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The parametric variation in neuronal discharge according to the values
of sensory or motor variables strongly in�uences the collective behavior
of neuronal populations. A multitude of studies on the populations of
broadly tuned neurons (e.g., cosine tuning) have led to such well-known
computational principles as population coding, noise suppression, and
line attractors. Much less is known about the properties of populations
of monotonically tuned neurons. In this letter, we show that there exists
an ef�cient weakly biased linear estimator for monotonic populations
and that neural processing based on linear collective computation and
least-square error learning in populations of intensity-coded neurons has
speci�c generalization capacities.

1 Introduction

Observing how neuronal discharge varies according to the value of a pa-
rameter has led to the distinction between two coding schemes (Ballard,
1986): (1) value coding, de�ned as a selective response of the neuron to an
isolated part of the parameter range (receptive �eld), and (2) intensity cod-
ing, which is the representation of a parameter by monotonic variations in
discharge frequency. These two coding schemes initially arise from the prop-
erties of the peripheral apparatus (Martin, 1991); however, they are further
elaborated by the nervous system and can be considered as computational
schemes, since they have no counterpart at the periphery (Maunsell & van
Essen, 1983; Knudsen, du Lac, & Esterly, 1987; Lacquaniti, Guigon, Bianchi,
Ferraina, & Caminiti, 1995; Helms Tillery, Soechting, & Ebner, 1996; Brem-
mer, Pouget, & Hoffmann, 1998). Although simple manipulations could
transform monotonically responding neurons into tuned neurons (Bullock,
Grossberg, & Guenther, 1993; Salinas & Abbott, 1995), both coding schemes
appear to be actively maintained at multiple levels of processing in the ner-
vous system. Thus, the question of the actual computational advantages of
each coding scheme arises.

The value coding scheme has been thoroughly investigated (Baldi &
Heiligenberg, 1988; Seung & Sompolinsky, 1993; Salinas & Abbott, 1994,
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1995; Snippe, 1996; Pouget, Zhang, Deneve, & Latham, 1998; Zhang,
Ginzburg, McNaughton, & Sejnowski, 1998; Baraduc & Guigon, 2002), as
it closely re�ects the distribution of neuronal representations in many sen-
sory and motor systems, where large populations of broadly tuned neu-
rons encode attributes of perception, action as well as cognitive operations
(Georgopoulos, Lurito, Petrides, Schwartz, & Massey, 1989; Wilson & Mc-
Naughton, 1993). Computational properties are related to those of tabular
representations (Atkeson, 1989). Broadly tuned populations support local
learning generalization and interpolation (Ghahramani, Wolpert, & Jordan,
1996) but only limited extrapolation (Ghahramani et al., 1996; DeLosh, Buse-
meyer, & McDaniel, 1997).

The intensity coding scheme (e.g., sigmoid response functions) has been
considered, together with the value coding scheme (e.g., gaussian response
functions), in the general �eld of function approximation and basis func-
tions (Girosi, Jones, & Poggio, 1995; Hornik, Stinchcombe, & White, 1989;
Pouget & Sejnowski, 1994). In this framework, universal approximation ca-
pacities have been attributed to families of sigmoid and gaussian functions
(Girosi et al., 1995; Hornik et al., 1989). They are also believed to share simi-
lar computational properties (Pouget & Sejnowski, 1997), since the sigmoid
functions can be combined to reconstruct tuned functions (Girosi et al.,
1995; Salinas & Abbott, 1995). The intensity coding scheme has been used to
represent eye-, head-, and body-related postural parameters in the frame-
work of sensorimotor transformations (Zipser & Andersen, 1988; Pouget &
Sejnowski, 1994, 1997; Salinas & Abbott, 1995) for physiological reasons, but
no particular computational role was assigned to it.

Intuitively, the use of monotonic response functions is closely related to
the notion of structured representation (Atkeson, 1989), since manipulated
variables are readily available in the discharge frequency of input and out-
put neurons. Thus, an expected property of collective computation in pop-
ulations of monotonically responding neurons is the global generalization
of learning to novel situations (Baraduc, Guigon, & Burnod, 2001; Guigon &
Baraduc, 2002). In this article, we �rst analyze linear decoding methods for
monotonic populations. We show that a particular estimator (summation
estimator) has interesting computational properties despite intrinsic limi-
tations due to the nature of the coding scheme. Then we show that neural
processing based on linear collective computation and least-square error
learning in populations of intensity-coded neurons has built-in induction
capacities that are strikingly different from those provided by populations
of unimodal neurons.

2 Encoding

In the following, we consider a population of N neurons. Each neuron i has
a discharge xi whose mean value varies monotonically with a parameter x
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in [aI b] according to

xi D fi.x/ D f .x; ¸i; si/ D Di

1 C e¡.x¡ i̧/=si
; (2.1)

where ¸i characterizes the recruitment threshold of the neuron, si is related
to the steepness of f , and Di is the maximum discharge rate. The ¸i are
considered as either a set of �xed numbers or realizations of a random
variable with a uniform distribution (in this latter case, index i is removed).
In general, we take [aI b] D [0I 1], si D s, Di D 1.

The sigmoid function was chosen to permit analytical derivations, al-
though other similar functions would lead to qualitatively similar results.

3 Decoding

In this section, we discuss how a population of monotonically responding
neurons can be decoded. A mechanism suitable for biological computation
should be as simple as possible and preferably linear (Salinas & Abbott,
1994). A possible decoding method is the unbiased optimal linear estimator
(uOLE), which provides the smallest decoding bias of any linear method
(Salinas & Abbott, 1994; Pouget et al., 1998). The uOLE is de�ned by the set
of weights w D fwig that minimizes

Z Á

x ¡
X

i
wixi

!2

P.x j x/P.x/ dx dx;

where x D fxig are the observed �ring rates, P.x j x/ the probability of
these responses given the value x of the encoded parameter, and P.x/ the
probability of the parameter. The weights were calculated numerically for
different s using Qw D l, where Q is the correlation matrix of �ring rates,
and l the vector containing the center-of-mass of response functions (Salinas
& Abbott, 1994). For uncorrelated gaussian noise, the variance was calcu-
lated as

¾ 2
X

i
w2

i ;

where ¾ is the standard deviation (SD) of noise. We observed that the vari-
ance of the uOLE is at least one order of magnitude larger than the smallest
possible variance of any estimator (see the derivation below). Thus, the
uOLE is an unbiased but highly inef�cient decoding method.

The OLE that minimizes a sum of squared bias and variance provides an
optimal trade-off between bias and variance. It can be obtained as a single-
layer neural network y D wTx, which is trained to recover the encoded
value x in observed �ring rates x D fxig by using

.x ¡ wTx/2 C ®wTw (3.1)
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Figure 1: (A) Bias (mean decoding error over [0;1] in % of the range) of the
summation estimator (black) and the OLE (gray) as a function of s. (B) Variance
of the summation estimator (black) and the OLE (gray). Minimal variance of
biased estimators (thin line). Parameter ¾ D 0:5. (C) Weight pro�le for the
summation estimator (thick black) and the OLE (s D :05: dotted; s D :1: gray;
s D :2: dashed). Note that the results for the OLE depend on ® (® D 1). ® was
chosen so that bias and variance for the OLE are in the range of bias and variance
of the summation estimator. (D) Noise-free decoding of a population of N D 100
neurons using the summation estimator. The dark line is for s D 0:1. The gray
line is for s D 0:05.

as an objective function and ® as a parameter. Numerical simulations show
that the bias of the OLE is a small fraction of the range (see Figure 1A), and
its variance (under gaussian noise) is of the same order of magnitude as the
smallest possible variance over a large range of s (see Figure 1B). However,
the structure of the OLE is a complex function of both ¸ for a given s and
of s. This is illustrated in Figure 1C, where the weights de�ning the OLE
(see equation 3.1) are plotted as a function of the recruitment threshold. For
comparison, Figure 1 also shows the results for the summation estimator
(SE), which is introduced in equation 3.3. Note in particular the simpler,
uniform structure of the SE (see Figure 1C).
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To derive a simpler but yet ef�cient decoding method for a monotonic
population, we calculated the maximum likelihood (ML) estimate for the
parameter x based on observed �ring rates x. For gaussian noise (SD ¾ ), we
obtained

@

@x
[ln P.x j x/] D

1
¾ 2

NX

iD1

f 0
i .x/[xi ¡ fi.x/] D 0:

For linear response functions (xi D fi.x/ D x C 0:5 ¡ ¸i), this equation led to

x D 1
N

NX

iD1

xi (3.2)

as

1
N

NX

iD1

¸i D 0:5

for uniformly distributed ¸is.
We can arrive at the same result letting s ! 0 and N ! C1. In this case,

the response function is the Heaviside function H.x ¡ ¸/, and we search for
a linear estimator,

L.x/ D
Z 1

0
w.¸/H.x ¡ ¸/ d¸:

From

dL.x/

dx
D

Z 1

0
w.¸/±.x ¡ ¸/ d¸ D w.x/

and L.x/ D x, we obtain w.¸/ D 1. Thus,

L.x/ D
Z 1

0
H.x ¡ ¸/ d¸;

which is the continuous version of equation 3.2. Here, L.x/ is, in fact, the
OLE, since it is the only unbiased linear estimator.

For the general nonlinear case, we consider the following linear estimator
(summation estimator, SE),

LN.x; s/ D
1
N

NX

iD1

xi: (3.3)

Noise-free decoding on [0I 1] is illustrated in Figure 1D for two slopes (s D
0:1 and s D 0:05). Decoded quantity was close to encoded quantity in both
cases. Mean error was 1:5% and 0:4% of the range, respectively. Errors were
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con�ned to the extreme parts of the coding range. These results suggest that
SE is close to an unbiased estimator for small s.

For large N, the SE can be written as

L.x; s/ D
Z 1

0
f .x; ¸; s/ d¸:

Thus,

L.x; s/ D 1 ¡ s ln
1 C e.1¡x/=s

1 C e¡x=s : (3.4)

If we let s ! 0, then L.x; s/ ! x. Thus, L.x; s/ is an unbiased estimator of x
for small s.

The quality of the SE is determined by its bias and variance. The bias
was calculated from equation 3.4 as a function of s (see Figure 1A). The bias
remained below 2% for s < 0:1 and increased quasi-linearly and rapidly for
s > 0:1.

The variance can be calculated analytically and compared to the minimal
variance of all decoding methods (VCR, Cramér-Rao bound). For gaussian
noise, we have

VCR.x; s/ D .1 C @b.x; s/=@x/2

I.x; s/
;

where

b.x; s/ D L.x; s/ ¡ x

is the bias and

I.x; s/ D
1

¾ 2

NX

iD1
f 0.x; ¸i; s/2

is the Fisher information, f 0 is the derivative with respect to x. Using the
continuous approximation, we obtain

I.x; s/ D N
¾ 2

Z 1

0
f 0.x; ¸; s/2 d¸ D N

s¾ 2

³
F

± x
s

²
¡ F

³
x ¡ 1

s

´´
;

where

F.u/ D
1

3.1 C eu/3 ¡
1

2.1 C eu/2 :

Approximation for small s gives

VCR.x; s/ ¼
6s¾ 2

N
:
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For comparison, the Cramér-Rao variance in the case of a population of
broadly tuned neurons is (with the same notations) 2s¾ 2=N

p
¼ (s is the

width of the tuning curve and ¾ the SD of noise; Snippe, 1996).
The variance of the SE is

VSE D Var

Á
1
N

NX

iD1
f .x; ¸i; s/

!
D

1
N2

NX

iD1

Var. f / D ¾ 2

N
(3.5)

and is independent of s. The variances are plotted together in Figure 1A.
For low values of s, the SE is unbiased, but its variance is far larger than
the minimum attainable variance (e.g., 30 times for s D 0:005). For larger
s (s > 0:05), the SE is biased, but its variance is closer to the minimum
variance. For s D 0:1, the estimator variance is approximately twice the
minimum variance (in comparison, the variance of the population vector in
similar conditions is more than �ve times the minimum variance; Pouget
et al., 1998). Similar calculations can be made for Poisson noise (see the
appendix).

The SE and the OLE have a comparable decoding performance, although
they rely on a different bias-variance trade-off (see Figures 1A and 1B). The
main difference lies in the very simple structure of the SE (see Figure 1C),
which makes it attractive for neural computation.

4 Extensions

This scheme can be immediately extended in three directions:

1. The maximum discharge rate (Di) is not normalized. A generalized
SE is obtained after normalization by Di.

2. The steepness of the response function varies among neurons. The
decoding method still applies if the distribution of steepness is the
same for each ¸i.

3. The maximum discharge rate varies among neurons. Again, the de-
coding method applies if the distribution of Di is the same for each ¸i.

In fact, the decoding method can work appropriately in more general con-
ditions (e.g., uniformly distributed si and Di in some intervals). This is illus-
trated in Figure 2A for the set of response functions in Figure 2B. The OLE
is not as �exible as the SE since the weights vary with si and thus must be
chosen appropriately for each neuron.

A more general description of neuronal discharge (see equation 2.1)
should include a baseline �ring rate,

xi D fi.x/ C bi; (4.1)
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Figure 2: (A) Noise-free decoding of a population of N D 100 neurons with uni-
form distribution of slope (si) in [0.01;0.1] and uniform distribution of maximal
activity (Di) in [0.5;1.5] (see equation 2.1). (B) Ensemble of response functions.

where fbig are realizations of a random variable b. We immediately �nd that
for large N, a generalized estimator is

1
N

NX

iD1

xi ¡ hbi;

since .1=N/
P

bi tends in probability toward hbi when N tends to in�nity
(as long as b has �nite �rst- and second-order moments). This estimator has
the same bias and variance as the SE. Simulations show that for the OLE,
the bias is larger with equation 4.1 than with equation 2.1, although the
variance is the same.

A main limitation to the ef�ciency of the SE is related to the fact that
saturated units provide no Fisher information about the stimulus, since
each neuron contributes to the variance of the estimate in proportion to the
derivative of the response function (Seung & Sompolinsky, 1993; Pouget et
al., 1998). This problem is intrinsic to the nature of the response function.
However, this property could be pro�tably exploited. Since the derivative
of the response function is close to zero outside [0I 1] over a large range of
s, an encoding-decoding method based on a larger coding interval can be
used to reduce the decoding bias while preserving a consistent relation to
the lower bound of decoding methods.

5 Monotonic Versus Unimodal Tuning

A unimodal response function can be obtained by subtracting two mono-
tonic response functions with different recruitment thresholds. A unimodal
population pro�le can be obtained by a linear transformation (derivation)
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on a monotonic population pro�le. Although these operations could likely
be realized by the nervous system, we explain why it may not be always
pro�table to transform monotonic pro�les into unimodal pro�les. We con-
sider the neural representation of a real function y D h.x/ (for simplicity
x 2 [0I 1]) obtained as a linear mapping y D wTx, where x D fxig 2 RN is a
vector obtained from x by an encoding scheme (see below) and w 2 RN a
vector of weights. The weights were identi�ed by least-square error learn-
ing for a given training set fxt; yt D h.xt/; 1 · t · Pg. The theoretical form
of the weights was w D hxxTi¡1hxyi, where hi denotes expectation over the
training set (Shynk, 1995).

We compared two encoding schemes, a monotonic scheme and a gaus-
sian-like unimodal scheme, and in order to do so properly, an equivalence
between the slope of the former scheme and the width of the latter must
be established. From an information-theoretic point of view, a sigmoid-
like function can be considered as the response function of a neuron that
maximizes output entropy for a given gaussian-like probability distribu-
tion of inputs. This is actually the case whenever the sigmoid function is
the integral of the input distribution (Dayan & Abbott, 2001). Thus, we
chose

xi D exp
³

¡ .x ¡ ¸i/
2

2¾ 2

´

for the gaussian scheme and

xi D
1
2

µ
erf.¡

.x ¡ ¸i/

¾
p

2
/ C 1

¶

for the monotonic scheme. Similar results would be obtained using the sig-
moid function (see equation 2.1) and its derivative for the monotonic and
gaussian schemes, respectively.

The results for learning a function froma restricted training set (P D 2) are
shown in Figure 3. Although the shape of the induced function depends on
the width and slope of the response function, the monotonic and unimodal
schemes have clearly different generalization capacities.

6 Discussion

We have shown that populations of monotonically responding neurons
(those that respond according to an intensity code) can be ef�ciently manip-
ulated by a simple scheme, SE. This method is attractive, since it is linear
and can be easily computed by a neuron and could allow the nervous sys-
tem to represent a variable without having to convert rate codes into place
codes. However, the SE has two shortcomings: (1) it is biased (see Guigon
& Baraduc, 2002), and (2) it is not optimal. With respect to the �rst point, in
ML estimation, each neuron contributes to the variance of the estimate in
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Figure 3: Induced functions (A) for three monotonic response functions (B, left
panel), and three gaussian response functions (B, right panel): ¾ D :2 (solid),
¾ D :05 (dotted), ¾ D :3 (dashed). The training pairs are indicated by a square.

proportion to the derivative of the response function (Seung & Sompolin-
sky, 1993; Pouget et al., 1998). Since this derivative is close to zero outside
[0I 1] over a large range of s, an encoding-decoding method based on a larger
coding interval could be used to reduce the decoding bias, while preserving
a consistent relation to the lower bound of decoding methods. With respect
to the second point, the SE appears to be an ef�cient linear estimator in the
sense that it offers an almost optimal bias-variance compromise. Further-
more, its variance is independent of the steepness of the response function
(see equation 3.5 and Figure 1B). This property allows the SE to work with
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equal ef�ciency for all the inputs. Other estimators do not have such a prop-
erty as their ef�ciency can change dramatically with the width of the input
(Seung & Sompolinsky, 1993; Pouget et al., 1998).

Although computation with monotonic response functions could in the-
ory be replaced by computation with unimodal response functions, we have
shown that the two schemes have different generalization capacities. This
issue can be relevant for a better understanding of how the nervous sys-
tem handles novel situations using limited prior experience (Bedford, 1989;
DeLosh et al., 1997; Shinn-Cunningham, Durlach, & Held, 1998; Guigon &
Baraduc, 2002).

Appendix: Poisson Noise

For uncorrelated Poisson noise, Fisher information is

IP.x; s/ D
NX

iD1

f 0.x; ¸i; s/2

f .x; ¸i; s/
:

Using the continuous approximation, we obtain

IP.x; s/ D N
Z 1

0

f 0.x; ¸; s/2

f .x; ¸; s/
d¸

D f .x; 1; s/ ¡ f .x; 0; s/ ¡ 0:5[ f 2.x; 1; s/ ¡ f 2.x; 0; ¸/]:

Approximation for small s gives

VP
CR.x; s/ ¼

2s
N

:

The variance of the SE is

VP
SE.x/ D Var

Á
1
N

NX

iD1

f .x; ¸i; s/

!
D

1
N2

NX

iD1

Var. f / D L.x; s/
N

:

For small s,

VP
SE.x/ D x

N

and is independent of s.
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