a progressive increase in intra-
cellular calcium during repetitive firing, which leads to calcium binding
to KCa channels that open to hyperpolarize the membrane and gradually
reduce the firing rate. Cartling (1995) derived a rate-model neuron that re-
produced the frequency adaptation of a Hodgkin-Huxley formalism incor-
porating KCa channels. The level of frequency adaptation in this model can
be varied over a wide range, from zero to maximum frequency adaptation,
such that the same current step applied to a neuron could evoke discharges
ranging from tonic to phasic-tonic profiles. This reflects the wide range
of discharge profiles observed during single unit recordings in behaving
animals (Fortier, Smith, & Kalaska, 1993; Fetz, Cheney, Mewes, & Palmer,
1989).

These adapting rate-model neurons were incorporated into a fully recur-
rent neural network. The influence of calcium on neuron firing was imple-
mented in the otherwise standard activation function of neurons (Williams
& Zipser, 1989). Neuronal activity was calculated by taking the sum of all
neuronal inputs (see equation 2.1) and then applying a squashing function
to limit values between −1 and +1 (see equation 2.2). In the present case,
these values represented an input current of −1 to +1ηA to the postsynaptic
neuron. Such a range of input currents produced, according to the equa-
tions of Cartling (1996), neuronal activities ranging from 0 − 224 Hz (see
equation 2.3). These activities were then divided by the maximum firing
rate of 224 Hz (see equation 2.4) in order to linearly rescale the activities
between 0 − 1. Thus, the inputs to a neuron represented an input current
that produced firing rates scaled between 0 and 1 according to the following
equations:

si (t) =
∑

j

wi j yj (t) (2.1)

ii (t) = esi (t) − e−si (t)

esi (t) + e−si (t)
(2.2)

gi (t) =
{

φ(ii (t) − vi ci (t) − ε)ρ if ii (t) − vi ci (t) − ε ≥ 0

0 otherwise
(2.3)
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yi (t + 1) = gi (t)/ω, (2.4)

where si (t) is the net input; yi (t) is the neuron activity scaled between 0
and 1; ii (t) is the input current; gi (t) is the neuron activity in Hz; ci (t) is
the intracellular calcium concentration; wi j is the synaptic weight ranging
between positive and negative values for excitation and inhibition; vi is
the sensitivity of firing to calcium, which ranges between 0 and 1; and
the others are constants with values ω = 224 Hz, φ = 254.7, ε = 0.12, and
ρ = 1. The indexes are defined as j ∈ presynaptic neurons (includes input,
hidden, and output neurons), i ∈ postsynaptic neurons (includes hidden
and output neurons), and t is the time steps in the activity of a neuron. This
implementation does not include a time constant of 1 ms (Cartling, 1996)
for the change in neuron discharge frequency because each time step was
10 ms.

The calcium concentration is calculated according to the differential
equation derived by Cartling (1996): dci (t)/dt = q (ci (t))gi (t)/1000 − ci (t)/τc

where τc is the calcium time constant equal to 111 ms and q (ci (t)) is
the increase in intracellular calcium during neuron activity calculated as
q (ci (t)) = 0.11/(0.9 + ci (t)).

Supervised learning in a fully recurrent network of rate-model neu-
rons can be achieved using the gradient descent approach of Williams and
Zipser (1989). This gradient descent procedure requires changing the synap-
tic weights along the negative of the gradient of the network error function,

�wi j (t) = −α
∂ J (t)
∂wi j

, (2.5)

where w is a connection weight; j ∈ presynaptic neurons, which includes in-
put, hidden, and output neurons; i ∈ postsynaptic neurons, which includes
hidden and output neurons; t is a time step in the activity of a neuron;
α is the learning rate; and J is the network error function, which is defined
as the sum of differences-squared between the target and actual activities.
For a neuron whose net input is si (t) = ∑

j wi j yj (t) and whose activation is
yi (t + 1) = 1

1+e−si (t) , Williams and Zipser (1989) derived the gradient of the
error function as

−∂ J (t)
∂wi j

=
∑

k

ek(t)
∂yk(t)
∂wi j

, (2.6)

where k ∈ postsynaptic neurons (hidden and output units) and e is the dif-
ference between the target (dk(t)) and actual (yk(t)) activity (hidden units
have no target activity so their error would be 0). This equation essentially
determines how the activity of a target neuron is affected by a change in
weight anywhere in the network (i.e., it may be a weight to the target neuron
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or to another neuron that could ultimately have a polysynaptic influence on
the target neuron activity). Mathematical calculation of the gradient requires
knowledge of the derivative of the activation function. For rate-model neu-
rons with frequency adaptation, the derivative of the activation function
(∂yk(t)/∂wi j ) constantly changes with the calcium concentration. Moreover,
the calcium concentration depends on the neuronal activation history since
it changes slowly with a time constant of 111 ms. Of all the possible meth-
ods to manage the complexity of finding the derivative of the activation
function for adapting rate-model neurons, we chose to compute the slope
of the activation function and use this value as an estimate of the deriva-
tive. For this simple computational approach, a connection weight (wi j ) was
increased by a fixed step size (�wi j ), and the change in activities (�yk(t))
was calculated. This was repeated for all connection weights. The weights
remained fixed throughout the trajectory and then were updated in parallel
from the following estimate of the negative gradient of the error function:

∑
k

ek(t)
∂yk(t)
∂wi j

=
∑

k

ek(t)
�yk(t)
�wi j

. (2.7)

This computational gradient descent is identical to the mathematical ap-
proach of Williams and Zipser (1989) except that the derivative (∂yk(t)/∂wi j )
is estimated by computing the slope (�yk(t)/�wi j ) for a given change in con-
nection weight (�wi j ).

Two techniques were used to optimize mathematical gradient de-
scent (Hertz et al., 1991) and significantly improve learning. The first tech-
nique was weight initialization (Nguyen & Widrow, 1990) where the weights
of synaptic inputs to a neuron are set randomly and then each weight is di-
vided by the norm of these random inputs, and then all the connection
weights are adjusted linearly so that the neurons will not saturate during
the initial propagation of activities. Learning time with the mathematical
and computational approaches was typically reduced by a factor of 3.0 to
3.5 using this technique. The second optimization technique used was to
add a momentum term to equation 2.5,

�wi j (t) = −α
∂ J (t)
∂wi j

+ β �wi j (t − 1), (2.8)

where β is 0 − 1. Several values of momentum were tested, but the optimal
value was consistently about 0.5 for all simulations in this study.

3 Results

This section begins by showing how the computational approach of gradient
descent can be used to reproduce the results of the mathematical approach
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defined by Williams and Zipser (1989) when both approaches use stan-
dard (nonadapting) rate-model neurons. This is followed by showing how
our computational approach can be used for supervised learning in a net-
work with rate-model neurons that exhibit frequency adaptation (Cartling,
1996).

3.1 Reproducing Mathematical Gradient Descent. The task that the
network was trained on involved mapping from a tonic input discharge
pattern on a single input unit to a phasic-tonic output pattern on a sin-
gle output unit. The mathematical approach of Williams and Zipser (1989)
uses rate-model neurons, without frequency adaptation, whose activation
is set by the logistic squashing function (1/(1 + e−sk (t))) since its deriva-
tive is known. These rate-model neurons were used to create a network
formed of one bias, one input, three hidden, and one output neurons. Both
the mathematical and computational approaches of gradient descent were
required to transform a tonic input discharge pattern into a phasic-tonic
output pattern. Ten samples of training data were used. Thus, the con-
ditions for both mathematical and computational gradient descent were
identical.

Our computational gradient descent approach was designed to repro-
duce the mathematical approach of Williams and Zipser (1989) except that
the derivative of the activation function (∂yk(t)/∂wi j ) was estimated by using
a finite difference approximation to its slope in the interval [wi j , wi j + �wi j ],
resulting in �yk(t)/�wi j . The optimal step size (�wi j ) had to be determined
empirically. The results describe the selection of an optimal step size that
was defined as that which yielded results reproducing mathematical gra-
dient descent (Williams and Zipser, 1989). Figure 1 shows learning using
mathematical calculation of the gradient with α = 0.04 and β = 0.5. Learn-
ing was stopped after 1298 cycles when the error (measured as the sum of
the differences-squared between the target and actual activities) dropped
from an initial value of 3.14 to a value below 0.03. This served as the
point of reference for comparison with our computational gradient descent
approach.

We first sought an optimal step size yielding the least absolute differ-
ence between the mathematical and computational gradient trajectories.
Step sizes within �wi j = 10−15 − 10 were tested at different levels of net-
work error obtained through successive learning cycles. There was a sig-
moidal relationship such that the optimal step size decreased together with
network error. We also examined gradient ratios calculated by dividing
the amplitude of the mathematical gradient trajectory by the correspond-
ing amplitude of a computational gradient trajectory obtained using the
optimal step size. These gradient ratios also formed a sigmoidal relation-
ship, which decreased along with network error. At the initial error of the
network (3.14), the optimal step size was 1.5. Figure 2 shows an example
of computational gradient descent using this step size. The learning rate
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Figure 1: Learning of the transformation of a tonic input into a phasic-tonic
output pattern using mathematical gradient descent (Williams & Zipser, 1989).
Learning was stopped after 1298 learning cycles (α = 0.04 and β = 0.5) when
error fell below 0.03 and the actual output pattern (o1 solid line) closely matched
the target pattern (o1 dotted line). The area of the blocks reflects strength of
connection (black is excitatory and white is inhibitory) between the presynaptic
neuron (column) and the postsynaptic neuron (row). b = bias, i1 = input unit,
h1-3 = hidden units, o1 = output unit.

(α = 0.16) was selected as four times that used in the mathematical gradi-
ent descent (α = 0.04 in Figure 1) because the amplitude of the gradient
trajectory obtained using a step size of 1.5 was one-fourth that obtained
using mathematical gradient descent.

Although the network error was similar in Figures 1 and 2, the connec-
tion weights were slightly different and, consequently, so were the neuron
activities.

We sought to improve learning by using a sigmoidal step size and learn-
ing rate; however, this did not improve on learning with a fixed step size
of 1.5. The sigmoidal drop in both optimal step size and gradient ratios
suggested that a single optimal step size could be defined better based on
the least variance of gradient ratios throughout the trajectory. Recalculating
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Figure 2: Same as Figure 1 except that error was reduced below 0.03 after 1007
learning cycles of computational gradient descent with α = 0.16, β = 0.5, and
step size = 1.5.

the optimal step size on this basis yielded consistently small optimal step
sizes (1.26E-3 ± 1.62E-3) at all levels of network error. These were associated
with gradient ratios of 3.59 ± 1.36. Thus, a single small step size, based on
least variance of gradient ratios, could yield gradients that were consistently
proportional to those obtained mathematically at any level of error. Mul-
tiplying these computationally derived gradients by a constant could then
provide gradients that reproduced the mathematically derived ones. A step
size of 1.26E-3 with a learning rate of 0.16 yielded the same network as
that using mathematical gradient descent (visual inspection of the network
could not reveal any difference from the reference case; see Figure 1). After
45,000 learning cycles, both mathematical gradient descent (α = 0.04 and
β = 0.5) and computational gradient descent (α = 0.16, β = 0.5, and step
size = 1.26E-3) reduced the error below 1.5E-4.

In theory, the slope of the activation function between wi j and wi j + �wi j

should approach the tangent of the activation function at wi j as lim�wi j →0.
In practice, however, this was not the case. This was likely related to two
factors specific to our computational approach. First, the resolution of 32-bit
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floating-point processors limits the smallest step size to 1E-15 in comparison
to the infinitesimal virtual step of the mathematical approach. Second, the
effects of a finite step (more than 1E-15) may be so small that it falls below
the floating-point resolution and consequently fails to propagate through
the network. The smallest perceptible step capable of propagating network
activity was found to have a sigmoidal relationship with network error. The
smallest step was 2.2E-7 ± 4.2E-7 when error was below an apparent tran-
sition of about 0.5 and it was 2.3E-03 ± 3.3E-03 when above this transition.
Smaller step sizes were incapable of faithfully propagating activity through
the network and consequently incapable of providing an accurate estimate
of the gradient.

3.2 Computational Gradient Descent with Adapting Rate-Model
Neurons. The previous results were from networks with standard rate-
model neurons (without frequency adaptation) in order to reproduce math-
ematical gradient descent using our computational approach. We now show
the behavior of rate-model neurons with frequency adaptation and then
how a network of such adapting neurons can undergo supervised learning
with our computational approach to gradient descent.

As explained in section 2, frequency adaptation of rate-model neurons
was implemented according to Cartling (1996). Neuronal discharge causes
calcium entry leading to stimulation of KCa channels and the expression
of frequency adaptation. The adapting rate-model neuron equation (see
equation 2.3) allows setting a calcium sensitivity that reproduces the effects
of KCa channel density on frequency adaptation. The discharge properties
of a neuron with different levels of calcium sensitivity and current inputs
are shown in Figure 3. In Figure 3A, the neuron received a fixed step input
of 1.0 ηA, but its calcium sensitivity was varied linearly between 0 and 1.0.
At a calcium sensitivity of 0, the discharge rate was maximal (224 Hz) and
followed the step profile of the input current. This yielded the highest level of
intracellular calcium because it is directly related to neuronal firing rate. As
the calcium sensitivity of the neuron was increased by steps of 0.2, there was
a gradual drop of the initial firing rate and the peak calcium concentration.
This yielded a phasic-tonic discharge profile that was most pronounced for
the neuron with maximal sensitivity to calcium. In Figure 3B, the neuron
had a fixed maximal calcium sensitivity of 1.0, but its input consisted of
a first step that varied between 0.2 and 1.0 ηA and a second step always
to 0.8 ηA. As the first step was increased from 0.2 to 1.0 ηA, there was an
increase in both the initial firing rate and intracellular calcium concentration,
which subsequently caused more pronounced attenuation of the firing rates
and clearer phasic-tonic discharges. Although the second step was always
to the same amplitude, the firing rates were inversely related to the prior
activities. These results indicate that the neuron activity depends on the
prior activation history and yields a range of firing profiles, from purely
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Figure 3: Responses of rate-model neurons (Cartling, 1996) with intrinsic prop-
erties producing frequency adaptation. (A) Frequency response and intracellu-
lar calcium levels in response to a fixed 1 ηA input current step to a neuron at
different levels of calcium sensitivity. (B) Frequency response and intracellular
calcium levels of a neuron with fixed calcium sensitivity of 1.0 in response to
a first step to different step sizes of input current and a second step always to
0.8 ηA. Waveforms resulting from the same conditions are labeled at the right
with the same number.
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tonic to strongly phasic-tonic, depending on the size of the input current
and the sensitivity to calcium.

Our computational gradient descent approach was used to produce the
same transformation as in Figure 2 but with adapting rate-model neu-
rons whose calcium sensitivity was held at zero for comparison. It re-
mained to be determined whether the optimal weight change parameters
of α = 0.16, β = 0.5, and step size of 0.001 used with nonadapting neurons
would apply to adapting neurons. Optimal weight learning with adapt-
ing neurons required lower α values and a narrower range of step sizes,
but it included the step size of 0.001 used earlier for nonadapting neurons.
The network obtained by using α = 0.001, β = 0.5, and step size of 0.001
for weight changes, while calcium sensitivity was held at zero, is shown
in Figure 4. As described in section 2, the activities displayed between 0
and 1 represent a linear rescaling of firing rates between 0 and the maximal
firing rate of 224 Hz. Figure 4 shows that the network quickly converged
(error less than 1.26E-3) using computational gradient descent. It was not
surprising to see that the resulting weight matrix was very different from
that in Figure 2 since neurons with different properties were used for the
networks in these two figures.

The next step was to use the computational gradient descent approach to
modify not only connection weights but also the calcium sensitivity of neu-
rons. The learning procedure was identical: weights (wi j (t)) were changed in
proportion to

∑
k ek(t) �yk (t)

�wi j
, while calcium sensitivities (vi (t)) were changed

in proportion to
∑

k ek(t) �yk (t)
�vi

. Since the calcium sensitivities are limited
to values within 0 to 1, it was expected that smaller step sizes would be
optimal. This was observed, but there were minimal benefits from using
smaller step sizes. The values α = 0.001, β = 0.5, and step size of 0.001 were
selected for changing both the connection weights and calcium sensitiv-
ities in order to produce the network results shown in Figure 5. Fig. 5A
shows that the network converged (error less than 2.79E-4) to a solution
that largely involved a single excitatory connection from the input to the
output neuron with a calcium sensitivity (vi ) of 0.64. Neuron h1 was in-
active (its connection to o1 had no impact), neuron h2 had negligible ac-
tivity, and neuron h3 made a small excitatory connection to the output
neuron. Figure 5B shows that eliminating the connections from h2 and h3
to the output neuron did not ruin the match between actual and target
output activities (error less than 2.76E-2). This indicates that the transfor-
mation of the tonic input into a phasic-tonic output was largely achieved
by the frequency adaptation of the output neuron. These results show that
our computational gradient descent approach can correctly modify both
weights and calcium sensitivity in adapting rate-model neurons in such
a way as to achieve supervised learning and produce connectivity consis-
tent with real biological networks where a tonic input is converted into a
phasic-tonic ouput by the intrinsic properties of a single cell (Schwindt et al.,
1992).
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Figure 4: Learning of the transformation of a tonic input into a phasic-tonic
output pattern using computational gradient descent (α = 0.001, β = 0.5, and
step size of 0.001) in a network formed of adapting rate-model neurons with
intrinsic properties that are capable of producing frequency adaptation. The
bottom panel describes the exponential decline in error to less than 1.26E-3 with
successive learning cycles. The area of the blocks reflects strength of connection
(black is excitatory and white is inhibitory) between the presynaptic neuron
(column) and the postsynaptic neuron (row) after learning: b = bias, i1 = input
unit, h1–3 = hidden units, o1 = output unit. The actual firing pattern of each
neuron after learning is displayed. The dotted line for the target output activity
is completely overlapped by the actual activity of the neuron. The right-most
column describes the calcium concentration of the neurons. The column labeled
v contains histogram bars of size 0 for the calcium sensitivity. The calcium sen-
sitivity was set to zero for comparison with the network in Figure 2 containing
rate-model neurons without frequency adaptation.

4 Discussion

The results showed that mathematical gradient descent could be repro-
duced using a simple computational approach that empirically determines
the change in network error for a given step change in connection weight. It
was shown that selection of an appropriate step size was key to reproduction
of mathematical gradient descent. Theoretically, the results of mathematical
gradient descent should be approached by computational gradient descent
as smaller weight steps are used. However, our results showed that numer-
ical resolution formed a lower limit to usable step sizes such that smaller
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Figure 5: Learning of connection weights and calcium sensitivities in a network
with rate-model neurons exhibiting frequency adaptation. (A) The layout is the
same as in Figure 4 and the neural network is the same except that learning
of calcium sensitivity was enabled. The values α = 0.001, β = 0.5, and step size
of 0.001 were used for changing both the connection weights and calcium sen-
sitivities (error less than 2.79E-4). (B) Copy of the network in A except for the
removal of the connections from h2 and h3 to o1 in order to show that the trans-
formation of input activity was largely due to its connection with the output
neuron exhibiting frequency adaptation (error < 2.76E-2).

steps were ineffective in changing network activity and, consequently, in-
effective in providing information about the gradient. This is unlike the
mathematical approach, which always provides information about the gra-
dient.
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Large step sizes always propagate some activity through the network,
but the local details of the error function can be detected only by small step
sizes. The smallest step size that could be used to reveal the gradient was
directly related to network error such that individual neurons became more
sensitive to weight changes as learning occurred. However, the smallest
usable step size was not always optimal. It appears that by not being able
to take an infinitesimal step size, the smallest optimal step size (defined as
that which reproduced the results of the mathematical approach) was then
arbitrarily determined by the step on the error function that produced a
gradient that most closely reproduced the mathematically derived gradient.

The amplitude of the gradient trajectory was smaller when estimated
by the computational approach. This reflects underestimation of a tangent
by measurement of the slope on an exponentially increasing or decreasing
function. This underestimation of the gradient was offset by using higher
learning rates (α). These higher learning rates were no longer appropriate
when we switched from nonadapting to adapting rate-model neurons. It
was not because the actual gradient was better estimated but rather because
the adapting neurons were more sensitive to step changes in weights and
consequently yielded larger gradients. Smaller learning rates had to be used;
otherwise, learning was very erratic. On the other hand, the optimal step
size and momentum identified for nonadapting neurons were appropriate
for the adapting neurons.

The study showed that our computational gradient descent approach
could be used not only to change connection weights but also the sensi-
tivity of frequency adaptation to calcium. The parameters used for weight
changes were also applied to calcium sensitivity changes. Network learn-
ing converged onto the appropriate weight connections and neuron intrinsic
properties that could transform a tonic input pattern into a phasic-tonic out-
put pattern. This transformation was largely achieved by a monosynaptic
connection from the tonic input neuron to the output neuron that exhibited
strong frequency adaptation, as is the case for real biological neurons. For
example, a single monosynaptic connection to a regular-spiking pyramidal
cell is all that is required to convert a tonic input current into a phasic-
tonic discharge (Schwindt et al., 1992). This is a simple yet fundamental
transformation achieved by intrinsic neuron properties rather than connec-
tivity of the network. Thus, it becomes easier to recognize known biological
circuitry in neural network simulations when the model neurons express
more features of real biological neurons. Consequently, it is more likely that
network properties suggested from simulations could be confirmed from
neuron properties and connectivity observed in real biological networks.

Our computational approach to supervised learning is both simple to
implement and generalizable to any conceivable model neuron with modi-
fiable intrinsic properties. The key learning parameters are α and step size,
which must be determined empirically for each problem in order to achieve
optimal performance. Moreover, future simulations could not only adjust
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connection weights and modifiable intrinsic properties but also examine
the effects of using different learning rates for the changes in connection
weights and the changes in modifiable intrinsic properties. We showed the
architecture of the network when learning of weight and calcium sensitivity
was identical, but other results could be obtained when learning rates differ.
Biological neurons certainly undergo different rates of changes in synaptic
potentiation (Dittman, Kreitzer, & Regeh, 2000; Salin, Malenka, & Nicoll,
1996).
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