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ABSTRACT Dendrites of cerebellar Purkinje cells (PCs) respond to brief excitations from parallel fibers with lasting plateau
depolarizations. It is unknown whether these plateaus are local events that boost the synaptic signals or they propagate to
the soma and directly take part in setting the cell firing dynamics. To address this issue, we analyzed a likely mechanism under-
lying plateaus in three representations of a reconstructed PC with increasing complexity. Analysis in an infinite cable suggests
that Ca plateaus triggered by direct excitatory inputs from parallel fibers and their mirror signals, valleys (putatively triggered by
the local feed forward inhibitory network), cannot propagate. However, simulations of the model in electrotonic equivalent cables
prove that Ca plateaus (resp. valleys) are conducted over the entire cell with velocities typical of passive events once they are
triggered by threshold synaptic inputs that turn the membrane current inward (resp. outward) over the whole cell surface. Bifur-
cation analysis of the model in equivalent cables, and simulations in a fully reconstructed PC both indicate that dendritic Ca
plateaus and valleys, respectively, command epochs of firing and silencing of PCs.
INTRODUCTION
The cerebellum has only two inputs: climbing fibers (CFs)

and mossy fibers (MFs). MFs contact excitatory granule cells

(GCs) whose axons (parallel fibers (PFs)) activate the Pur-

kinje cells (PCs) and stellate cells (SCs) that inhibit PCs

via a feedforward network. The CFs, PFs, and SCs thus

converge onto the PCs, whose simple spike (SS) discharge

is the sole output of the cerebellar cortex. The SS patterns

are crucial for controlling posture and balance, achieving

fine coordination of complex movements and adaptation of

ocular responses, and learning conditioned reflexes (1).

Therefore, it is essential to understand the mechanisms

behind these patterns to elucidate the cerebellum’s contribu-

tion to the motor system.

PCs process synaptic inputs via a complex set of nonlinear

membrane properties. Both soma and dendrites produce

large-amplitude spikes and smaller-amplitude plateaus

(2,3). Plateaus are depolarizations that survive the end of

their triggering stimulus and last from tens of milliseconds

to seconds. This dual electroresponsiveness relies on distinct

ion current distributions in the soma and dendrites. In the

soma, voltage-dependent Na channels sustain both the SS

and underlying subthreshold plateaus on which they system-

atically ride (2,4). In dendrites, spikes and plateaus are

sustained by high-threshold, voltage-dependent P/Q Ca

channels (5). Unlike somatic signals, spikes have a higher

threshold than plateaus in dendrites. They are observed

in vivo only upon CF activation, which triggers so-called

complex spikes (CSs) (4,6). The interaction between

intrinsic somatic and dendritic signals and its role in setting

PC firing patterns remains incompletely understood.
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PCs display two stable states in vitro: a quiescent down

state and an SS firing up state (2,7). In vivo, PCs also exhibit

two states: epochs of SS firing and pauses of variable

duration (8,9). Transitions between these states can be trig-

gered by CF inputs, but they can also occur spontaneously

(7,8). An underlying bistable mechanism cannot account

for such spontaneous transitions in the absence of synaptic

noise. Moreover, the limited synaptic fluctuations observed

in vitro or in vivo in anesthetized animals are unlikely to

account for spontaneous transitions (8,10). By contrast,

a mechanism displaying states of finite duration would

directly account for the spontaneous transitions observed

both in vitro and in vivo. Plateau potentials are an attractive

putative mechanism to explain spontaneous transitions, espe-

cially given their duration range (11), which encompasses

that of SS firing epochs/pauses observed in vivo (6,8).

Llinás and Sugimori (4) were the first to propose that

dendritic plateaus could be responsible for the triggering

and maintenance of SS firing in the soma. Experimental

amputation of the dendrite demonstrated that dendrites

provide a capacitive load that raises the SS threshold in the

absence of synaptic excitation, but also an inward current

to the soma during synaptic excitation (12). Moreover, it

was shown that bias currents, mimicking background

synaptic inputs, modulate the propagation of CF responses

down to the PC axon (13). Unfortunately, Llinas and Sugi-

mori’s hypothesis cannot be tested pharmacologically

because channel blockers eliminate both plateaus and spikes.

It also has proved elusive to most biophysical models, which

cannot explain how a single-channel type can underlie both

fast spikes and lasting plateaus (14,15). However, our group

theoretically demonstrated that an interplay between P/Q Ca

channels and two high-threshold, noninactivating K chan-

nels explains the cardinal features of dendritic Ca spikes
doi: 10.1016/j.bpj.2010.04.056
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and plateaus (11). Moreover, this model (hereafter referred to

as the Genet and Delord (G&D) model) predicts that tran-

sient SC inputs can elicit outlasting hyperpolarizations

(valleys) in PC dendrites. The pauses in SS firing with vari-

able duration that have been observed in PCs after inhibitory

input volleys (16) could evidence dendritic valleys. Thus, in

accord with the hypothesis proposed by Llinás and Sugimori

(4), dendritic valleys could account for the spontaneously

resetting pauses in SS firing observed in vivo (6,8).

In this study, we investigated the generalized hypothesis

that active dendritic electric signals command patterns of SS

firing in PC. Specifically, we addressed the following ques-

tions: 1), can dendritic plateaus and valleys propagate to the

PC soma; and 2), do dendritic signals determine steps and

pauses in SS firing? We tackled these issues by performing

a dynamical system analysis of the G&D model in equivalent

cable representations of a reconstructed PC. We also simulated

the model in the fully reconstructed PC with the NEURON

software to cross-validate our results. The model quantita-

tively reproduces the cardinal features of PC, including

Na-Ca bursts (4), SS frequencies (7,17), and the recently

identified hysteresis in the frequency-current relation (18).
METHODS

Scope and strategy

PCs display a repertoire of transient and lasting signals respectively referred

to as spikes and plateau potentials in the literature. The mathematical model

investigated here focuses on the dendritic propagation of Ca-dependent,

large-amplitude spikes and self-sustained plateaus as previously reported

(2,3), and their impact on fast (~1.5 ms), large-amplitude (~60-80 mV)

somatic firing. Our model extends the isopotential G&D model to a whole

PC by 1), distributing it over dendrites of a reconstructed PC (19); and 2),

endowing the soma with a new biophysically grounded model of its electro-

responsiveness. Below, we derive a set of partial differential equations

(PDEs) that govern the dynamics of this model. The solutions of these equa-

tions were searched in three increasingly complex representations of Shel-

ton’s PC architecture (19): 1), an infinite cable to identify which signals

can be propagated by dendrites; 2), electrotonic equivalent cables to account

for impedance mismatches at branch points and termination of dendrites at

various distances from the soma; and 3), a detailed representation of the cell

to cross-validate previous results.
Model equations

The dynamics of the membrane potential V (mV) are described by the cable

equation:

C
vV

vt
¼ Rd

2Ri

v2V

vx2
� ðICaP þ IKdr þ IKsub þ ILÞ þ Is; (1)

where x denotes the space coordinate along the principal dendritic axis, C

(mF/cm2) is the specific membrane capacitance, Ri (kUcm) is the cytoplasm

resistivity, Rd (cm) is the local dendritic radius, and Is (nA/cm2) is the density

of the synaptic currents. The MF system can carry tonic and phasic inputs to

dendrites, and we accordingly write Is ¼ Idc þ I4 . The model retains the

basic set of membrane currents used by Genet and Delord (11): those of

P-type Ca (ICaP), delayed rectifier (IKdr), subthreshold (IKsub) K channels,

and a leakage current (IL) (see Section II of the Supporting Material). We

ascertained that the model keeps its overall properties when other active
Biophysical Journal 99(2) 427–436
currents found in PCs are added to its basic formulation (Supporting

Material Section II). The internal calcium concentration ([Ca]i, mM) PDE

was derived by adding a longitudinal Ca2þ diffusion term to the balance

equation of Ca2þ ions (Eq. 12 of Genet and Delord (11); see Section I).

However, simulations using realistic values for the Ca2þ diffusion coeffi-

cient (20) failed to show significant differences in Ca dynamics between

the full model and a version without Ca diffusion. Therefore, all of the

results illustrated below were obtained with the following simplified PDE:

v½Ca�i
vt

¼ �
"

1 þ ½B�T=Kd�
1 þ ½Ca�i=Kd

�2

#�1�
10�9ICaRd

Fdð2Rd � dÞ

þ
2k
�
½Ca�i�½Ca�b

�
ðRd � dÞ

dð2Rd � dÞ

�
; (2)

where [B]T and Kd (mM) are respectively the concentration and dissociation

constant of a buffer modeling Ca-sequestering proteins in PCs, and [Ca]b is

the basal Ca2þ concentration. Eqs. 1 and 2 are completed with a PDE

describing the local dynamics of a gating variable, n (activation of IKdr):

vn

vt
¼ ðnN � nÞ=tn; (3)

where nN and tn are respectively the (V-dependent) equilibrium value and

time constant of n (Section I).
RESULTS AND DISCUSSION

Unifying mechanism for the dual
electroresponsiveness of the soma and dendrites

Equations 1–3 reduce to the G&D model after the spatial

derivative in Eq. 1 is zeroed. We first recall the properties

of the G&D model because they are the backbone of the

model presented here. ICaP underlies the depolarization of

both plateaus and spikes, in agreement with experiments

(4). IKsub balances moderate levels of ICaP (obtained, e.g.,

upon PF activation), resulting in lasting plateaus (Fig. 1 A).

Higher levels of ICaP (obtained, e.g., by CF activation)

cannot be balanced by IKsub and result in large-amplitude

Ca spikes repolarized by IKdr (Fig. 1 B). The model bifurca-

tion diagram with Idc as the bifurcation parameter summa-

rizes these properties (Fig. 1 C). This diagram exhibits an

S-shaped region, U, with two branches formed by resting

(R) and plateau stable (P) states connected by a middle

branch (M) of saddle points. The M states act as thresholds

between the R and P states, so that the model is bistable

within U: a depolarizing I4 can switch it from the R state

to the P state, whereas a hyperpolarizing I4 can induce the

opposite transition (Fig. 1, A and D). Low V time derivative

values resulting from distortions of the model’s vector field

at the left of U (Fig. 7 B of Genet and Delord (11)) explain

the finite-duration plateaus elicited from the R state

(Fig. 1 A). Symmetrical distortions at the right of U allow

long hyperpolarizations from the P state, termed valleys, to

outlast their stimulus (Fig. 1 D). For larger Idc, the P state

eventually destabilizes and leads to firing of Ca spikes

(Fig. 1, B and C). According to the model, the background

MF activity, mimicked by Idc, strongly affects the PCs’



-60

-50

-40
V 

(m
V

)
A

15
0

-7 -60
-40
-20

0
20

-80
0 0.4 0.8 1.2 1.6 2

Time (s)
0 0.4 0.8 1.2 1.6 2

Time (s)

V 
(m

V
)

B

-60
-55
-50
-45
-40

V 
(m

V
)

D

0 0.4 0.8 1.2 1.6 2
Time (s)

3050
70

-200 0 200 400 600 800
Idc (nA/cm2)

-60
-40
-20

0C

V 
(m

V
)

R

P

Ca spiking
M

sLC
uLC
sn
s

H

E2

V 
(m

V
)

Time (s)

V 
(m

V
)

-80

-40

40

0
HmE1

V 
(m

V
)

-80
-70
-60

-40
-50

Idc (102 nAcm-2)

F

Hm Fl

Idc (102 nAcm-2)

f (
H

z)

0

40

80

–2 0 4 8 102 6

FlHm

E3 E4

–2 0 2 3-1 1-4

F

Idc (104 nAcm-2)
0 1 2

-80

-40

0

40

F

0 0.4 0.8 1.2 1.6 2

FIGURE 1 Local models of dendritic and somatic dual electroresponsive-

ness (see text). (A) Plateaus triggered by a depolarizing current pulse

(100 ms, 130 nA/cm2, blue traces) with different Idc values (nA/cm2). (B)

Ca spiking (I4 ¼ 103 nA/cm2. (C) Bifurcation diagram of the dendritic

model. R: resting state; M: middle branch; P: plateau; U: bistability zone;

H: Hopf bifurcation; (u)sLC: (un)stable limit cycles; sn: stable node; s:

saddle. (D) Valleys triggered by a hyperpolarizing current pulse (100 ms,

�130 nA/cm2) with different Idc values. (E) Bifurcation analysis of the

isolated soma model. (E1) Soma bistability (I4 ¼ �150 nA/cm2 and

150 nA/cm2). (E2) Bifurcation diagram. F, Fl, Hm: fold, flip and homoclinic

bifurcations. Inset: Spontaneously resetting Na plateau with Idc lying

between Hm and Fl; scale bars: 20 mV/ 200 ms. (E3) Magnification of the

rectangle shown in E2. (E4) f-I relation.
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dendrite response to phasic inputs. From negative values,

increasing Idc lengthens the plateaus until their duration

diverges at the left boundary of U, Inf (U). Beyond the right

boundary of U, Sup (U), further increases in Idc decrease the

valley’s duration. The model displays bistability within U
over the entire range of dendritic radii found in PCs, i.e.,

0.5–6.0 mm (19) (not shown). The G&D model thus repro-

duces both infinite and spontaneously terminating transitions

between the R and P states. As demonstrated below, the

spatially extended model is able to travel CS-like waves

made of an initial Ca spike followed by plateaus/valleys.

To avoid confusion, we restrict the use of the term

‘‘plateaus/valleys’’ to those that spontaneously reset

dendritic responses lacking an initial Ca spike.

To address the impact of dendritic signals on SS firing, we

investigated the soma’s intrinsic electroresponsiveness with

an original isopotential model including IKsub and a realistic

description of the peculiar Na current of PC (Section I). With
no Idc, this model spontaneously fires SS but can be silenced

by a hyperpolarizing I4, indicating bistability between

a down (D) and an up (U) state (Fig. 1 E1). In upstroke

mode (i.e., increasing Idc), SS firing arises from D at a fold

(F) bifurcation (Fig. 1 E2). In downstroke mode, the firing

frequency can be decreased below its rheobase value (hyster-

esis) and firing eventually vanishes at a saddle homoclinic

bifurcation (Hm) (situated below F; Fig. 1 E3–4) as predicted

by a recent model (19). However, in opposition to that model

(19), SS firing in our model destabilizes at a flip bifurcation

(Fl) between Hm and F. This feature is crucial because, for

Idc ˛ [Hm, F1], it endows depolarizing I4 with the capacity

to trigger the spontaneously resetting Na plateaus

(Fig. 1 E3, inset) observed experimentally (2). This analysis

suggests that both the soma and dendrites of PCs are bistable:

dendrites can be switched between two stable states

(R and P), whereas the soma can be switched between a silent

mode and an SS-firing one (D and U). In both cases, a tran-

sient balance between IKsub and an inward current (ICaP in

dendrites or the resurgent component of INa in the soma)

accounts for finite-duration plateaus (Section I). This finding

provides additional support for the notion that IKsub plays

a key role in PC electrogenesis.
Dendritic processing of Ca-dependent spikes
and plateaus/valleys

The ability of PC dendrites to propagate the above Ca-depen-

dent electric signals involves two factors. The ratio of the

membrane currents generated by plateaus/valleys and spikes

to the axial current loss along dendrites is the first determinant.

The peculiar morphology of PC dendrites adds geometric

factors: impedance mismatches at the tree branch points

impede propagation of active signals, whereas reflection of

axial currents at the dendrite tips boosts propagation (21).

Infinite cable case

To investigate the propagation of Ca-dependent spikes and

plateaus/valleys in a formal way, we idealized the compli-

cated PC dendrites as an infinite straight cable. Indeed, the

constant speed of the expected solutions allows the model

equations to be rewritten as ODEs in a co-moving frame

accompanying these waves (Section III), and the solutions

correspond to intrinsically propagated signals in PC

dendrites.

Dendritic bistability

The traveling system has resting points with V, Ca, and n
values identical to those of the original model (Eqs. 1–3)

and its spatially uniform version (11), with the additional

coordinate Vx ¼ 0 (i.e., no V change). Therefore, each

stationary state in the R, M, and P branches of the bifurcation

diagram of the uniform system translates into a spatially

uniform solution of the PDE system. All resting states in

the traveling system are unstable according to classic
Biophysical Journal 99(2) 427–436
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FIGURE 2 Infinitely long dendrite. (A) Ca spikes propagate. (A1) Bifurca-

tion diagram of traveling Ca-spike solutions. Propagating fronts between R

and P subthreshold to Ca spikes are found in U (A); (�), emergence of trav-

eling Ca spikes trains. (A2) (Left) Enlarged view of the ‘‘-’’ box. (Right)
Samples of unitary traveling Ca spikes from branches S1-2 and S5-6

(branches S3-4 are unstable). (A3) Plateau and valley duration (d) in S1 and

S6 versus Idc. (B) R 4 P fronts propagate. (B1) Enlarged view of the

‘‘A’’ box; uf: unstable fronts, sf: stable fronts. (B2) Examples of RP1 and
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algebraic criteria (22). However, the stability of the resting

states of a continuously distributed dynamical system

rewritten in a co-moving frame is unrelated to the stability

of the corresponding uniform states of the original system

(22). Simulations of the dynamics of small V perturbations

from these states in long cables approximating the infinite

dendrite show that the R and P uniform states are stable,

whereas the M ones are unstable. In theory, the bistability

found in the G&D model could thus extend to the entire

dendritic tree. To test this hypothesis, we searched homo-

clinic orbits connecting the manifolds of each R and P state

to themselves in the traveling system, as evidence for

traveling spikes and plateaus/valleys. We also searched het-

eroclinic orbits connecting one state to the other as evidence

for traveling fronts switching the entire cable between its

P and R uniform states. Synaptic inputs that are able to

trigger these waves are investigated in the next section.

Ca spikes propagate

To identify traveling Ca spikes, we searched large-amplitude

homoclinic and heteroclinic solutions of the traveling

system. Fig. 2 A1 displays the speed of the different solutions

identified as a function of Idc. Starting from the left, one first

encounters S1, a branch of homoclinic solutions on the R

state. When Idc is increased, S1 gives birth to five other

branches in an S-shaped curve (solid box). The solid dia-

mond indicates the propagating solutions’ subthreshold to

full Ca spikes, which we analyze in the next section.

Fig. 2 A2 is a magnification of the solid box with representa-

tive wave solutions in the time domain. Branch S1 corre-

sponds to a traveling Ca spike starting from and ending on

R after a plateau. The plateau duration increases with Idc

and becomes infinite at 26.52 nA/cm2 (Fig. 2 A3). At this

bifurcation point, S1 is replaced by S2, a branch of hetero-

clinics extending up to Sup(U), where the Ca spike switches

the system from R to P. S5 is symmetric to S2, with the Ca

spike switching the system from P to R. In S6 (Idc >
Sup(U)), the spike starts from and ends on P after a valley.

When Idc is increased, the valley duration decreases down

to zero at a bifurcation point (Idc ¼ 561.2 nA/cm2; solid
circle in Fig. 2 A1) where S6 is replaced by a branch of trav-

eling trains of Ca spikes (not illustrated). Simulations of the

model in long dendrites proved that the traveling solutions

on branches S1-2, and S5-6 are stable. Two additional

branches of heteroclinics were found in U: S4 was identified

for Idc ˛ ]Inf(U), 37.5[ and consists of orbits connecting M to

R, whereas S3 corresponds to orbits connecting M to P and

was found for Idc ˛ ]37.5, Sup(U)[. S3 and S4 have no phys-

iological meaning because they start from an unstable state

that cannot be actually achieved, due to natural V fluctuations

(resulting from spontaneous synaptic potentials and ion

channel flickering). Similar results were obtained for any

radius in the range of Shelton’s PC dendrites (not shown).

The predicted range of Ca spikes’ propagation speeds (10–

20 cm/s) matches the range of observed speeds (23).
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Dendrites propagate R4P fronts

We also found heteroclinic solutions, indicating traveling

fronts between the R and P dendritic with Idc ˛ U (solid
diamond in Fig. 2 A1, enlarged in Fig. 2 B1). We found trav-

eling fronts connecting R to P (RP), P to R (PR), M to R

(MR), and M to P (MP) states. Starting from Inf(U), one first

encounters the MP branch. Such fronts cannot be observed

experimentally due the practical impossibility of achieving

the unstable M state. The MP branch terminates at Sup(U)

and is replaced by branch RP1. The RP1 branch ends at Idc

¼ 26.88 nA/cm2. It is replaced by a branch of similar fronts

(RP2) that show smaller propagation speeds and smoother

voltage changes compared to the RP1 fronts (not shown).

RP2 ends at Idc¼ 27.64 nA/cm2, where the front propagation

speed vanishes. On the right of the bifurcation diagram in
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Fig. 2 B1, the MR branch emerges with a zero propagation

speed. Because of the instability of M states, we do not

discuss this branch further. The MR branch terminates at

Inf(U) and is replaced by PR1. PR1 ends at Idc ¼ 27.8 nA/

cm2 and gives birth to branch PR2, whose fronts have smaller

propagation speeds than the PR1 fronts. Simulations of PDE

in long cables yielded only front solutions with speeds

consistent with those of the PR1 and RP1 solutions, demon-

strating that these fronts are stable whereas the PR2 and RP2

ones are unstable. Fig. 2 B2 shows examples of P/R and

R/P fronts in the time domain.

Plateaus and valleys fail to propagate

Propagating plateaus/valleys were expected as small-radius

homoclinic solutions of the traveling system. We failed to

identify such solutions, which suggests that plateaus/valleys

cannot propagate. However, these solutions could have

escaped our tracking in the four-dimensional (4D) phase

space of the traveling system. We derived a definitive

conclusion using a simplified version of the model that

captures its essential dynamics and assumes instantaneous

activation of IKdr as well as equilibrium values for [Ca]i at

each time point (Section III). This 2D model has the same

resting points as the full model, and has the advantage that

homo-heteroclinics can easily be visualized. Fig. 2 C1 illus-

trates the phase portrait of the 2D model for Idc < Inf(U), i.e.,

where the full model can produce a PR traveling front

(branch PR1, Fig. 2 B1). At q ¼ 0.497 cm/s, the P unstable

manifold merges with the R stable manifold. This hetero-

clinic connection corresponds to a PR traveling front, and

its speed is of the same order as that in the full model

(0.86 cm/s). The symmetrical topology of the vector field

for Idc > Sup(U) accounts for RP fronts in the full model

(Fig. 2 C2). Similarly to the PR fronts, the propagation speed

of the RP fronts is smaller in the 2D model than in the full

model (0.23 vs. 0.60 cm/s). These differences arise from

the simplifications we made in the 2D model. Instantaneous

IKdr activation decreases the inward membrane current

during depolarization, which decreases the RP propagation

speed. In contrast, the smaller propagation speed of the PR

fronts results from the instantaneous [Ca]i equilibrium,

which reduces the current provided by cable regions in the

R state to switch the remaining regions from P to R. These

results hold for any dendritic radius for which U exists

(not shown).

Now, in Fig. 2 C3 we sketch the phase-plane of the 2D

model for Idc ¼ 0 nA/cm2, a value at which the uniform

model produces plateaus in response to depolarizing stimuli

(Fig. 1 A). Whatever q, the Vx nullcline of the 2D model is

located below the V nullcline for all V > VR, so that a trajec-

tory leaving R along the right branch of its unstable manifold

remains inside the lower half-plane. Moreover, upon time

reversal, trajectories leaving R along its stable manifold cross

the middle branch of the Vx nullcline twice, so that the trajec-

tory remains inside the lower half-plane. Therefore, the
stable and unstable manifolds cannot merge in these condi-

tions, which implies that no small-radius homoclinic is con-

necting R to itself, and thus no propagating plateaus can

occur. This finding holds for any Idc < Inf(U) and for

P points, which cannot form homoclinic loops with Idc >
Sup(U) (Fig. 2 C4). Thus, according to our model, neither

finite-duration plateaus nor valleys can propagate in PC

dendrites.

Electrotonic equivalent cable models of a PC

Unifying explanation for the CS variability. The existence of

traveling CS waveforms suggests that dendrites actively

propagate these signals using the classical spike mechanism.

Although this hypothesis is supported by several experi-

mental reports showing CS propagation over the whole

dendrite (24), it is challenged by experimental evidence of

occasional failures (25). Moreover, we are still lacking

a comprehensive explanation for the fact that CS responses

exhibit a spectrum of different shapes. To tackle both of

these issues, we simulated the G&D model in an equivalent

somatofugal cable representation of Shelton’s PC (Section

III). We explored the effects of Idc on the shape of the

responses triggered by a CF input. Let us denote the

responses starting from R and ending on R after Ca spikes

and a plateau as RspR (R/spikes/plateau/R)

responses. Fig. 3 A1 displays examples of RspR responses

for five different Idc values. Increasing Idc smoothly

lengthens the late plateau component in these responses.

This reproduces the plateaus with variable duration-ending

CSs observed in vivo (26), which are lengthened by

membrane depolarizations (27). The plateau duration

becomes infinite at Idc ¼ �24.9 nA/cm2, and between this

value and Sup(U), CF activation triggers a burst of Ca spikes

followed by a switch to P (RsP responses; Fig. 3 A1). Now,

starting with the P state and depolarizing Idc, the CF triggers

a burst of Ca spikes, followed by a plateau ending on R (Idc ˛
[Inf(U), �12.75]; Fig. 3 A2). The plateau duration of these

PspR responses increases with Idc and diverges at �12.75

nA/cm2, where it triggers PsP responses. The shape of the

PsP responses is hardly sensitive to an Idc increase up to

28.54 nA/cm2. There, a marked shape change occurs: the

burst is terminated by a larger-amplitude Ca spike that

switches the entire cable to R (Fig. 3 A3). These PsR

responses persist up to 29.65 nA/cm2. With larger Idc,

responses to the CF consist of a burst of Ca spikes ended

by valley potentials whose duration smoothly decreases

with increasing Idc (PsvP responses; Fig. 3 A3–4). The transi-

tion between PsR and PsvP responses at Idc ¼ 29.65 nA/cm2

coincides with divergence of the valley duration. All wave-

forms of Fig. 3 A propagate to the tip of the somatofugal

cable. This supports the premise that the occasional propaga-

tion failures of Ca spikes are due to the activation of inhibi-

tory synapses at dendritic branch points (25). Moreover,

simulations in equivalent somatopetal cables showed that

Ca spikes do not propagate in the centripetal direction (not
Biophysical Journal 99(2) 427–436
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shown), in agreement with experimental results (28). Taken

together, these results provide the first comprehensive expla-

nation for the whole range of observed dendritic responses to

the CF input (1).

Dendritic plateaus/valleys are threshold signals spreading
over the entire cell. The above results suggest that Ca

plateaus and valleys are intrinsically unable to propagate.

Yet, previous in vitro works have established that PF inputs

in distal spiny PC dendrites can trigger Ca plateaus (4,24)

that correlate with low internal Ca elevations spreading

over the entire cell. This suggests that dendrites can actually

propagate Ca plateaus in the somatopetal direction. To

resolve this issue, we simulated the model in equivalent

cables, capturing the PCs’ electrotonic characteristics in the

somatopetal direction (Section III). The results illustrated
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in Fig. 3 were obtained by stimulating spiny branchlet

68 (20) which is the farthest from the soma in electrotonic

units, and hence the best choice for investigating the soma-

topetal conduction of plateaus/valleys. The branchlet was

stimulated with trains of PF excitatory postsynaptic currents

(EPSCs) to compare the model’s response with in vivo

recordings of dendritic plateaus (29). The voltage responses

of the most distal segment in branch 68 to an increasing

number of EPSPs are illustrated in Fig. 3 B1–3. After five

EPSPs (Fig. 3 B1), V relaxes exponentially toward its resting

value. A shouldering appears after the last EPSP with eight

shocks (Fig. 3 B2), but it is only after 10 EPSPs that the

model produces a long-duration plateau potential (Fig. 3 B3).

These responses closely mimic the threshold properties of

plateaus in the dendritic recordings of Campbell et al. (29)

(see their Fig. 4). These authors could only speculate about

the propagation of these signals in the dendritic tree from

their point recordings. However, superimposed voltage

traces in the soma and dendrites of the equivalent cable on

Fig. 3 B3 show that the plateau potential triggered in the

spiny branch invades the entire tree and the soma without

any attenuation, whereas the dendritic capacitance heavily

filters the EPSPs. Fig. 3 B4 illustrates the responses to six

SC inhibitory postsynaptic currents (IPSCs) delivered to

spiny branch 68, with the equivalent cable previously turned

to its plateau state by a depolarizing tonic current, and shows

that valleys can also invade the entire PC.

These findings agree with experimental reports that

dendrites actually propagate Ca plateaus in the somatopetal

direction, but contradict the results obtained above with the

infinite cable, which establish that Ca plateaus/valleys cannot

propagate. We resolved this discrepancy as follows: First, we

examined the membrane current (Im) along somatopetal

equivalent cables during plateaus and valleys. The bottom

traces in Fig. 3 B display the Im time course in the compart-

ment that is most distal from the stimulation site. When the

response from the cable is passive (short EPSC trains), Im

remains outward after the stimulus offset (B1-2). By contrast,

Im is inward at the stimulus break when the EPSC number is

large enough to trigger a rectangular plateau (B3). The instant

tI at which Im changes sign in the compartment farthest from

the excitation locus precisely corresponds to the instant at

which V crosses the middle branch of the V-nullcline in that

compartment (not illustrated). Recall that this branch locates

the voltage threshold of rectangular plateaus in the isopoten-

tial model (see Fig. 4 C in Genet and Delord (11)). Since the

passive properties imply that the amplitude of the membrane

depolarization elicited by a focal I4 decays with distance from

the stimulation site, V must have crossed as well the V-null-

cline at every intermediate locus along the cable before tI.
Hence, the synaptic inputs that drive V across the voltage

threshold at all points of the cable trigger a rectangular

plateau. Symmetrically, before we can observe a valley

potential, the membrane current must become transiently

outward on all cable points at the stimulus break (Fig. 3 B4).
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This explains why, according to simulations of the model

in equivalent cables, the whole cell generates a plateau/valley

altogether. However, all points along the cell do not cross the

plateau/valley threshold at the same time. The rising phase of

plateaus/valleys travels with low speeds, on the order of the

conduction speed of the electrotonus (a few centimeters per

second; Section VII). By contrast, the decaying phase of

plateaus/valleys travels at speeds three orders of magnitude

larger due to the slow dynamics of these signals. These prop-

erties are at odds with the definition of a traveling wave (i.e.,

all points travel with a unique speed), which prevents us from

classifying the plateaus/valleys as propagating spikes. Two

specific features of plateaus/valleys also preclude their classi-

fication as a passive electrotonus: 1), they have uniform

amplitude over the cell surface, whereas an electrotonus

exhibits attenuation with distance from the stimulation locus;

and 2), they exhibit a voltage threshold, which is a character-

istic property of active electric signals. These original proper-

ties suggest that Ca plateaus/valleys may represent a hybrid

mechanism of electric signaling in PC dendrites, mixing

properties of the electrotonus and spikes. We further charac-

terized this mechanism by investigating the dependence of the

plateau/valley threshold on synaptic inputs. Fig. 3 C1 displays

the plateau duration in the somatopetal cable as a function of

gPF and of the surface, A, of the spiny branch over which this

excitatory conductance was distributed. The total magnitude

of the stimulating conductance therefore is GPF ¼ AgPF.

Fig. 3 C1 first shows that the gPF values that can trigger

plateaus diverge as the conductance is delivered to smaller

portions of the spiny branch. The figure then shows a nonmo

notonous behavior: with increasing gPF values, the plateau

length first increases and then decays (for constant stimulated

surface). Indeed, strong stimuli increase [Ca2þ] in the

dendrites, which shifts the balance of membrane currents

during plateaus toward hyperpolarizing currents and shortens

the plateau. We found that the gPF level necessary to trigger

a plateau with a given duration scales as 1/A (the white curve
in Fig. 3 C1 illustrates this relationship for 1 s plateaus). This

implies that a total synaptic conductance GPF is required to

trigger plateaus with a given duration, regardless of the spatial

distribution of this conductance. As illustrated in Fig. 3 C2,

the same conclusions hold for the symmetrical valley case.

Finally, Fig. 3 C3 shows that the number, nsyn, of EPSCs in

branch 68 required to trigger a plateau diminishes when A
increases (valleys share the same characteristics; not illus-

trated). Thus, the magnitude of the plateaus/valleys’ threshold

synaptic conductance does not depend on the conductance

time course, but on its time integral. We quantitatively eval-

uated this conclusion by computing the total amount of

electric charges supplied by synaptic currents, Qsyn ¼RN
0

GsynðtÞðVðtÞ � EsynÞdt (with syn˛ PF; SCgf ), and the

amount of charges required to make voltage trajectories at

all points along the cable crossing the plateau threshold,
Qm ¼ C
Pnc

i¼1

R VTh

VR
AidVi ¼ CATðVTh � VRÞ, where nc is the

number of compartments of the cable, and Ais are the respec-

tive compartment areas. Consistent with our conclusion, we

found that Qsyn ~1.5 Qm. It has been estimated that coactivation

of ~50 PF is required to depolarize a PC by 10 mV from rest

(Ref. 77 in the Supporting Material). Given that VTh – VR is

~13 mV in our model, we estimate that the simultaneous acti-

vation of ~100 PF should suffice to trigger a dendritic plateau,

involving a tiny fraction (~0.1%) of PF inputs to PC. Similar

results were obtained with valley potentials or when the inputs

are delivered to other spiny branches of the tree, showing that

plateaus and valleys can be triggered from any dendritic loca-

tion once the synaptic inputs exceed an electric charge

threshold. Once this threshold is crossed, the plateaus/valleys

spread over the entire neuron, including its soma.
Dendritic control of PC firing dynamics

Evidence from simulated somatic recordings

To determine how active dendritic signals impact the SS

dynamics, we performed a bifurcation analysis of the soma-

tofugal model endowed with the excitable soma studied

above. Fig. 4 A1 shows the superimposed bifurcation

diagram of the dendrites and the lower bound of the limit

cycle corresponding to SS firing in the soma. The current in-

jected into the soma is the bifurcation parameter. The SS

limit cycle of the soma, once the latter is included in the

whole cell, retains some of the characteristics found in the

isolated soma (Fig. 1 G). However, it also exhibits striking

differences that reveal the role of dendrites in SS dynamics.

With negative Idc, the soma is in its D silent state, and the

dendrites are in their R state. When Idc is increased, SS firing

emerges in the entire cell at a fold bifurcation, as in the iso-

lated soma (Fig. 4 A1–2). However, the rheobase current is

larger in the whole cell (534.1 nA/cm2) owing to the large

capacitive load imposed by the dendrites to the soma. One

could expect this passive load to decrease the SS frequency

in the whole cell, but it is actually twofold higher (115 vs.

54 Hz) at the rheobase. Although it is counterintuitive, this

result is consistent with observations that the minimum SS

frequency attainable from the D state increases from

~20 Hz to ~100 Hz in adult neurons, paralleling the growth

of their dendrites (17). According to our dynamical analysis,

this effect stems from the fact that dendrites jump onto their

P state at the fold bifurcation (Fig. 4 A1). Once in the P state,

the dendrites’ influence on the soma becomes a boosting, de-

polarizing current during interspike intervals, which explains

the higher SS frequencies found in the entire cell. Direct

evidence for this mechanism is provided in Section IV of

the Supporting Material.

SS firing also retains hysteresis in the whole cell: when

one starts from dendrites in the P state and a firing soma,

decreasing Idc below the F point results in stable SS firing
Biophysical Journal 99(2) 427–436
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FIGURE 4 Dendritic control of SS firing. (A1) Bifurcation analysis of the

somatofugal equivalent cable with Idc (injected into the active soma). Thick

line: Lower bound of the somatic limit cycle corresponding to SS firing

(orange: stable, green: unstable). Thin lines: Dendritic voltage at electro-

tonic distance L ¼ 0.15 from the soma (the spike amplitude is ~0 at this

distance). SS firing arises, as in the isolated soma, from a fold (F) bifurcation

and is substituted for by Na-Ca bursting at a torus (T) bifurcation. (A2) F-Idc

curves of SS and Na-Ca bursts (see text). (A3) Na-Ca bursting (Idc¼
6�103 nAcm�2; black: soma voltage; red: dendritic voltage). (A4) The

same as A3, with gc raised to 15 mS. (B) Dendritic control of SS firing by

CF (see text). (B1) Idc ¼ �25 nA/cm2. (B2) Idc ¼ 45 nA/cm2. (B3) Idc ¼
25 nA/cm2. (C) Dendritic control of SS firing by PF EPSCs and SC IPSCs

(see text). (C1) Volley of six EPSCs (50 Hz), gPF ¼ 0.5 mS/cm2, Idc ¼
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45 nA/cm2. (C3) Same PF volley as in C1 followed by the same SC volley
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with lower frequencies than at the rheobase. The SS firing

loses stability below 16 Hz and eventually vanishes at a ho-

moclinic bifurcation, as in the isolated soma. This bifurcation

occurs at the lower bound of the P branch (Fig. 4 A1), con-

firming that the large current sink constituted by dendrites

in their R state prevents tonic SS firing in the soma. In

support of these conclusions, our model also reproduces

two cardinal features of the f-Idc relationship: from the rheo-

base, the SS frequency increases in a close to linear fashion

with Idc up to a maximum value of 233.5 Hz (Idc¼ 5011 nA/

cm2), where the limit cycle destabilizes. Linearity of the SS

frequency-current relationship is well documented in PCs

(2,18), and previous studies have shown that mature PCs

can fire SS at frequencies > 200 Hz (2,17,30). With further

Idc increases, the model undergoes a supercritical Neimark-

Sacker bifurcation (at Idc ¼ 5011 nA/cm2) at which a stable
Biophysical Journal 99(2) 427–436
torus arises from the SS limit cycle (Fig. 4 A1–2). This bifur-

cation marks the emergence of a branch of limit cycles

corresponding to repetitive bursts of SS terminated by

a dendritic Ca spike (Na-Ca bursts). Fig. 4 A3 illustrates

a sample of Na-Ca burst in the model, which qualitatively

reproduces this typical firing mode of PC in response to large

driving currents (2). Experimentally, Na-Ca bursts have been

shown to exhibit a progressive decrease of the SS amplitude

and period during the rising foot of Ca spikes (2). We were

able to reproduce these features in our model by increasing

the dendrosomatic coupling conductance, gc (Fig. 4 A4).

This proves that the dendritic control of SS firing predicted

by the model does not represent an artifact resulting from

overestimation of the dendrosomatic coupling. We also

used the somatofugal cable endowed with the excitable

soma to address the impact of CF-triggered plateaus and

valleys on SS firing. Fig. 4 B1–2 illustrate the time course

of the dendritic and somatic voltages after a single CF input

for two Idc values. When Idc < Inf ðUÞ, the dendrites are in

the R state and the soma is silent. The CF input triggers

a Ca spike followed by a dendritic plateau. This plateau trig-

gers SS firing, which terminates at the plateau reset. When

Idc > SupðUÞ, the dendrites are in the P state and the soma

fires SS. The CF-triggered Ca spike is followed by a dendritic

valley during which SS firing is interrupted (Fig. 4 B2).

Finally, with Idc ˛ U, two consecutive CF inputs trigger bidi-

rectional transitions between the R and P dendritic states,

inducing corresponding transitions between the D and U

somatic states (Fig. 4 B3). This result reproduces the

toggle-switch capabilities of the CF input (8).

Synaptically triggered dendritic plateaus/valleys command
firing/pauses

The above results were derived from a somatofugal represen-

tation of PC dendrites. Because dendrites exhibit different

electrotonic properties in the centripetal direction, we simu-

lated the model in equivalent somatopetal cables (Section III)

to determine whether PF/SC-triggered dendritic plateaus/

valleys can also trigger/interrupt SS firing. From rest, a volley

of six EPSCs delivered to the dendritic branchlet farthest

from the soma triggers a dendritic plateau of ~750 ms dura-

tion (Fig. 4 C1). This plateau invades the entire neuron,

including its soma, in which it elicits an SS firing epoch

whose duration precisely matches that of the dendritic

plateau. The soma continuously fires SS when the dendrites

are turned to their P state by a depolarizing Idc (Fig. 4 C2).

A train of six IPSCs triggers a dendritic valley during which

SS firing is interrupted and firing resumes at the valley break.

Identical results were obtained for plateaus/valleys with

different durations obtained by varying Idc. In addition, the

same successive PF and SC inputs can respectively trigger

R/P and P/R dendritic transitions (D/U and U/D

in the soma) when Idc lies within U (Fig. 4 C3). Thus,

dendritic plateaus/valleys triggered by distal inputs can

also elicit/break SS firing. All of these results were
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reproduced in the fully reconstructed Shelton’s PC (Section

V). This proves that the equivalent cables built in this study

reliably capture the PC’s electrotonic properties, and

supports the soundness of the bifurcation analysis in these

cables (which is unfeasible in the fully detailed neuron)

and the conclusion that dendrites control SS dynamics.
Comparison with experimental data

Converging evidence suggests that dendrites are a major

determinant of PC firing dynamics (12,17), which is unsur-

prising considering that dendrites account for ~99% of the

PC surface (19,31) and are endowed with active properties.

However, the precise role of dendrites remains unclear. On

the basis of the results presented here, we propose a hypoth-

esis that unifies the experimental data. First, our simulations

show that under weak net synaptic excitation, dendrites

impose a large current sink to the soma that accounts for

the lower threshold and increased firing frequency of SSs

observed after dendrotomy (12). Our study suggests that

under a strong synaptic drive, the depolarizing current fed

by dendrites (12) evokes dendritic bistability. Under these

conditions, dendrites are likely switched to their P state, in

agreement with dual patch-clamp recordings from PC

soma and dendrites showing that dendrites remain depolar-

ized during interspike intervals (32). In fact, this hypothesis

is strongly supported by early dendritic recordings showing

that SSs ride on underlying Ca plateaus (4). Our conclusion

that dendrites control PC firing is also consistent with studies

indicating that the SS threshold lies between the mean volt-

ages of dendritic plateaus and valleys (17,33). Moreover, it

has been observed that brief SC inputs trigger dendritic

hyperpolarizations and SS firing pauses lasting up to several

hundreds of milliseconds (16,34). In addition, dendritic

valleys reproduce the as-yet-unexplained nonlinear relation

between the duration of the pauses and the number of inhib-

itory inputs (Section VI). The experimental demonstration

that depolarizing currents can shorten these pauses confirms

this conclusion. Altogether, our findings quantitatively

support the early hypothesis of Llinás and Sugimori (4)

that phasic PF inputs must elicit dendritic plateaus to trigger

somatic SS firing. We extend this hypothesis by proposing

that the spontaneous resetting of both dendritic plateaus

and valleys determines the pauses in SS firing. The depen-

dence of plateau/valley duration on the background synaptic

current, coupled with the variability of the background

currents, would account for the variability of the firing

pattern after CF activation. In the model, the complete range

of PC responses to phasic inputs requires bias currents

ranging from a hyperpolarizing limit (~�150 nA/cm2) to

a depolarizing one (~150 nA/cm2). The range of background

synaptic currents in PCs cannot be estimated directly, as the

relationship between PF frequency and the net output of the

feedforward inhibition network remains unknown. However,

the peculiar electrotonic architecture of PCs allows us to
address this question indirectly. PCs are electrotonically

very compact in response to steady currents, leading to close

to uniform V changes across the neuron (21,31). It has been

shown that synaptic currents injected into the PC soma

in vitro (via the dynamic-clamp technique) mimic natural

in vivo background inputs distributed over the dendrites

(35). Hence, the range of injected currents used by Jaeger

and Bower (35) may be used as a crude estimate of the range

of background inputs experienced by PCs in vivo. Our

[�150, 150] nA/cm2 range given above, once multiplied

by the cell surface, yields a range of currents of

~[�0.65,1] (nA). The upper current bound triggers an SS

frequency of >200 Hz, matching experimental currents

required to trigger PC firing with similar high frequencies

(2,17). On the other hand, previous studies have demon-

strated that uncorrelated inputs into the MF system provide

a baseline hyperpolarizing current to PCs whose mean

amplitude (~�0.45 nA (35,36)) is consistent with the lower

bound we predict.

Our analysis suggests that PCs may actually have larger

computing capabilities than would be expected from their

current representation as bistable neurons. Hence, the

dendritic control of the PC output by plateaus/valleys allows

synchronized PF/SC inputs, putatively signaling salient

sensory-motor events, to elicit spontaneously resetting

epochs of SS firing and pauses, thus controlling the duration

of these traces. In addition, it was recently shown that irreg-

ular PC firing in vivo may in fact reflect periods of regular

firing with little frequency variability but with interruptions

by pauses (37). Such properties are predicted by our model,

in which firing frequency is constant during spontaneously

terminating plateaus of variable duration. Moreover, the

dependence of trace duration on the background synaptic

input suggests a novel role for synaptic plasticity in the

MF pathway. Rather than setting the gain of the PC I/O rela-

tionship, synaptic plasticity could determine the duration of

SS firing epochs and pauses, which are essential for motor

control.
SUPPORTING MATERIAL

Additional explanation, seven figures, and references are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(10)00554-0.
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I. Models of membrane currents and internal Ca regulation 
Membrane ion currents involved in plateau/valley potentials and bistability 
The abolishment of PC plateaus by Na and Ca channels blockers and the upward shifts of the 
plateau voltage following partial blockage of K conductances early suggested that the 
amplitude and time course of these signals result from a balance of hyperpolarizing K currents 
and depolarizing currents (Na in the soma and Ca in dendrites (4)). However, models 
incorporating a detailed description of PC currents proved unable to replicate these signals 
(38). At about the same time, Yuen et al. (15) attempted to extract from the wealth of active 
PC currents the minimal set of currents required to produce dendritic Ca-dependent spikes and 
plateaus. They demonstrated that the set of P-type Ca current, ICaP, and delayed rectifier K 
current, IKdr, can produce both plateaus and spikes. This finding agreed with (i) the fact that 
ω-Aga-IVA, a selective antagonist of P/Q-type channels (39), abolishes both dendritic spikes 
and plateaus and (ii) the existence of high-threshold delayed rectifier K currents (40) serving 
to repolarize spikes (41). However, plateaus in this simplified model had unrealistically large 
amplitude (~60 mV) and a higher voltage threshold than spikes, whereas experiments 
evidence that Ca spikes ride on plateaus (2, 4). These discrepancies suggested a basic flaw in 
our knowledge of PC currents at the time when these models were built, most probably 
regarding K currents since P/Q channels had been shown to underlie ~90 % of total Ca 
currents in PC (5, 42-44). 

Most notably, Etzion and Grossman (45, 46) subsequently identified a highly 4-
aminopyridine sensitive delayed rectifier K current in PC and demonstrated that it underlies 
the sharp outward rectification in the I-V relationship of PC near the plateau level, which is 
visible after blocking inward currents (47). They also reported that partial blocking of this K 
current reduces latency to the onset of Ca spikes firing in responses to intracellular current 
pulses (46). Because Ca spikes ride on dendritic plateaus (4), these findings suggested a 
crucial participation of this K current to the electrogenesis of dendritic plateaus. We have 
shown that adding a crude description of this current, termed IKsub, to the Yuen et al.’s model 
(15) together with the modulation of P/Q-type Ca currents amplitude due to changes in the 
Nernst potential of Ca2+ ions resulting from Ca2+ elevations in the cytoplasm (24) results in a 
simple (three state variables) biophysical model producing plateaus and spikes with realistic 
thresholds and shapes (11). To our knowledge, it remains the sole biophysically-grounded 
model correctly reproducing the PC dendrites dual electroresponsiveness. This model predicts 
mirror signals to plateaus, termed valleys potentials, by which brief inhibitory synaptic inputs 
trigger long lasting hyperpolarizations of PC. The recent demonstration that most of voltage-
dependent K channels in PC belong to the family of high-threshold Kv3 channels (32, 46, 48-
50) strengthens the model’s conclusion that the interplay between high threshold Ca and K 
channels constitutes the backbone of PC dendrites’ dual electroresponsiveness. In particular, 
Bushell et al. (51) have demonstrated that high-threshold, Kv3-like voltage-dependent 
channels underlie the outward rectifying K current (the model’s IKsub), as originally suspected 
by Etzion and Grossman (46). The recent study of Martina et al. (50), which demonstrates that 
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PC express exceptionally fast K currents legitimates the assumption of instantaneous 
activation of IKsub in the model. Moreover, studies on other types of Ca currents identified in 
PC (L, T and R) give no indication that they are involved in dendritic plateaus. 
 
Intrinsic membrane currents 
In the model, the density of all currents I (nA/cm2) obeys Ohm’s law, ( )I g V E= − , in which 
g (µS/cm2) denotes the conductance density, V (mV) the membrane potential and E the Nernst 
equilibrium potential (mV). The conductance g is determined by the product of a maximum 
conductance, g  and a gating variable, m, representing the fraction of activated channels 

[ ]( ) [ ]( ), ,
p

i ig V Ca g m V Ca= .                                      (SI1) 
 
Variable m is a function of V (for voltage-dependent channels) and possibly of the internal Ca 
concentration, [Ca]i (for Ca-dependent potassium channels, see below). In the case of A-type 
K channels, equation (SI1) is multiplied by a second m-like variable modeling their 
inactivation properties. 

Kinetics of the m variable of all voltage dependent currents but INa is modeled by a 
simplified version of the classical Hodgkin-Huxley (52) rate equation 
 

( ) ( ) ( )m
mV V m V m
t

τ ∞
∂

= −
∂

,                                              (SI2) 

 
in which the steady-state value m∞  of m depends on V according to a Boltzmann function (see 
e.g., (53)) 

( ) ( )1/ 1 exp ( ) /m mm V V V k∞ = + ± −⎡ ⎤⎣ ⎦ .                                      (SI3) 
 

mV  (mV) is the half-activation potential and mk  (mV) the slope of change of m∞  with V. The 
‘–’ and ‘+’ signs stand for activation and inactivation variables respectively. 
   P/Q-type Ca channels which are responsible for ICaP and Kv3 potassium channels like 
those underlying the outward rectification modeled by IKsub activate very fast (42, 50, 54). As 
a simplifying hypothesis, our model accordingly assumes that 0mτ =  (i.e. instantaneous 
activation) and hence that m m∞=  at each time point for these currents (see Eq. SI2). By 
contrast, IKdr has a larger voltage-dependent time constant of activation that is taken from (15) 
 

( ) ( )( ) ( )( )0 1 / exp / / exp /m m m m mm m mV V V k c V V kτ τ τ τ ττ τ τ ⎡ ⎤= + + + +⎣ ⎦  ,             (SI4)                
 
with 0mτ  = 0.2 ms, 1mτ  = 4.15 ms, mVτ  = –22.5 mV, mkτ  = 17 mV and mcτ  = 0.6. 

Voltage-dependent sodium channels in the PC soma belong to the Nav1.6 type (54, 
55). These channels deviate from the classical Hodgkin-Huxley formalism in that they 
produce resurgent currents upon repolarization which have been implicated in the high-
frequency SS firing of PC (56). We model dynamics of the m variable of INa according to the 
kinetic scheme of Raman and Bean (56). The voltage dependence of rate constants α , β  and 
ζ  is shifted by +14 mV to produce SS with a voltage threshold consistent with latest data 
(17, 33). 

We simulated variants of the basic dendritic model encompassing recently 
documented conductances to evaluate the robustness of its conclusions. Several studies 
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suggest that an important role of P/Q type Ca channels is to provide a source of Ca2+ ions to 
activate KCa channels (57, 58). PC express both SK and BK-type KCa channels (57-63). BK 
channels behave much like delayed-rectifier K channels, with the difference that their Vm 
decreases with increasing Ca levels (20). Our model of their currents uses the modified 
Boltzmann function for m∞  derived by Womack and Khodakhah (59) from their data on BK 

channels in PC, in which /mk RT zF= . We take z  = 2.0366 (mean value computed from 
Table 1 in (59)) and mτ =1.8ms (59). The Ca-dependence of Vm is modeled by the function 

[ ]( )0.3545 362.8exp / 0.96m iV Ca= − + − ,                                     (SI5) 

 
representing the best non-linear fit of data in Table 1 in (59). 
 Unlike the BK kind of KCa channels, Ca2+ ions directly activate SK channels. A 
precise characterization of SK channels in PC is lacking but experiments have consistently 
reported a fast and non-linear activation of these channels in numerous cell types (64). In the 
absence of conflicting results, we accordingly assume instantaneous Ca2+ activation of PC SK 
channels, using a simple Hill equation for their m∞ variable 
  

[ ]
[ ]

z

i
zz

SK i

Ca
m

K Ca∞ =
+

                                                         (SI6) 

 
A mean z = 5 value is adopted from the comprehensive review of Xia et al. (64) on SK 
channels. KSK is taken as 300 nM (affinity constant of cloned SK2 channels (65), the SK 
channel subtype found in PC (60)). 

The hyperpolarization-activated cationic current Ih (66), which is segregated to 
dendrites where it exhibits a uniform density (67), has been implicated in bistable properties 
of PC (7, 8). Our simulations of Ih uses the experimentally-constrained model of this current 
given by Khaliq et al. (68).  

We derived a model of A-type K currents active at sub-threshold potentials from data 
of Sacco and Sampia (69). Voltage-dependence for the time constant of their m activation 
variable was fitted to data from these authors with equation  

( )( ) ( )( )0 1 / exp / / exp /m tt t V V k c V V kτ τ τ ττ ⎡ ⎤= + − + −⎣ ⎦ , in which parameters were 0 1.055t =  

and 1 5.25t =  (ms), 15.7kτ =  mV, 59.28Vτ = −  mV and 0.785tc =  (dimensionless). A mean 
950 ms value is adopted for their weakly voltage-dependent time constant of inactivation. 
 With the exception of the well-established segregation of Na channels to the soma and 
Ca channels to dendrites, our model assumes that all other channels are uniformly smeared 
over the somato-dendritic membrane of PC. The Nernst potential of the leakage, Na and K 
currents are constants while that of ICaP depends on the variable [Ca]i according to the Nernst 

formula, 
[ ]
[ ]

ln
2

o
Ca

i

CaRTE
F Ca

= , in which [Ca]o denotes the (fixed) external Ca2+ ion 

concentration. To obtain the Ca2+ PDE of the model, we added a longitudinal diffusion term 
to the balance equation of Ca2+ ions (Eq. 12 in (11)). From Fick’s law, this diffusion flux 

across a dendrite section reads ( ) [ ]
2 i

Ca d

Ca
D R

x
πδ δ

∂
− −

∂
 (mol/s), with DCa  (cm2/s) denoting 

the diffusion coefficient and δ  (cm) the thickness of the cytoplasm layer where free Ca2+ ions 
are confined (see (11)). Table 1 lists the standard values of ion current parameters whereas 
Table 2 provides values of geometric, electric and internal Ca regulation parameters. 
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TABLES 
 

 Current name Abbrev E (mV) p Vm (mV)  km (mV)  g  (µS/cm2) 

P-type Ca ICaP Eq. 7 1 -22 4.53 600 (d) 

0 (s) 

delayed-rectifier K IKdr -95 4 -25 11.5 4200 (s) 

24500 (d) 

sub-threshold K IKsub -95 3 -44.5 3 30 

 

Ion 

currents in 

the basic 

G&D 

model leakage ILeak -60 passive 20 

Na INa 60 model of Raman and Bean (56) 25000 (s) 

0 (d) 

BK calcium 

activated K 

IKCaBK -95 Eq. 5 and 6 adjustable 

SK calcium 

activated K 

IKCaSK -95 Eq. 7 adjustable 

hyperpolarization 

activated cationic 

Ih -30 model of Khaliq et al. (68) adjustable 

Activation Inactivation 

 

 

Other PC 

ion 

currents 

introduced 

in variant 

models 

sub-threshold 

A-type K 

IA -85 

1 -24.9 16.2 1 -69.2 9.7 

adjustable 

 
 
Table 1. Parameters of membrane currents. Abbreviations: (s): soma, (d): dendrites 
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 Parameter Description Value Notes 

Rd radii of spiny dendrites 2 µm (primary segments) 

1.4 µm (secondary) 

1 µm  (tertiary) 

(19) 

δ  thickness of cytoplasmic shell in 

dendrites 

3 × 10-5 cm (11) 

    

q ratio of somatic to total cell surfaces 5 × 10-2 (19) 

Ns linear spine density 21 µm-1 (spiny dendrites) 

2 µm-1 (smooth dendrites) 

(70) 

 

 

 

 

 

Geometric 

    

k one-dimensional Ca diffusion constant 0.01 cm/s (11) 

[B]T  Ca buffer concentration 150 µM (11) 

Kd  dissociation constant of buffer  1 µM (11) 

[Ca]b  cytoplasmic basal free Ca 

concentration  

50 nM (11) 

 

 

Ca 

dynamics 

[Ca]o external free Ca concentration 1.1 mM (11) 

C electric membrane capacitance  1 µF/cm Standard value 

(20) 

Ri cytoplasm resistivity 0.25 kΩ cm (19) 

 

 

Electric 

gc coupling conductance between 

dendrites and soma 

2.5 µS Estimated 

 
Table 2. Geometric, electric and internal Ca regulation parameters. 
 
Synaptic currents 
MF activate GC whom axon, PF, makes excitatory synapses on PC spiny dendrites.  Each PC 
receives inputs from large (> 105 in rats (71)) arrays of PF. However, PF also activate SC, 
which make inhibitory synapses on PC. Thus, PC receive inputs from MF through a 
feedforward inhibition network whose overall effect varies between inhibition and excitation 
(72, 73). As the detailed activity in this network remains poorly documented and because of 
the very large GC/PC ratio (1), our model assumes a parsimonious description of the MF 
system into which it carries a tonic background input to PC (see e.g., (74)). On the opposite, 
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CF fire at a low frequency (~1 Hz), carrying phasic inputs to PC. Classical theories of the 
cerebellum suggest that the MF system may also signal brief, salient sensory-motor events 
through synchronous activation of PF/SC subsets, providing another source of phasic input to 
PC (75, 76). The phasic, Iϕ  and tonic, Idc components of synaptic currents can be respectively 
regarded as signaling salient sensori-motor events and their context of occurrence. Phasic 
currents are modeled as bi-exponential functions 
 

 ( ) ( ) ( ) ( )1 exp / exp /i i o c iI t g t t E Vτ τ= − − − −⎡ ⎤⎣ ⎦ ,                                (SI7) 
 
where τ o  and τ c  (ms) respectively stand for opening and closing time constants, the 
maximum conductance and inversion potential being respectively denoted by gi and Ei, with 
{ }, ,i PF CF SC∈ . We take { }2.4,6.3  (ms) and { }0.9,9  (ms) for { },o cτ τ  of PF and SC 

currents respectively (77, 78) and { }0.7, 6.4  (ms) for the CF current (79). Ei is 0 mV for PF 
and CF currents (79) and –80 mV for SC currents (35). The value of gCF is 1.2 µS, consistent 
with the estimated value obtained from a multi-compartmental model (14). 
 We will submit codes of our model to modelDB after publication of this article. 
 
Model of the PC soma 
The conclusion that dendritic plateaus invade the entire cell, derived from equivalent cable 
model and supported by simulations of a detailed PC, agrees with recordings of Ca plateaus in 
the soma after blocking its Na channels (3). Our analysis suggests that dendritic signals can 
accordingly drive lasting transitions in the soma voltage between down (~–53 mV, valleys) 
and up (~–45 mV, plateaus) limits. Two recent studies (17, 33) have demonstrated that the SS 
threshold lies in the [ ]48.9, 41.5− −  (mV) range of somatic voltages in adult PC. The partial 
overlap between these two voltage ranges confirms the soundness of investigating the 
hypothesis that dendritic signals decide epochs of firing/pauses from PC.  

In order to correctly address this hypothesis, we needed a reliable model of the PC 
soma capturing its private dual electroresponsiveness. A recent study (18) documents 
capabilities of a simplified model to reproduce bistability, spontaneously resetting plateaus 
and type II firing properties of PC. However, this model produces only stable limit cycles and 
therefore fails providing a mechanism for Na plateaus. Moreover, it hypothesizes that 
dendrites bring a crucial contribution to the soma bistability through a slowly activating K 
current (activation time constant τ = 15ms). Experimental data are unable to substantiate this 
hypothesis because, in PC, purely voltage-dependent K current have exceptionally fast 
activation kinetics (τ < 1ms, (50)) and Ca-activated K channels also activate faster than the 
slow K current in (18) (59, 64). Our previous study (11) concluded that a transient balance 
between ICaP and the outward rectifying K+ current of PC (IKsub in our model, (45, 46, 51)) 
likely underlies spontaneously resetting dendritic Ca2+ plateaus. We therefore designed a 
simple soma model to investigate the hypothesis that a similar interaction between IKsub and 
the Na current, INa, may underlie Na plateaus. This model was simply obtained by substituting 
the experimentally-derived model of INa  in PC (56) for ICaP in the G&D model.   

The model produces spontaneously resetting Na+ plateaus with superimposed SS 
outlasting their triggering stimulus (inset in Fig. 1E3). Simulations show that zeroing the 
resurgent component current of INa or removing IKsub in the model prevents it to produce Na+ 
plateaus. Together, these findings support the (i) hypothesis that the resurgent current of Na 
channels carries the depolarizing current during Na+ plateaus (54) and (ii) conclusion that  
these plateaus results from distortions of the vector field at the left of a bistable range of Idc. 
This shows that a similar balance between IKsub and an inward current can explain both Ca2+ 
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and Na+ plateaus potentials of PC. However, Na plateaus are labile signals in the model: they 
are only observed inside a narrow Idc range [ ]72.1,73.1−  (nAcm-2) and triggering of these 
signals is challenged by <1% changes in the stimulus amplitude (not illustrated), which can 
account for the scarce documentation of Na plateaus. 
 
II. Robustness of the model 
PC exhibit stereotyped electric signals, like Ca-dependent plateaus and spikes despite 
significant variations in densities and activation parameters of ion channels from cell to cell. 
The present biophysical model therefore had to be robust to such fluctuations to propose a 
relevant mechanism for spikes and plateaus/valleys.  

All results in this study are robust to large deviations in parameter values of the model 
(not illustrated). Moreover, the model retains its overall properties when other active currents 
found in PC are added to its basic formulation. However, simulations of these variant models 
suggest that the Ih, IA and IKCa currents found in PC might contribute to the shaping of 
dendritic plateaus and valleys. 

Addition of the hyperpolarization-activated cationic current, Ih, to the basic model 
exerts opposite effects on its dynamics. On the one hand, the model retains its Ω zone (Fig. 
SM2-1A left) and the capability to produce plateaus and valleys (not shown) with low values 
of this current conductance, gh (i.e. in the order of that of gKsub). Nevertheless, increasing gh 
continuously decreases the Ω width up to the limit value gh = 183.85 µS/cm2, where 
bistability is lost. This effect results from the small depolarizing contribution of Ih at negative 
V, as evidenced by the upward shift of the model’s resting potential (not illustrated). Our 
simulations therefore show that Ih cannot be causal in the dendritic bistability, in agreement 
with the experimental observation that Ih tends to mask bistability in PC (7). Nevertheless, 
responses of the Ih-endowed model to square pulses of hyperpolarizing currents suggest that 
moderate levels of Ih can favor R → P dendritic transitions (Fig. SM2-1A right). Thus, with 
the example of gh = 30 µS/cm2 (same value as the standard gKsub) the Ih-variant model still 
produces the whole spectrum of triangular to rectangular plateaus in response to depolarizing 
Iϕ  (not illustrated). However, a transient rebound depolarization occurs at the break of 
hyperpolarizing Iϕ . The rebound amplitude grows with that of the stimulus, as larger 
hyperpolarizations allow deinactivating larger Ih fractions (Fig. SM2-1A right). The rebound 
can become so large that it paradoxically allows the hyperpolarizing input to trigger a plateau 
potential. 

We did not attempt to evaluate the impact of slowly inactivating IA-like currents on the 
model as these currents are absent in adult PC (80). Nevertheless, we simulated the impact of 
the subthreshold IA current studied by Sacco and Tampia (69) because its voltage dependence 
and inactivation time constant closely match those of the IA documented by Wang and 
Schreurs (81) in adult PC. Adding this current to the model neither prevents the occurrence of 
the Ω zone nor that of its companion plateaus and valleys (Fig. SM2-1B left). However, IA 
shifts the model’s resting potential downward due to the ‘window’ hyperpolarizing current 
produced by the overlap between activation and inactivation curves of IA (69, 81). 
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Fig. SM2-1 Robustness of the model to recently characterized currents in PC. A-D Left 
(except panel Cb): impact on Ω of several conductances not introduced into the basic model. 
Right: responses of the basic model and its variants to hyper/depolarizing current pulses 
(illustrated on top of panels). A Ih (gh = 30 µS/cm2). A large hyperpolarizing pulse (-1250 
nA/cm2, grey trace) allows the rebound depolarization at pulse break to trigger a lasting 
plateau. B Reponses in the absence (dark traces) and with IA (gA = 30 µS/cm2). Cc 
superimposed responses of the model in the absence (black trace) and with IBK (grey trace, gBK 
= 1250 µS/cm2) to a 800 nA/cm2 pulse of depolarizing current. Cc&d: impact of IBK on 
responses of the somatofugal cable to a CF input with dendrites initially in the R state (c, Idc = 
-25 nA/cm-2) or P state (d, Idc = 45 nA/cm-2). D Superimposed responses of the model lacking 
(black trace) and endowed with ISK (gSK = 2.5 µS/cm2). Idc was adjusted to have the same 
resting potential in the two model versions: 0 (no ISK) and 91.8 (with ISK) (top panel, plateaus); 
50 (no ISK) and 176.18 (with ISK) (bottom panel, valleys). 
 

As a consequence, the Ω zone occurs at progressively larger Idc with increasing gA 
values, its width being however weakly sensitive to large gA changes (Fig. SM2-1B left). 
Given the voltage–sensitivity of plateau/valley signals, we achieved a faithful evaluation of 
the IA contribution to dynamics of these signals by comparing responses of the basic and IA-
endowed models. The latter one was fed with a constant current to insure a same resting 
potential in the two model versions. Fig. SM2-1B (right panel) illustrates potent effects of IA 
to lengthen both plateaus and valleys predicted by the basic model. The plateau’s lengthening 
results from IA inactivation upon depolarization, which shifts the balance of membrane ion 
currents toward the depolarizing, non-inactivating ICaP. On the opposite, deinactivation of IA 
upon hyperpolarization is responsible for the lengthening of valleys as it shifts the current 
balance toward K currents. 

We also examined the effects of introducing Ca-activated K (KCa) channels into the 
model as they carry a significant fraction of the total K current in PC (43). Plateaus, valleys 
and bistability in the model are largely robust to the inclusion of IBK (Fig. SM2-1Ca). Thus, 
this current neither affects width of the Ω zone nor plateau-valley duration/Idc relations (not 
illustrated), even with conductances as large as that of IKdr. A plateau shortening of less than 
5% is only observed with unrealistically large conductance densities of 5×103 µS/cm2 (data 
not shown). This result is readily understood from the large (several µM) Ca elevations 
required to activate BK channels of PC, their half-activation potential remaining positive at 
high Ca levels (59). IBK is thus unable to affect plateau and valley signals, which involve sub-
micromolar Ca variations over a ~ –60 to –40 mV range of membrane potentials. However, 
Ca spikes induce micromolar Ca elevations in dendrites (25) which are large enough to 
significantly activate BK channels (57, 58). In response to large depolarizing driving currents, 
repetitive firing of Ca spikes thus occurs at lower frequencies in the model with BK channels 
(Fig. SM2-1C left). Moreover, each Ca spike exhibits a larger after-hyperpolarization (AHP;). 
This is consistent with the finding that blocking BK channels reduces the Ca spikes AHP (57) 
and increases the frequency of Na-Ca bursts (82). 

By contrast to BK channels, simulations of a variant model including SK channels 
found in PC suggest a prominent role for these channels in PC dendrites plateaus/valleys. 
Thus, a conductance density of 1 µS/cm2 (i.e. several orders of magnitude smaller than that of 
IKdr and IKsub) significantly narrows the Ω zone (Fig. SM3-1D left). Bistability vanishes for 
gSK > 9.5 µS/cm2, i.e. the third of gKsub. This prominent effect results from the downward shift 
of its resting potential due to the significant activation of SK channels at resting Ca levels. We 
adopted the same strategy as with IA to compare plateau/valley dynamics in the SK-variant 
and canonical versions of the model. Starting from the same membrane potential, a 100 ms 
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duration depolarizing pulse triggers a shorter duration plateau in the SK-endowed model than 
in its canonical version (Fig. SM3-1D right). Similarly, a hyperpolarizing pulse triggers a 
shorter valley in the SK-endowed model than in the basic model. These effects results from 
the addition of the hyperpolarizing current of SK channels to that of IKdr and IKsub. Upon a 
depolarizing pulse, ICaP activates so that [Ca]i increases during the plateau, which activates 
SK channels. ISK adds to IKdr and IKsub to shorten the plateau. On the opposite, [Ca]i decreases 
during valleys, partially deactivating ISK and thereby shifts the total membrane current in 
favor of ICaP, which shortens valleys. 

Despite a thorough exploration of its parameter space, our model proves unable to 
reproduce the in vitro trimodal activity pattern of PC (tonic SS firing epochs, followed by Na-
Ca bursts and ended by pauses lasting for dozens of seconds (83)). Inability of our model to 
reproduce this pattern should not be considered as a limitation because this pattern was only 
observed in a subset of available data and CF activation at physiological frequencies restores 
the in vivo-like pattern of activity of the cell (84). 

Experiments have not yet identified the outward rectifying K+ current in isolated cell 
bodies (68), suggesting that this current may be segregated to dendrites. We therefore 
investigated whether the Na plateau mechanism described in SMI also holds in the entire cell 
with the somatic compartment lacking IKsub. Fig. SM2-2 illustrates the soma voltage time 
course in response to 150 ms depolarizing pulse (0.4 nA amplitude, current injected in the 
soma compartment). ICaP was zeroed to reproduce conditions in which Na+ plateaus were 
identified by Llinás and Sugimori (2). The illustration shows how the depolarizing pulse 
triggers a lasting Na plateau (Idc = 0.34 nA in the soma, no tonic current in dendrites). This 
result stems from the fact that the somatic depolarization during repetitive SS firing activates 
IKsub in the dendrites through the dendro-somatic electric coupling. 

 
 

 
 
Illustrated results in the main text were obtained by assuming a uniform IKsub distribution over 
the somato-dendritic membrane. Further experiments are required to evaluate a possible 
segregation of IKsub to dendrites which may contribute setting the plateau/valley-duration / Idc 
relation.  
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III. Simplified representations of the PC architecture 
The infinite cable  
Simulating the extended model in infinite cables offered a convenient way to investigate 
intrinsic capabilities of dendritic PC plateaus/valleys to propagate waves of electric signals 
using the G&D mechanism. In such unbounded domains, electric waves travel without shape 
changes with a uniform speed, θ. The existence of such wave solutions in the model could 
accordingly be proven by rewriting PDE in a co-moving frame of reference, with 
coordinateξ θ= −x t , accompanying the wave propagation in the positive x-direction (85). 
After this coordinate change, the model reads as a system of ODE 
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with the additional parameter θ. Eqs. SIII1 are referred to as the ‘traveling system’ in Results. 
Propagated waves appear in this frame as standing voltage profiles connecting a resting point 
of Eqs. SIII1 to itself (homoclinic orbits) or two different resting states (heteroclinic orbits) 
(86). Fig. SM3-1 relates orbits searched for in the co-moving frame to their counterparts in the 
space domain (i.e. voltage profiles along the dendrite at a given instant). Fixed points in the 
traveling system correspond to a uniformly polarized dendrite (spatially uniform steady state). 
Heteroclinic orbits connecting two steady states correspond to traveling fronts, whereas 
homoclinics to a single steady state translate into traveling pulses, representing either finite 
duration plateaus/valley potentials, Ca spikes or a combination of both. The key problem of 
our computations was to find θ values allowing for homo- and heteroclinic orbits to occur in 
order to prove the existence of the corresponding traveling waves. Homo- and heteroclinics 
were searched for with the Homcont set of numerical routines (87) imported by B. Ermentrout 
into his XPP software (www.pitt.edu/~phase). These numerical methods can only 
approximate homo- and heteroclinics as they necessarily work on finite time intervals, 
whereas dynamical systems take an infinite time to travel along these orbits. Owing to this 
limit, algorithms in Homcont refine an initial approximation of these orbits by extending it 
along a parameter Π multiplying the right-hand side of Eqs. SIII1. Illustrated homo- and 
heteroclinics were computed with Π = 50. We verified that Π values a hundred-time larger 
did not change results significantly. These results were cross-validated by simulating the 
model in cables several times longer than the orbit wavelength (in order to make boundary 
effects negligible and thus approximate the infinite dendrite case) to guarantee that illustrated 
orbits (Figs. 2) represent reliable approximations of true homo- and heteroclinic solutions of 
the model. These simulations were performed with a home-made code implementing the 
semi-implicit Crank-Nicholson formulation (88) of the model equations with sealed-end 
boundaries; the set of non-linear algebraic equations resulting from the spatial discretization 
of Eqs. 1-3 was solved at each time-step by Gauss-Seidel elimination (89). 
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 An exhaustive exploration of (homo-)heteroclinic solutions of Eqs. SIII1 was elusive 
because this system is 4-dimensional. By contrast, the existence of (homo) heteroclinics can 
be proved geometrically in 2D dynamical systems: manifolds of fixed points are one-
dimensional (i.e. lines) and it can be easily verified in the phase plane whether or not they can 
produce (homo) heteroclinic connections. For this reason, we derived a 2D simplified version 
of the model by assuming instantaneous activation of IKdr and rapid equilibrium of [Ca]i. 
These simplifying assumptions are justified by the fact that plateaus/valleys are slow electric 
events compared to the rate of activation of IKdr (the largest value of its voltage-dependent 
time constant is 2.9 ms) and our previous study has demonstrated that the homogeneous 
model retains the capability to produce plateaus/valleys with [Ca]i set at its equilibrium value 
at each point in time (11). Introducing these two simplifications, the traveling system reduces 
to the following set of differential-algebraic equations: 
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With the example of Rd = 0.5 µm, an approximate solution of implicit Eq. SIII2C (best non 
linear fit obtained with the Levenberg-Marquardt algorithm (89)) is given by 
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Substituting this solution for [Ca]i in Eq. SIII2B, the traveling system reduces to a system of 
two ODE with variables V and Vξ, subsequently referred to as the ‘2D model’, which captures 
the essential characteristics of the full model in the voltage range below the Ca spike 
threshold. 
 
Equivalent cable representations of PC dendrites 
PC dendrites exhibit a dichotomous pattern of branching: the primary dendritic trunk splits 
into two daughter branches with approximately identical diameters and so on (clearly visible 
in the PC reconstructed by Shelton (19) illustrated in Fig. SM3-2A; also see (1)). Exceptions 
occur at spiny branchlets whose initial segment has a smaller diameter than their parent 
smooth dendrite. The variable lengths of dendritic segments and termination of dendritic 
branchlets after random numbers of branch points explain the various cell shapes observed in 
the PC population (1). Theoretical studies have shown that propagation of an action potential 
in an excitable dendritic tree with uniform ion channel densities is more secure in the 
somatofugal direction (from soma to dendrites) than in the somatopetal direction (see e.g., 
(90)). Moreover, Stockbridge (91) has demonstrated that an action potential reaching a branch 
point where a segment splits into two daughter segments with identical diameters but unequal 
lengths (like in PC dendrites) cannot invade the longer branch without invading the shorter 
one (Fig. SM3-2B). We could thereby put that an active electric signal (i.e. spike or plateau) 
triggered close to the soma cannot reach the tip of the longest branch in the tree (in 
electrotonic units) without invading all other branches. The situation was somewhat different 
for an active signal triggered in distal dendrites (Fig. SM3-2B), which has first to reach the 
soma before possibly invading the rest of the cell. From the excited branch, the signal 
propagates more easily in sister branches than in the parent trunk because the latter has a 
larger diameter and the rest of the tree imposes a huge current sink, decreasing efficiency of 
the axial current to depolarize the trunk beyond the voltage threshold. This effect prevents 
diameter differences at spiny/smooth dendrites branch points to challenge our previous 
conclusion regarding somatofugal propagation. Moreover, it entails that centripetal 
propagation to the soma implicates propagation in all branches encountered along the path 
connecting the excitation site to the soma. For propagation beyond the soma in the rest of the 
tree, we retrieve the somatofugal case discussed above. 

From the above analysis, we concluded that a necessary and sufficient condition for an 
active electric signal to invade a whole PC is the propagation of this signal along the longest 
electrotonic path connecting its locus of origin to dendritic tips, whatever its location in the 
cell. We deduced from this condition that an equivalent cable model of PC reproducing 
electrotonic attenuation along this path is sufficient to investigate whether dendritic Ca-
dependent plateaus and spikes can invade the whole dendritic tree. However, no single 
equivalent cable can possibly allow investigation of both somatofugal and somatopetal 
propagation of these signals at the same time since attenuation of electric signals is 
asymmetric in dendrites, being much steeper in the centripetal direction (92). We therefore 
built two types of equivalent cables respectively aimed at simulating the somatofugal 
propagation of spikes of plateaus/valleys triggered by the CF (Fig. SM3-2C1-3) and 
somatopetal propagation plateaus/valleys triggered by PF and SC (Fig. SM3-2D1-3). Their 
physical dimensions were adjusted to reproduce the total surface and input resistance of the 
full Shelton’s PC. 

The general algorithm for building somatofugal and somatopetal equivalent cable 
representations of Shelton’s PC was as follows. Having chosen a locus of synaptic input, we 
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first computed the electrotonic attenuation of this input at every dendritic termination of the 
tree endowed with a passive leakage conductance, gL, using the iterative method of Rall (93). 
The path with the longest electrotonic length from the input location, Lmax, was selected in the 
resulting dendogram (Fig. SM3-2C1). A straight cable comprising n cylindrical segments with 
identical electrotonic length, L nmax / , but varying radii, Rci (i=1..n), producing the same 
electrotonic attenuation was then built as follows. Radius of the more distal segment, Rcn, 
being set to an initial guess value, the voltage profile along the equivalent cable was 
analytically expressed with Rall’s method. The voltage values at the termination of the n–1 
remaining segments depending on the n–1 unknown radii were then equated to the 
corresponding values computed along the longest electrotonic path in the tree. This resulted in 
a set of n–1 non-linear algebraic equations, which was solved iteratively by varying Rcn until 
the total membrane surface and input impedance of the equivalent cable approximately 
matched those of the uncollapsed dendritic tree. We found impossible to find a single set of 
radii reproducing exactly the two parameters value at the same time, either for the 
somatofugal or somatopetal cables. We selected parameter sets representing the most 
appropriate tradeoff between these constraints, according to the respective question 
investigated with the two kinds of cables. 

In the case of the somatofugal cable, we selected a set of radii for which the total 
membrane surfaces of the equivalent cable and uncollapsed dendritic tree matched because 
the CF achieves multiple synapses on smooth dendrites (hence its effect does not depend on 
the somatic input resistance). The best fit ‘somatofugal model’ had a 73.5 µm diameter for its 
most distal segment and a total membrane area of 4.1 × 105 µm2 (0.6% difference with the 
membrane area of the full cell). The somatic input resistance was 33% larger than the value in 
the uncollapsed cell. The cable had an electrotonic length of 0.55, close to values documented 
in previous studies (0.57 (38) and 0.59 (94)). On the opposite, the input resistance of the 
excited branch was chosen to constrain radii of somatopetal cables since this factor crucially 
determines conduction toward the soma of active electric signals triggered in a neuron’s 
dendrites (90). For example, the best-fit somatopetal equivalent cable model (Fig. SM3-2D3) 
had a terminal radius of 511 µm and an input resistance of 52 MΩ at the origin of branch 68 
(0.7% difference with the value in the uncollapsed tree) selected as the target of synaptic 
inputs (see below). The membrane surface was however ~1.5 that of the actual cell, so that 
conductances values for exciting plateau and valleys derived using this model (Fig. 3C) must 
be regarded as superior bounds. 
  In the case of somatopetal cables, the branchlet receiving synaptic inputs was fully 
described and connected to the lumped tree, in order to investigate the impact of different 
distributions of synaptic input onto this branch. The illustrated results were obtained with 
branch 68 (using Shelton’s indexation, see Fig. 3 in (19)) as the site of distal inputs. 
Additional simulations in which synaptic inputs were targeted to different branches (69 and 
85) gave similar results. Segments in a spiny branch were numbered as follows: the initial 
segment, labeled n°1, divides in two ramifications. N°2 was given to the segment of the 
ramification producing the least number of further ramifications and so on. Upon reaching a 
terminal segment, numbering resumed to the parent segment. 
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This algorithm was applied to Shelton’s PC after a dual rescaling of its geometrical 
dimensions. Following Shelton (19), we first multiplied length l and radius Rd of each 
dendritic segment by 1.36 to obtain the larger physical dimensions of a guinea pig PC, for 
which Shelton provided estimations of gL and Ri used as standard values of these parameters 
in our study. PC have impressive numbers of synaptic boutons that bring an extra membrane 
surface to ‘nude’ dendrites. As the membrane of spines represent > 75 % of the total cell 
surface (31), we further rescaled geometrical parameters of Shelton’s cell to complete a 
realistic picture of its actual dimensions, using the method of Segev et al. (95). Finally, 
thickness δ of the cytoplasmic shell in the two reduced models was rescaled at each 
electrotonic distance from the locus of synaptic input to preserve surface/volume ratios in the 
full cell and thereby ensure realistic [Ca]i dynamics. 
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Impact of the CF input on Shelton’s PC was simulated with the somatofugal cable as 
follows. The conductance gCF (µS) was uniformly distributed over all proximal compartments 
of the cable closer to the soma (in electrotonic units) than the farthest smooth segment in the 
uncollapsed cell. 

 
Endowing equivalent cables with an excitable soma 

A major goal of our study was to investigate the hypothesis that dendritic Ca signals 
command the SS output of PC. Owing to the well known somatic/dendritic segregation of 
Na/Ca channels, addressing this question required connecting a soma model to the lumped 
dendritic trees. The soma was modeled as an isopotential compartment, which was electrically 
connected to the dendrites by adding a coupling current to the soma voltage, Vs, equation (96) 
  

( ) ( )s c
Na Kdr Ksub L d s
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= − + + + + − ,                                   (SIII3) 

 
where q denotes the ratio of the somatic membrane area to the total cell membrane surface, gc 
(µS/cm2) the dendrites-soma coupling conductance and Vd the membrane voltage of the 
dendritic compartment in lumped trees which is connected to the soma. For the somatofugal 
cable, this compartment was the first one of the cable (Fig. SM3-2C2). For somatopetal 
cables, the electrotonic distance of the soma from the excited branch was localized in the 
dendogram (Fig. SM3-2D2) and the compartment localized at the corresponding distance in 
equivalent cables was selected as the connected compartment. Similarly, the balance equation 

of Vd was supplemented by the coupling current ( )
1

c
s d

g V V
q

−
−

. No analytical method has yet 

been developed to determine cg  from the geometry of a neuron and electric parameters of its 
membrane. Nevertheless, we could easily constrain the gc value by demanding equivalent 
cable models to reproduce the characteristic Na-Ca spike bursts of PC (4). The only fibers 
targeting the PC soma are axons of basket cells, which are not included in our model (hence 
the absence of a synaptic current in Eq. SIII3) as its objective is to understand dendritic 
dynamics and their impact on SS firing. Besides, our simplified model of the soma does not 
include Ca currents, dispensing us to model Ca dynamics in the soma. 
 
IV. Dendritic control of somatic firing 
Simulations of a somatopetal cable model provide direct evidence for a dendritic control of 
somatic firing in the soma as illustrated in Fig. SM4-1. The dendrites and soma of the model 
were initially uncoupled (i.e. by setting gc = 0) and the coupling conductance was step raised 
to its standard value. A variable tonic current was fed to the dendrites to determine their initial 
state, resting (A) or plateau (B). Our model of the isolated soma is bistable in the absence of 
synaptic inputs (Fig. 1E1) in agreement with experimental data and its initial state was 
arbitrarily set to its silent (A) or firing (B) mode.  
 With the dendrites initially in their R state (Idc = -25 nA/cm2) and a spontaneously 
firing soma, raising gc from zero to its standard value abruptly interrupts the somatic firing 
(A). By contrast, the dendritic membrane potential, Vd, undergoes no significant change. In 
the inverse situation where dendrites are initially switched to their plateau state (Idc = 45 
nA/cm2) and the soma initially quiescent, introducing the dendro-somatic coupling induces SS 
firing in the soma (B). No significant Vd change either occurs in this situation. 

These results evidence directly the dendritic control of somatic firing suggested 
implicitly by the bifurcation diagram illustrated in Fig. 4A1. These results are consistent with 
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relative values of the coupling currents in the dendrites and the soma stemming from voltage 
differences between these two regions of the cell. Thus, according to the expressions for the 
density of these currents (SMIII), s

CI  is ~20 times larger than d
CI  with the standard gc and q 

values (Table 2), which explains how dendrites in their plateau state can strongly depolarize 
the soma without the somatic firing significantly impacting on Vd. 
 

 
 
Fig. SM4-1 Responses of dendrites and soma of a somatopetal model to step introduction 
of the dendro-somatic electric conductance gc in an initially uncoupled model. Notice that 
switches of the soma between its silent and firing modes induce no significant changes in the 
dendritic voltage, owing to the hoveringly large ratio of the dendrites/soma membrane ratio. 
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V. Simulations of the plateau/valley mechanism in a fully 
reconstructed PC 
 

 
 
Fig. SM5-1 Simulation of the plateau mechanism in Shelton’s PC (19) with the Neuron 
software. Conductance densities were the same as in simulations of the model in equivalent 
cable except in the soma (gNa = 51.3 10×  µS/cm2, gKdr = 52 10×  µS/cm2). Dark traces: somatic 
membrane potential, grey traces: membrane potential in a proximal spiny dendrite. A 
Response of the cell to an excitatory current delivered to the dendrites (0.55 nA, 150 ms) in 
the presence of a SC background synaptic conductance (2 µS/cm2). B Same as A, with no 
background current. C Cell’s response to an inhibitory dendritic current (-0.6 nA, 150 ms) in 
the presence of a PF background synaptic conductance (0.84 µS/cm2). D Response to two 
successive CF inputs. The CF synaptic conductance (7 µS/cm2) was uniformly distributed 
over smooth dendrites. The SC background conductance was 1.2 µS/cm2. 
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VI. Phasic inhibitory inputs control the valley duration 
 

 
 
Fig. SM6-1 Responses of the standard somatopetal cable with passive soma to a variable 
train of SC inputs. Traces illustrate the somatic membrane voltage. Synaptic parameters 
were the same as in Fig. 3B4 with Idc = 45 nA/cm2. The valley duration increases non-linearly 
with the number of successive SC inputs, like the duration of pauses in PC firing (Fig. 3B in 
(17)). 
 
VII. Dendritic plateau and valley potentials represent an original 
mechanism of electric signaling in PC  
Excitable cells have been shown to display only two electric signaling mechanisms (97): (i) 
passive conduction of electrotonii in cells with linear I-V relations and (ii) spike propagation 
in cells endowed with non-linear membrane properties. Spikes are traveling waves 
propagating without shape change in straight cables at a constant propagation speed. No such 
speed can be defined for an electrotonus (its magnitude decaying with distance from the 
excitation site) and physiologists have therefore introduced a pseudo-propagation speed 
termed ‘conduction velocity’. We have thus reserved the term ‘propagation’ for traveling 
wave solutions in the usual mathematical sense and restricted the term ‘conduction’ to 
electrotonus. The reason for this clarification is that we provide evidence, based on 
simulations and theoretical considerations, that plateau and valley potentials represent an 
original mode of electrical signaling in PC displaying hybrid properties intermediate between 
that of action potentials and that of an electrotonus. We document below how this original 
signaling mechanism can emerge from the interplay between intrinsic and active membrane 
properties into the peculiar architecture of PC. 
 
Plateau potential are neither spikes not electrotonus 
In our model, plateaus exhibit a close to uniform amplitude over dendrites of Shelton’s cell. 
Slight (<1mV) amplitude differences are however noticeable between smooth and spiny 
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dendrites which stem from their different radii. To precisely compute the conduction speed of 
the rising and decaying phases of plateaus in our equivalent cable or full cell models would 
thus necessitate preliminary renormalization of the voltage trajectories. To avoid these 
procedures, we simulated our model in a straight cable with a 0.5 µm radius and an 
electrotonic length L~1. 
 We first computed the speed of the rising phase of plateaus triggered by rectangular 
pulses of current, Iϕ, injected at X = 0 and calculated the speed at the membrane potential V = 
-53 mV (close to the voltage inflexion point of the plateau relaxation, which is used to 
compute the plateau duration). 
 

 
 
Fig. SM7-1 Simulation of the plateau mechanism in a straight cable with an electrotonic 
length L~1. The cable was stimulated at its left end with square pulses of depolarizing 
current, Iϕ, (×103 nA/cm2, 150 ms duration): 2.8 (solid line), 2.65 dotted line and 2.5 (dashed 
line). A Conduction speed of the rising phase of the plateau as a function of the electronic 
distance X. B Conduction speed of the decaying phase of the plateau versus Iϕ calculated at 
the center of the cable. T, triangular plateaus, R rectangular ones, S spikes.  
 

Fig. SM7-1A plots the speeds computed along the cable for three different Iϕ 
amplitudes. First notice that the curves are very similar despite plateaus displayed very 
different durations (not illustrated). Unlike that of the electrotonus, the conduction speed of 
the plateau rise increases monotonically with X, indicating the involvement of the membrane 
active conductances. However, the speed range remains close to the theoretical value for 
electrotonus conduction speed in a passive cable (1.41 cm/s with our settings, see (97), p. 34-
35), showing that the travelling speed of the plateau rise is dominated by passive membrane 
properties.  

We then computed the travelling speed, vf, of the repolarizing phase of plateaus 
triggered by the same current protocols and at the same potential V = -53mV. Fig. SM7-1B 
illustrates the minimum value of this speed (encountered approximately at the center of the 
cable where the effects of sealed ends are the lowest) as a function of Iϕ. In contrast with the 
speed of the plateau rise, the speed of the plateau decay strongly depends on the amplitude of 
Iϕ, in a non-monotonic fashion. However, in the entire range of Iϕ values capable to trigger 
plateaus, the decaying phase of plateaus travels at speeds which are at least three orders of 
magnitude larger than the speed of the rising phase. 

Note that the same results were obtained from simulations with the Matlab, Maple and 
XPP softwares. This grants that the three orders of difference between the travelling speed of 
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the plateau rise and decay is an actual feature of our model and does not result from numerical 
errors. Simulations show, in a similar way, that valleys exhibit speeds of rise and decay 
differing by 2-4 orders of magnitude (not shown). Hence, the properties of dendritic plateau 
and valley potentials contradict the definition of a propagating traveling wave as a voltage 
trajectory where all points travel with a unique speed. We therefore conclude that plateau and 
valley potentials in PC dendrites can neither be classified as actively propagating spikes nor 
as passively conducted electrotonus.  
 
The mechanism of plateaus/valleys conduction 
In this section, we develop theoretical elements in order to more precisely understand this 
original conduction mechanism. Let us consider the response to a Dirac current input of a 
passive cable terminated at both ends by an open circuit. Dirac input is used here as a limiting 
case of the prolonged current stimulations that are used in our model to trigger plateau 
potentials. The response of this finite passive cable to such a Dirac input can be exactly 
computed as an infinite series of exponential terms (97) 
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in which /X x λ=  and / mT t τ=  represent respectively the space and time variables 

normalized according to their respective constants / 2d i mR R gλ =  and /m mC gτ = ; L is the 

cable length in electrotonic units, Q is the charge applied to 0X =  and 2/a i dr R Rπ= . 
It actually takes a large amount of time before distant parts of the cable respond to the 

input so that this finite cable initially behaves as an infinite one ((97), p. 73). In other words, 
when the rising front occurs, sealed-boundaries have not yet influenced the cable. As a 
consequence, the conduction speed of the plateau rise is of the order of that of the 
electrotonus. At the end of this initial rising stage, the potential reaches ~ -45 mV. At this 
point, active ionic currents activate and take over the passive ones. This yields a prolonged 
plateau phase, which is an emergent property of the interplay between active currents. 
Furthermore, a constant voltage, long-lasting signal (i.e. the plateau phase itself) adds to  
reflection currents at sealed ends to render the cable isopotential at long times. 

Finally, Eq. SVII1 also allows explaining the very large values of vf. Indeed, it predicts 
that the travelling speed of the repolarization part of an electrotonus increases exponentially 
fast with T (not shown). Hence the larger is the plateau duration (d), the larger is the 
conduction speed of the repolarization front. In the case where active current provoke a long 
plateau phase before the onset of repolarization, this analysis predicts that the propagation 
speed of the plateau foot should reach huge values. This is exactly what is observed in our 
simulations in the full cell and equivalent cable: when repolarization is delayed by the long 
duration of the plateau phase, vf  reaches extremely large values (Fig. SM7-1B). 

The resulting conduction mechanism can be summarized as follows. The plateau rise 
phase is mostly due the passive membrane properties, hence its slow conduction speed. The 
plateau phase then develops and the conjunction between long-lasting plateaus and sealed-end 
boundaries homogenizes the membrane potential over the whole dendritic tree. Finally, the 
speed of the repolarization front increases with d in a supralinear manner, yielding huge 
propagation speeds. 

To test this interpretation, we ran further simulations of our model in the straight cable 
considered in the above section. Fig. SM7-2A confirms that fv  exponentially depends on d, 
much like the repolarization speed increases exponentially with T in a passive cable: branches 
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of points corresponding to rectangular (R) and triangular (T) plateaus plotted in log-linear 
scale are well fitted by two lines with respective slopes 4.3 and 13.8. The slope difference 
results from the conjunction of two factors, which can be understood after rewriting fv  as a 

function of the membrane electric parameters, i.e. 22
d m

f
i

R g xv
R C t

Δ
=

Δ
. On the one hand, the 

ICaP, IKsub and IKdr currents are more activated during R than T plateaus, resulting in a ~2 times 
larger gm value during T plateaus. On the other hand, the repolarization rate ( /dV dt ) of T 
plateaus is larger than that of R ones, resulting in larger speeds /x tΔ Δ  for the former kind of 
plateaus (Fig. SM7-2B). The combination of these two effects is responsible for the larger 
slope of the R plateaus line in Fig. SM7-2A. Taken together, these results corroborate our 
interpretation and support the conduction mechanism we expose above for dendritic plateaus 
and valleys. 
 

 
 

Fig. SM7-2 Mechanism of plateaus conduction. A. The travelling speed, vf, of the decaying 
phase of plateaus illustrated in Fig. SM7-1B is plotted as a function of the plateaus duration in 
log-linear coordinates. Grey lines represent the best result of two linear regressions of the 
points corresponding to triangular (T) and rectangular (R) plateaus. B. Diagram illustrating 
how a larger repolarization rate dV/dt contributes to increase the slope of the T plateaus line 
with respect to that of R ones in A.   
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