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Abstract

& Unlike most artificial systems, the brain is able to face
situations that it has not learned or even encountered before.
This ability is not in general echoed by the properties of most
neural networks. Here, we show that neural computation based
on least-square error learning between populations of intensity-
coded neurons can explain interpolation and extrapolation

capacities of the nervous system in sensorimotor and cognitive
tasks. We present simulations for function learning experi-
ments, auditory–visual behavior, and visuomotor transforma-
tions. The results suggest that induction in human behavior, be
it sensorimotor or cognitive, could arise from a common neural
associative mechanism. &

INTRODUCTION

There are many circumstances where biological orga-
nisms must be able to produce appropriate responses to
stimuli beyond the range of their previous experience.
This capacity to face novel situations using limited prior
knowledge is called induction, and it forms the basis of
many motor and cognitive skills (e.g., forecasting, deci-
sion making) that require one to discover a continuous
relation between stimulus and response. The nature of
induction processes has been studied in function learn-
ing experiments (DeLosh, Busemeyer, & McDaniel,
1997; Koh & Meyer, 1991; Carroll, 1963). In a typical
paradigm, participants first learn a collection of associa-
tions between stimuli and responses drawn from arbitrary
dimensions and are then asked to generate responses to
untrained stimuli. The characteristics of these responses
provide a measure of interpolation (Koh & Meyer, 1991)
and extrapolation (DeLosh et al., 1997; Waganaar &
Sagaria, 1975) capacities. Induction can also be measured
in sensorimotor behavior through localized distortions of
sensorimotor relationships (Vetter, Goodbody, & Wol-
pert, 1999; Shinn-Cunningham, Durlach, & Held, 1998;
Ghahramani, Wolpert, & Jordan, 1996; Ghahramani &
Wolpert, 1997; Schor, Gleason, Maxwell, & Lunn, 1993;
Bedford, 1989, 1993a, 1993b).

There are two fundamental issues in the study of
induction: (1) Does induction result from a rule- or
an associative example-based mechanism (Busemeyer,
Byun, DeLosh, & McDaniel, 1997; DeLosh et al., 1997;
Koh & Meyer, 1991; Brehmer, 1974; Carroll, 1963)? The
rule-based approach was long favored with the develop-
ment of a series of statistical models that accounted for

observations in probabilistic inference tasks (polynomial
hypothesis testing, Brehmer, 1974; Carroll, 1963; log–
polynomial adaptive regression, Koh & Meyer, 1991).
The example-based approach was generally found to be
inappropriate for extrapolation (DeLosh et al., 1997; Koh
& Meyer, 1991; Carroll, 1963). Recently, DeLosh et al.
(1997) showed that neither approach was sufficient on its
own to explain extrapolation behavior in function learn-
ing, and so they proposed a hybrid model combining the
two approaches. However, it is unclear how the nervous
system can handle rule-based mechanisms. (2) Are there
any similarities between the mechanisms involved in
function learning and those involved in adaptation to
sensorimotor distortions? It has been recognized that, in
both cases, the adapted behavior is not a mere collection
of input/output associations, but a true relation between
entire dimensions of stimuli (DeLosh et al., 1997; Koh &
Meyer, 1991; Bedford, 1989; Carroll, 1963). However, this
observation is not sufficient to conclude that common
neural operations exist.

In this article, we show that both sensorimotor and
cognitive induction could result from an associative
example-based mechanism based on computation with
monotonically tuned neuronal populations (Guigon &
Baraduc, 2002; Guigon, 2003). This single mechanism
can explain interpolation and extrapolation capacities of
humans in function learning (Busemeyer et al., 1997;
DeLosh et al., 1997; Koh & Meyer, 1991), auditory–visual
alignment (Shinn-Cunningham et al., 1998), and visuo-
motor behavior (Ghahramani & Wolpert, 1997). The
present results elaborate previous modeling of proprio-
ceptive–visual alignment (Guigon & Baraduc, 2002).

The principle of our model is to consider induction as
a problem of how a neurally distributed representation of
a function can be learned, and so the same generalINSERM U483, Université Pierre et Marie Curie
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architecture, in fact, a single-layer linear neural network,
can be used to model induction in the sensorimotor and
cognitive domain. We will first describe the general
model and then show how it applies to three induction
problems. In each case, we will give a brief overview of
experimental methods and observations and then show
that the model reproduces the main characteristics of
these observations (shape of the induced function, time
course of learning, response variability).

RESULTS

Function Learning

Interpolation

Interpolation capacities of the model were tested on the
paradigm of Koh and Meyer (1991). In this study, partici-
pants were trained to discover functional relations be-
tween dimensions based on a restricted number of
examples (practice pairs). Transfer pairs, which were in
the range of the practice pairs, were used to assess the
capacity for generalization. The participants learned
three functions that related stimulus length (L, mm)
and response duration (D, msec): (1) D = 257.24 L0.33

(power), (2) D = 75 + 223.5 ln L (logarithmic), and (3)
D = 453.5 + 10.9L (linear). Practice and transfer stimuli
were [2.526, 4.492, 6.401, 8.030, 41.889, 52.447, 62.723,
75.019] and [13.084, 18.250, 23.416, 32.625], respectively.
These functions, together with practice and transfer
stimuli, are shown as insets in Figure 1.

Based on the preference of the subjects for power
functions, Koh and Meyer (1991) suggested that sensory
encoding resulted in a mapping in log–log coordinates.
Thus, the network was trained to discover a relation
between ln(L) and ln(D), and consequently, the power
function is, in fact, linear. The dimension range was
[�1:54, 6:14] for ln(L) and defined by the current func-
tion for ln(D).

During the early phases of training, the model
produced a linear mapping (Figure 1, left), related to
initial pretraining on the identity mapping. After further
training, interpolation was near perfect (Figure 1,
right). Interestingly, the variable error (measured as
the variability of the output under zero-mean additive
Gaussian noise) was the same between practice and
transfer pairs (Figure 2A). Furthermore, the variable
errors for all three functions decreased during the course
of training and were larger for the logarithmic function
than for the other two (Figure 2B–D). Similar results
were obtained in human subjects (Koh & Meyer, 1991).

Extrapolation

Extrapolation capacities of the model were tested on the
paradigm of DeLosh et al. (1997). In this study, partici-
pants were trained to convert a dimension D into a
dimension R for three functional relations: R = 2.2D +

30 (linear), R = 200(1 � exp(�D / 25)) (exponential),
and R = 210 � (D � 50)2 / 12 (quadratic). Practice and
transfer stimuli were [30.5, 36.0, 41.0, 46.5, 53.5, 59.0,
64.0, 69.5] and [1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0,
17.0, 19.0, 21.0, 23.0, 25.0, 27.0, 29.0, 32.5, 35.0, 37.5,
40.0, 42.5, 45.0, 47.5, 50.0, 52.5, 55.0, 57.5, 60.0, 62.5,
65.0, 67.5, 71.0, 73.0, 75.0, 77.0, 79.0, 81.0, 83.0, 85.0,
87.0, 89.0, 91.0, 93.0, 95.0, 97.0, 99.0], respectively. The
transfer pairs were outside the range of the practice
pairs (Figure 3). The dimension range was [�30, 130] for
D and [�80, 330] for R.

Linear, exponential, and quadratic functions were
accurately approximated in the training range
(Figure 3). Extrapolation outside this range was consis-
tent with the shape of the target functions, although
deviations were observed (Figure 3): underestimation
of the linear function and overestimation of the expo-
nential and quadratic functions. The linear function was
learned faster than the exponential function, which in

Figure 1. Interpolation in function learning: 500 trials (left column),

2500 trials (right column) (� = 0.005). (A) Power function. (B)

Logarithmic function. (C) Linear function. Insets are the raw functions
(length vs. duration).
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turn was learned faster than the quadratic function
(Figure 4). These results are consistent with experi-
mental observations (DeLosh et al., 1997).

DeLosh et al. (1997) also showed that the density of
stimuli within the training range had no significant
influence on performance, a property found in our
model as well. Results with low (8 stimuli), medium
(20), and high (50) density are shown in Figure 4. The
time course of error reduction was similar across the
conditions.

Busemeyer et al. (1997) reported further experi-
ments in function learning. One of these is a compari-
son of acquisition of five monotonically increasing
functions (Figure 5A). The order of learning difficulty
was LN > LG > PP > NP > PL (see figure legend).
Order (Figure 5B,C) and acquisition errors in the
model (Figure 5D,E) are compatible with experimental
observations.

Induction in Auditory–Visual Behavior

In the sensorimotor domain, induction can be measured
using localized distortions in natural sensory or sensory-
to-motor congruences (e.g., Bedford, 1989). In a recent
study, Shinn-Cunningham et al. (1998) trained subjects
to interpret auditory localization cues arising from loca-
tions that differed from their normal spatial ones. Azi-
muthal location of auditory cues was transformed, so

that the perceived spatial location u of a cue corre-
sponded to the actual location fn(u) with

fnðuÞ ¼
1

2
tan�1 2n sinð2uÞ

1 � n2 þ ð1 þ n2Þcosð2uÞ

� �
;

where n is the slope of the transform. Thirteen
locations, spaced every 108 in azimuth from �608 to
+608, were used as training locations. Although the
subjects were trained to use nonlinear transformations
(n 6¼ 1), the mean adapted response remained propor-
tional to the normal cue location. In general, the slope
of the response approached the best-fit slope of the

Figure 3. Extrapolation in function learning: 25,000 trials (� = 0.04).

(A) Linear function. (B) Exponential function. (C) Quadratic function.
Inset in the time of error during exposure. 1 session = 2000 trials.

Figure 2. (A) Variable error in the model for the experiments of Koh

and Meyer (power). Parameters are � = 0.005, additive Gaussian noise

on the inputs (mean = 0, SD = 0.1, 500 repetitions). (B) Power

function. (C) Logarithmic function. (D) Linear function. 1 session =
2000 trials.
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training locations. The time course of the slope change
was exponential.

The network learned the function Y = fn
�1 (X ) (n = 3),

with training locations as described above, and the
dimension range of [�1308, 1308]. Performance before
learning is shown in Figure 6A. After 30 training blocks,
the model response was linear and approximated
the best-fit mapping defined by the training pairs
(Figure 6B). After 1000 training blocks, the mapping
became nonlinear (Figure 6C). More than 5000 training
blocks were necessary to achieve the desired mapping
(not shown). The time course of the slope change was
exponential (Figure 6D).

Induction in Visuomotor Behavior

Ghahramani and Wolpert (1997) examined how induc-
tion occurred in a visual-to-motor transformation. They
trained subjects to point to a target (T) from two starting
positions, L2 and L6 (Figure 7, upper right). Three types
of discrepancies were introduced between actual and
visually perceived hand positions depending on the
starting position (Figure 7, insets). For example, in the
case of Figure 7D, the subjects should point more to
the left of the target when starting from L2 and more to
the right when starting from L6. Adaptation was mea-
sured as a change in pointing behavior from seven
starting positions (L1–L7) following training. Ghahrama-
ni and Wolpert (1997) observed that the subjects actu-
ally adapted their pointing behavior, although they were

Figure 5. Acquisition of increasing functions. (A) PL = positive

linear; NP = negatively accelerated power; PP = positively

accelerated power; LN = logarithmic; LG = logistic. Open symbols

are practice stimuli and closed symbols transfer stimuli. (B) Time
course of error reduction. 1 session = 4000 trials. (C) Mean error

after five sessions. (D) Errors for the LN function after five session.

(E) Same as (D) for the LG function.

Figure 4. Influence of training stimulus density on the acquisition

of linear, exponential, and quadratic functions: (A) low, (B)
medium, and (C) high. 1 session = 2000 trials, � = 0.001.

Guigon 385



not aware of the perturbation. Adaptation occurred for
the starting positions L2 and L6, but were smoothly
generalized to fit the other starting positions.

In our model, pointing behavior was represented by
the transformation (Pi, T ) ! Pf, where Pi and Pf are the
initial and final hand positions, respectively, and T the
target position (see Discussion). The hand and target
belong to a 2-D space. For the sake of simplicity, they
were taken in the unit square [0, 1] � [0, 1]. The
monotonic model was used with Pi and T as inputs
(cues) and Pf as output (target). The two dimensions of
space were represented by distinct neural populations.
We noted that actual movement direction could easily
be obtained from Pi and Pf (e.g., using a single-layer
linear network) and be used as a directional command
for movement (Georgopoulos, 1995).

Pretraining consisted of 5000 random trials from the
mapping (Pi, T ) ! T. Exposure consisted of 1000 trials.
Learning rate was � = 0.01. Adaptation is shown in the left
column of Figure 7 and interpolation in the right column.
Interpolation was defined at each position L1–L7 by a
mixing proportion. At each position, Li (1 	 i 	 7), the
mixing proportion pi is a weighted mixture of the adap-

tation observed for movements starting from L2 and L6
(Ghahramani & Wolpert, 1997) defined by zi = (1 � pi)
z2 + piz6, where zi is the adapted response at po-
sition Li. The logistic shape of mixing proportions was
found for s = 0.025, however, the relationship was linear
for s = 0.1.

Figure 7. Experiment of Ghahramani and Wolpert (1997). Four

pointing conditions are depicted (A, B, C, D, insets). Left column

shows adaptation for the 7 starting positions (symbols). Right column

shows mixing proportions. Positions were in the unit square [0, 1] �
[0, 1]. Starting positions were (0.3, 0.4), (0.37, 0.4), (0.43, 0.4), (0.5,

0.4), (0.56, 0.4), (0.63, 0.4), and (0.7, 0.4). Target was (0.5, 0.57). Target

displacement was 0.05 in B and C, and 0.1 in D.

Figure 6. Adaptation to auditory–spatial distortions. Training pairs
are depicted by 5 (transformation slope n = 3) and adapted points

by .. In A, B, and C, the gray line is the best-fit line of the training

pairs. (A) Pretraining performance. (B) Adaptation to the

transformation after 30 training blocks. (C) Adaptation to the
transformation after 1000 training blocks. (D) Time course of slope

change (4: n = 2, �: n = 3, *: n = 4). Symbols correspond to

calculated points and lines to a monoexponential fit (time constants

14.6, 11.5, and 10.1 for n = 2, 3, and 4, respectively). Dashed lines
are the best-fit slope.
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DISCUSSION

The model provides an economical approach to func-
tion learning experiments. It explains a wide range of
results with a single associative mechanism and suggests
that there is no need to invoke a rule to explain
extrapolation capacities of human subjects. The failure
of previous associative approaches is due to the use of
the psychological similarity function borrowed from
theories of category learning (Kruschke, 1992; Shepard,
1987; Nosofsky, 1986). This function quantifies the
distance between stimulus and stored examples and is
generally decreasing with distance. Thus, training effects
remain localized within the width of the similarity
function (Ghahramani et al., 1996), the variability in
the experimentally measured responses being lower in
the vicinity of the training regions than elsewhere, which
is not supported by experimental observations (Ghahra-
mani & Wolpert, 1997; Bedford, 1993a; Koh & Meyer,
1991). The monotonic response function, when consid-
ered as a pair of functions with positive and negative
slopes, has no such drawback as it gives nonzero
responses over the whole range of inputs and outputs.
This property has a strong impact on learning capacities
of neural networks, which has not been exploited before
in the field of function learning. A single stimulus–
response association can modify the whole synaptic
structure of a network and induce well-structured re-
sponses to unexperienced stimuli.

Our model can only explain some of the basic prop-
erties of induction behavior, but it cannot account for
more complex capacities. Humans can learn cyclic func-
tions (Busemeyer et al., 1997), but the model cannot
learn these functions. In fact, our model could learn
cyclic functions by using a steeper response function
(smaller s), or a network combining monotonic and
broadly tuned inputs. The model cannot explain how
either rule- or example-based representation can be
combined (Erickson & Kruschke, 1998).

The models were designed to solve the problem of
aligning two dimensions; however, in the case of visuo-
motor transformations (Ghahramani & Wolpert, 1997),
this is problematic. A movement is defined by at least
two parameters: an initial and a final position (or a
direction and an amplitude). Thus, alignment should
occur between these two parameters and an output
dimension (e.g., actual final position or actual move-
ment direction and amplitude). The nature of adapta-
tion may depend on the choice of parameters. For our
model, we chose positional parameters. An alternative
representation of the transformation is (Pi, T ) ! (D, A),
where D and A are the direction and amplitude of the
movement, respectively. We have seen that movement
direction (without amplitude information) can be read-
ily obtained from the initial and final positions (by
a single-layer linear mapping). However, neither the
amplitude nor the vector T � Pi can be easily obtained

in this way, which agrees with the notion that there is no
separate representation of movement amplitude at the
level of single neurons (e.g., Messier & Kalaska, 2000;
Fu, Suarez, & Ebner, 1993). Thus, this alternative map-
ping may not be an appropriate representation of
the visuomotor transformation. We cannot exclude the
existence of other representations leading to similar
predictions on the nature of adaptation.

A case in point is whether computation with popula-
tions of tuned neurons (i.e., with Gaussian tuning
curves) could lead to similar observations. We have
already shown that this is not generally the case for
extrapolation (Guigon & Baraduc, 2002; Guigon, 2003),
and so this cannot explain the results on function
learning nor on auditory–visual alignment. In the case
of visuomotor transformation, we observed that a Gauss-
ian network does not properly compute positional
transformation and the variability of responses (as mea-
sured following Gaussian noise injection) is more likely
to be constant across positions (Ghahramani, Wolpert,
& Jordan, 1995; Ghahramani & Wolpert, 1997), which is
not compatible with a Gaussian model.

Ghahramani and Wolpert (1997) interpreted their
results based on a sigmoid mixture of Gaussian experts.
The idea was that there is a specialized network for each
of the two training positions and each network learns
the position-specific visuomotor relation with a Gaussian
receptive field around the training position. The outputs
of the two networks are then combined additively with
proportions derived from a sigmoid representation of
the initial starting position. Like in our model, Ghahra-
mani and Wolpert found that generalization was based
on the way arm posture is represented. However, they
assumed that each expert network also uses a ‘‘local-
ized’’ representation of posture, which has not been
observed so far in the nervous system (see the discus-
sion in Helms Tillery, Soechting, & Ebner, 1996). Alter-
natively, our model suggests that a single representation
of posture can explain induction in visuomotor behavior.

The main parameter of this model is the slope s of the
response function. Therefore, it is pertinent to deter-
mine what the value of s is for neurons in the central
nervous system. We estimated s from the data of Squa-
trito and Maioli (1996) on eye position signals in the
parietal cortex. To our knowledge, this is the only study
that provides a quantitative description of variations in
neuronal discharge with a postural parameter. The value
of s was obtained by fitting a sigmoid on the average eye
position signal (their Figure 13). We obtained values in
the range 0.04–0.1 depending on the hypothesized
maximal eccentricity (90–408).

In summary, the present model suggests that senso-
rimotor and cognitive induction could result from a
purely associative mechanism without the need to
resort to additional computation (e.g., a linear extra-
polation mechanism as described in DeLosh et al.,
1997). This mechanism relies on built-in interpolation
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and extrapolation capacities of populations of mono-
tonically responding neurons (Guigon & Baraduc, 2002;
Guigon, 2003) and provides an economical explanation
to function learning experiments and sensorimotor
adaptations.

METHODS

A neural representation of a real function y = h(x)
(x and y 2 [0, 1]) was obtained as a linear mapping
y = Wx, where W is an N � 2N matrix, x 2 R2N is the
distributed representation of x, and y 2 RN is an
output vector that is a distributed representation of
the scalar output y of the network (Guigon & Baraduc,
2002). We used x = {xi} with

xi ¼
1

1 þ eFðx��iÞ=s
;

where �i are recruitment thresholds (uniform in [0, 1])
and s the steepness of the response function. The vector
x had 2N components, N with s and N with �s. The
purpose of the positive and negative populations is
explained in Guigon and Baraduc (2002). The output
vector y was decoded, using

y ¼ 1

N

XN

i¼1

yi;

which is an efficient estimator of the content of y (see
Guigon & Baraduc, 2002; Guigon, 2003). The weight
matrix was identified by least-square error learning (rate
�) for a given training set {xt, yt = h(xt)},

� Wij ¼ � xt
jð yt

i � yt
iÞ;

where {xj
t} are the components of the input x t, that is,

the distributed representation of x t, {yi
t} are the

components of the output y t = Wx t, {yi
t*} the

components of the desired output y t*, the distributed
representation of h(xt).

The same formalism applies, when x 2 [a, b], by
defining a new variable (x � a)/(b � a), new recruit-
ment thresholds {(�i � a)/(b � a)} and a new steepness
s/(b � a). The interval [a, b] is called the dimension
range, which is calculated in the following way. First, the
task range is defined as the maximum range of the data.
It is chosen to include the training stimuli, but otherwise,
it is arbitrary. If the task range is [0.2, 0.6] in normalized
coordinates, then the dimension range is [0, 1]. The
dimension range is larger than the maximal range of
the inputs to avoid decoding biases near the border of
the interval (Guigon & Baraduc, 2002; Guigon, 2003). In
general, the results depend quantitatively, but not quali-
tatively, on the choice of the dimension range.

The network was first trained to reproduce the iden-
tity mapping y = x corresponding to alignment of the
dimensions. Pretraining consisted of 10,000 presenta-
tions of randomly chosen pairs of the identity mapping

(� = 0.01). Then, the alignment was perturbed by
assigning new outputs to a discrete ensemble of inputs
(practice stimuli, randomized presentation). The result-
ing mapping was assessed on a set of transfer stimuli.

Two methodological points need to be discussed: (1)
The model has a large number of parameters (2N � N
weights) and a small number of training pairs. This
overparameterization could lead to overfit the data.
However, overfitting is restricted by the parameter s,
which defines the slope of the sigmoid function. The
larger s, the stronger the linear constraint on the learned
function. (2) The number of presentations necessary to
learn a mapping depends on the way least-square error
learning is implemented and has no relation to the
number of presentations required by humans. Faster
gradient methods would lead to faster learning.

Parameters were in general N = 50, s = 0.1.
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