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Guigon E. Active control of bias for the control of posture and
movement. J Neurophysiol 104: 1090–1102, 2010. First published
June 10, 2010; doi:10.1152/jn.00162.2010. Posture and movement are
fundamental, intermixed components of motor coordination. Current
approaches consider either that 1) movement is an active, anticipatory
process and posture is a passive feedback process or 2) movement and
posture result from a common passive process. In both cases, the
presence of a passive component renders control scarcely robust and
stable in the face of transmission delays and low feedback gains. Here
we show in a model that posture and movement could result from the
same active process: an optimal feedback control that drives the body
from its estimated state to its goal in a given (planning) time by acting
through muscles on the insertion position (bias) of compliant linkages
(tendons). Computer simulations show that iteration of this process in
the presence of noise indifferently produces realistic postural sway,
fast goal-directed movements, and natural transitions between posture
and movement.

I N T R O D U C T I O N

Motor behavior is a natural and continuous superimposition
of movement periods, generally involving large and rapid
displacements of focal body segments to subserve goal-di-
rected actions, and posture periods, made of small and slow
displacements of the whole body to achieve postural orienta-
tion and equilibrium maintenance (Massion 1992). A funda-
mental function of the nervous system is to provide proper
coordination between movement and posture that guarantees
that neither does a movement compromise equilibrium nor
does postural maintenance induce resistance to movement
initiation.

The nature of the coordination process between posture and
movement is unknown and remains a highly debated issue in
the field of motor control (Kurtzer et al. 2005; Massion 1992;
Ostry and Feldman 2003). The controversy is centered on two
possible computational schemes. On the one hand, movement
would result from continuous transitions between postures
(equilibrium point hypothesis; Feldman and Levin 1995). In
this framework, a unique operation based on shifts in the
equilibrium position of the moving limb is responsible for
maintaining steady postures and creating smooth displace-
ments. On the other hand, coordination could emerge from the
combination of separate processes (Franklin et al. 2003), one
that translates desired kinematics into appropriate forces (in-
verse dynamics) and another that creates feedback corrections
based on deviations from the desired kinematics (impedance
control). The two schemes (equilibrium point hypothesis and

inverse dynamics/impedance control) have different qualities,
but the same drawbacks. First, given that they elaborate control
signals based on a desired trajectory, they fail to account for
the flexibility of motor behavior (Bernstein 1967; Todorov and
Jordan 2002). Second, they consider posture maintenance as a
passive, impedance-based process that is likely to be scarcely
robust and stable in the face of transmission delays and low
levels of actuator stiffness (Bottaro et al. 2005; Loram and
Lakie 2002a; Morasso and Schieppati 1999).

Two observations suggest a different coordination scheme.
First, experimental data indicate that posture likely results from
a high-level, active, anticipatory process, not only for antici-
patory postural adjustments, but also for unperturbed quiet
stance (Bottaro et al. 2008; Loram et al. 2001; Morasso and
Sanguineti 2002; Morasso and Schieppati 1999), although it is
a highly debated issue (Masani et al. 2003; Winter et al. 1998).
Second, the parameter used to control posture could have the
dimension of a position, i.e., muscle force is not translated
directly into joint torque, but modifies the bias (insertion
position) of a compliant linkage (tendon) that actually trans-
mits force (Lakie et al. 2003; Loram and Lakie 2002b). A
series of experimental studies has shown that anticipatory
control of bias is a faithful analog of postural control (Lakie
and Loram 2006; Lakie et al. 2003; Loram and Lakie 2002a,b;
Loram et al. 2001, 2004, 2005a,b). If we assume that the
elementary command for a movement is an optimal feedback
control signal that drives the body from its estimated state to its
goal (Todorov and Jordan 2002), an elementary command for
posture should be a signal of the same nature, applied to the
bias of a muscle–tendon unit. Here we show that optimal
feedback control of bias captures characteristics of unperturbed
postural control.

Experimental and computational background

Consider the following experiment. A subject has to main-
tain the position of an inverted pendulum near the vertical
using a linkage (a spring) between its hand and the pendulum
(Fig. 1; Lakie et al. 2003). The subject moves its hand to
change the bias (insertion position of the spring relative to an
arbitrary origin; Fig. 1) which changes the length of the spring
and thus the force applied to the pendulum and the position of
the pendulum relative to the vertical (sway; Fig. 1). A simpli-
fied mathematical representation of this problem is obtained by
writing the dynamics of the pendulum

I(d2� ⁄ dt2) � mg� sin � � �h

where � is the angle of the pendulum with the vertical; I, m,
and � are the inertia, mass, and length of the pendulum,
respectively; and �h is the torque applied by the hand. A
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solution to this task can be obtained in the framework of
classical feedback control using

�h � �K� (1)

where K is the stiffness of the linkage, i.e., the subject applies
commands that are proportional to the deviation of the pendu-
lum from the vertical. Stability analysis shows that this process
is efficient if K � mg�, i.e., the stiffness of the linkage is
larger than the “stiffness” of the pendulum (for a thorough
analysis of classical feedback control for posture, see Bottaro
et al. 2005). This mathematical result corresponds to the
following intuitive description. If the linkage is rigid (K ��
mg�), the task is rather easy because the subject needs only
keep its hand immobile to properly balance the pendulum. In the case
of a compliant linkage (K � mg�), however, the torques induced
by small deviations of the pendulum from the vertical are not
compensated by the passive resistance of the linkage and the
pendulum will eventually fall.

The model defined by Eq. 1 predicts that: 1) the task is
successfully executed only for K � mg� and 2) for K � mg�,
the pendulum should oscillate with a frequency that is propor-
tional to K (see Fig. 2 in Lakie et al. 2003). These predictions
are not consistent with the experimental observations of Lakie
et al. (2003). They found that subjects can balance the pendu-
lum for a wide range of K (from 54 to 746% of pendulum
stiffness) and the frequency of pendulum oscillations (sway

frequency) is independent of K (see Fig. 7B in Lakie et al.
2003). Note that for simplicity we describe the results of Lakie
et al. in terms of frequency f, although they dealt with
duration � 1/2 � f (see Data analysis in METHODS). They
further reported characteristics of hand displacements (bias).
Bias frequency was about threefold larger than sway frequency
except for larger K (see Fig. 7, B and D in Lakie et al. 2003),
which means that adjustments in hand position were more
frequent than changes in the direction of sway. Sway and bias
were negatively correlated with zero timelag for K � mg�,
and positively correlated with negative timelag for K � mg�
(see Fig. 6 in Lakie et al. 2003). The two latter results provide
some information on the process that governs hand displace-
ments, although they are not easy to interpret. In particular, the
negative correlation between sway and bias for K � mg�
suggests the presence of anticipatory adjustments of bias, but
does not prove their existence.

Consider now a second experiment. Subjects stand freely
and characteristics of sway and muscle (ankle extensor) length
variations are measured (Loram et al. 2004, 2005a,b). Loram
and colleagues found that muscle length and sway frequency
were somewhat independent of the stiffness of the tendon
(Achille’s tendon) that transmits muscle force to the body and
muscle length frequency was about threefold larger than sway
frequency. They also found that, in some subjects, sway and
bias were negatively correlated with zero timelag, correspond-
ing to the presence of “paradoxical muscle movements,” i.e.,
muscle shortening with increasing sway angle and muscle
lengthening with decreasing sway angle. As mentioned earlier,
these paradoxical movements could correspond to anticipatory
adjustments. On this basis, Loram and colleagues proposed that
pendulum balancing with the hand is an analog of control
during quiet stance. The hand plays the role of the muscle, the
linkage is the tendon, and the pendulum is the body.

The implications of these observations are the following:
1) Quiet standing is a postural task when considered from the
point of view of the inverted pendulum (the body) to be
maintained in equilibrium close to the vertical (target position).
From the perspective of the nervous system, however, the
problem is to program displacements of the bias (insertion
position of the tendon) that should produce tendon forces to
displace the pendulum to its target position. This is clearly
illustrated in the analog task of pendulum balancing with the
hand. A similar analysis could apply to the task of stick
balancing on the finger. 2) Adjustments of bias have an active,
anticipatory nature that makes them similar to programmed
movements. 3) Passive feedback control (Eq. 1) is not appro-
priate to explain postural control during quiet stance.

Accordingly, it is important to address the nature of the
control process that governs the bias. A model that could
reproduce characteristics of sway and bias during pendulum
balancing and quiet stance could provide new insights into
postural control. The central tenet of this study is that the
control process for unperturbed posture is an active process
that is similar to processes typically advocated for the control
of movement (Todorov and Jordan 2002), i.e., a process based
on an internal model of the pendulum/body and the neuromus-
cular system and a state estimator.

This assumption leads to a critical difficulty, which is the
following. In qualitative terms, a movement is usually de-
scribed as a displacement of a “well-defined” amplitude and

0

sway

bias

FIG. 1. Definition of bias and sway for the manual control of an inverted
pendulum through a spring. Gray arrows indicate possible directions of hand
displacement. The bias is the insertion position of the spring (vertical plain
line) measured relative to an arbitrary origin (vertical dotted line). The sway is
the deviation of the pendulum from the vertical (dashed line). Note that for
small displacements involved in pendulum balancing, the bias and sway can be
equivalently represented by linear or angular displacements.
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“well-defined” duration (movement time), whereas posture
involves “small,” stochastic, and more or less periodic dis-
placements (sway) over some “undefined” time period. Am-
plitude and duration can be considered as desired parameters of
movement, but neither size nor frequency is a desired property
of sway. This means that a movement time has to be specified
to displace the pendulum/body to its target position, while
there is no overt temporal constraint on the displacement of the
pendulum/body. To circumvent this difficulty, we considered
the following approach. Assume that you perform a tracking
task, such as following a moving target with your finger. At
each time, you must reduce the spatial discrepancy between the
finger and the target (in fact between their estimated positions).
However, because you cannot expect to reduce it instanta-
neously, you fixate a duration (planning time [PT]), corre-
sponding to the time necessary to reach the target if it stops
moving, and you compute the corresponding motor command.
Then you execute this command for one timestep and you start
the process again for the new (estimated) positions of the hand
and the target. In this way, you generate a continuous flow of
displacements that defines a tracking trajectory. The same
process can be applied for postural control.

A second example is interesting to fully explain the notion of
planning time. Assume now that you perform a reaching task,
e.g., move your arm toward a visual target. Some well-known
characteristics of this movement are an almost straight path and
a bell-shaped velocity profile. To plan and execute such a
movement, you need to know its duration so that your com-
mands generate a properly scaled acceleration profile. During
the movement, you must keep track of a remaining time that
progressively tends to zero as the hand approaches the target.
This representation of time is awkward for at least two reasons.
First, when the hand actually reaches the target, time tends to
“disappear.” There is no remaining time to control the arm,
e.g., for residual errors or to compensate for gravity. At this
point, it could be interesting to consider that the end of
movement time corresponds to the beginning of a “postural
period” governed by a classical feedback controller (Eq. 1). In
this way, there is no need to worry about time since control is
dictated by the time constant of the controller. Yet we already
pointed to the fact that a classical feedback controller is not
appropriate for postural maintenance (see preceding text).
Second, if movement is perturbed (target jump, force applied to
the arm), time could disappear before completion of the move-
ment. Thus you need to somehow reallocate time to complete
the movement. In fact, the central problem is the peculiar status
of initial and final states compared with intermediate states
along the trajectory, i.e., there is no time before the initial state
and no time after the final state. A solution to break this
asymmetry is to consider that all states are equivalent, i.e., each
state is the starting point of a (new) goal-directed behavior
defined by a desired final state and a duration (the planning
time) to complete this behavior. The only constraint to guar-
antee the equivalence of states is that the planning time should
always be nonzero. The choice of the planning time is an open
issue. Generally speaking, the planning time is a function of the
current state and the desired final state. For instance, it can be
an affine function of the distance between the states, corre-
sponding to the existence of amplitude/duration scaling laws
observed for different types of movements (Gordon et al. 1994;
Hefter et al. 1996).

The origin of scaling laws is unclear, but we have shown that
it could be related to the fact that subjects allot the same
amount of effort whatever the amplitude of the movement or
the carried load (Guigon et al. 2007b). Here we postulated that
motor control is a universal process defined along a scaling
law. At each time, a displacement is planned and executed
based on the estimated distance to the goal and its associated
duration (planning time) is prescribed by the scaling law. This
process is repeated indefinitely and implicitly defines periods
of posture (in the vicinity of zero amplitude) or movement
(outside this region), although the distinction is purely arbi-
trary. We note that a scaling law should be related not only to
distance, but also to other states (e.g., velocity) of the con-
trolled object. A more general scaling law does not change the
nature of our theoretical construct. For simplicity we assumed
that the planning time is constant for the small displacements
encountered during quiet stance. It corresponds to a scaling law
with a zero slope.

In summary, the goal of this study was to show that a control
principle that is appropriate for the production of movement
can also explain characteristics of unperturbed postural control.
In particular, we want to ascertain the proposal of Loram and
colleagues on the existence of anticipatory adjustments of bias
during quiet stance (which has been derived from a correlation
analysis) using a mechanistic model. We also want to ascertain
the proposed analogy between quiet stance and pendulum
balancing with the hand. From a computational perspective,
this analogy is not trivial since the two cases involve different
dynamics (see description of OBJ1 and OBJ2 in METHODS). Sim-
ulations are provided as a technical proof of these proposals.
Then we show in a simple case that the same principle can
produce natural transitions between posture and movement.

M E T H O D S

General approach

Modeling was cast in the framework of the dynamical systems ap-
proach to motor control (Wolpert and Ghahramani 2000) and exploits the
theory of optimal feedback control (OFC; Todorov and Jordan 2002; see
Fig. 2 in Guigon et al. 2008a). The framework and the theory are
described in the APPENDIX.

Rationale

OFC is an engineering technique (Bryson and Ho 1975; Stengel
1986) involving 1) a controller that elaborates appropriate control
signals to reach a desired goal for a given state of the system and
2) a state estimator that constructs an estimated state of the system
based on commands and sensory feedback. A rationale for a control/
estimation architecture in the framework of motor control has been
developed by Todorov and Jordan (2002). Central to their analysis is
the observation that, for reaching a behavioral goal, the CNS is
directly pursuing it rather than trying to reproduce a predetermined
pattern that would fulfill it. OFC captures this fact through the
“minimum intervention principle” (Todorov and Jordan 2002), i.e.,
the controller corrects deviations only when they interfere with the
task goal. It has been shown that OFC can account for kinematics,
kinetics, muscular, and neural characteristics of arm movements
(Guigon et al. 2007a,b; Todorov and Jordan 2002), on-line movement
corrections (Saunders and Knill 2004; Todorov and Jordan 2002),
structure of motor variability (Guigon et al. 2008a,b; Todorov and
Jordan 2002), and Fitts’ law and control of precision (Guigon et al.
2008a).
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Example

We consider an inertial point that can move along a line, actuated
by a force generator. Its dynamics is given by

dx1 ⁄ dt � x2(t) � nOBJ1

dx2 ⁄ dt � u(t) ⁄ m � nOBJ2

where x1 is the position of the point, x2 is its velocity, m is its mass,
u is the control input transmitted by the force generator, and nOBJ1

and
nOBJ2

are noises. The state vector is x � [x1 x2], the control vector u �
[u], and the noise vector is nOBJ � [nOBJ1

nOBJ2
]. This equation can be

formally written as Eq. A1 in the APPENDIX

dx ⁄ dt � Ax(t) � Bu(t) � nOBJ

where A is a 2 � 2 matrix and B is a 2 � 1 matrix. The state x is not
in general known, but can be observed only through a noisy sensor,
such as

y(t) � x(t) � nOBS

corresponding to Eq. A3, where y is the observation vector and nOBS

is a noise vector. An optimal estimation x̂ of x can be obtained using
a Kalman filter

dx̂ ⁄ dt � Ax̂(t) � Bu(t) � K(t)[y(t) � x̂(t)]

corresponding to Eq. A7, where K is the Kalman gain matrix.
Applying OFC to this object means finding at each time t an
optimal control input u(t), i.e., optimal relative to a criterion (Eq.
A5) that can displace the inertial point from its current state to a
desired final state. For this linear problem, OFC can be solved
analytically (Guigon et al. 2008b; Todorov and Jordan 2002), i.e.,
for initial state x0 at time t0 and final state xf at time tf, a controller
can be written as in Eq. A2.

Specific use

OFC as described in the preceding example and in the APPENDIX was
applied here with a single modification. Final time tf was not fixed but,
at each time t, a displacement was planned and executed based on the
estimated distance to the goal [using x̂(t) and xf] and its associated
duration (planning time) was prescribed by a scaling law (see Exper-
imental and computational background in the INTRODUCTION). For
simplicity we assumed that PT is constant for small displacements,
i.e., at each time t, tf � t � PT.

Definition of controlled objects

The first object (OBJ1) was a single inverted pendulum (mass m,
length �, inertia I) actuated by a muscle–tendon unit (MTU; Fig. 2, A
and B). The MTU was a simplified linear version of the nonlinear
model of van Soest and Bobbert (1993) (Fig. 2B). Assuming restricted
changes in muscle length, the parabolic relationship between muscle
force and muscle length was replaced by a linear relationship, the
tendon was considered as a linear spring, and parallel elasticity was
removed. The force–velocity relationship was also removed because it
can be taken into account by the controller (Guigon et al. 2007b). The
force transmitted to the pendulum was

FT � kT[LT � LT
0]�

where LT, LT
0, and kT are the length, recruitment threshold, and

stiffness of the tendon, respectively, and [z]� � z if z � 0; otherwise
[z]� � 0. The force–length relationship of the muscle was

FM � akM[LM � LM
0 ]�

where LM, LM
0 , and kM are the length, recruitment threshold, and

stiffness of the muscle, respectively, and a is a dimensionless variable

(activation) transmitted by the controller, derived from the control
signal u through second-order low-pass filtering (van der Helm and
Rozendaal 2000)
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FIG. 2. A: architecture of optimal feedback control for OBJ1 (gray). See text
for notations. B: model of a muscle–tendon unit. Schematized force–length
relationship for tendon (down left) and muscle (down right). Dashed curves:
schematized nonlinear model. C: simulation of a 100-s sway (�). The task was
to maintain the pendulum 3° away from the vertical. D: bias (LM). Parameters
were: PT � 0.6 s; �noise � 25 s; �SINs

� 10�2; wd�/dt � 0.06; �SDNm
� 10�4;

kM � 45 N/mm; kT � 200 N/mm.
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�(da ⁄ dt) � �a � e

�(de ⁄ dt) � �e � u (2)

where e is excitation and � is the time constant of filtering. Muscle and
tendon lengths were obtained using FM � FT, LMTU � LM � LT, and

LMTU � �(�i cos � � �o)2 � (�i sin �)2�0.5

where LMTU is the length of the muscle–tendon unit, � is the angle of
the pendulum with the vertical (sway angle), �o is the muscle origin
length, and �i is the muscle insertion length.

Dynamics of the pendulum was

I(d2� ⁄ dt2) � Fg � FT (3)

where Fg � mg� sin �. Control of OBJ1 is a simple analog of the
control of an inverted pendulum through ankle musculature (Loram
and Lakie 2002b; Loram et al. 2001) and quiet stance (Loram et al.
2004, 2005a,b). The presence of a single actuator corresponds to the
fact that these tasks involve mainly the activation of ankle extensor
muscles (soleus and gastrocnemius), the flexors being almost silent. In
terms of the general formalism described in Appendix, the state vector
was x � [� d�/dt a e] (n � 4) and the control vector was u � [u]
(m � 1). The dynamics of OBJ1 is given by Eqs. 2 and 3.

The second object (OBJ2) was a single inverted pendulum (mass mP,
length �P, inertia IP) actuated by the hand (inertia IH) through a spring
of variable stiffness (Fig. 5E; Lakie et al. 2003). Its dynamics is
expressed as

IH(d2�H ⁄ dt2) � hHkS(hP�P � hH�H) � �a

IP(d2�P ⁄ dt2) � hPkS(hP�P � hH�H) � kP�P � 0 (4)

where �H is the angle of the hand; �P is the angle of the pendulum
relative to the vertical; kP � mPg�P is the pendulum stiffness; kS is
the spring stiffness; hH and hP represent the height of attachment of
the spring to the hand and the pendulum, respectively; and a is the
activation transmitted by the controller (see preceding text; � � 1 Nm
guarantees homogeneous units). We assumed that �H and �P remained
small (sin �H � �H, sin �P � �P). When necessary, hand and
pendulum positions were calculated as xH � hH�H and xP � hP�P,
respectively. We note that IH represents the equivalent inertia of the
biomechanical system that controls the pendulum and is, a priori,
unknown. In terms of the general formalism, the state vector was x �
[�H �P d�H/dt d�P/dt a e] (n � 6), and the control vector was u � [u]
(m � 1). The dynamics of OBJ2 is given by Eqs. 2 and 4.

Task and boundary conditions

The general task of the controller was to maintain the controlled
object at a reference position with zero velocity. For OBJ1, the state
vector was x � [� d�/dt a e] and the boundary conditions were x0 �
[�0 0 0 0] and xf � [�f 0 A A], where A indicates the absence of
boundary value for the corresponding state. For OBJ2, the state vector
was x � [�H �P d�H/dt d�P/dt a e] and the boundary conditions were
x0 � [�H

0 �P
0 0 0 0 0] and xf � [A �P

f A 0 A A]. The rationale for these
conditions was to consider only task constraints.

Object noise

Object noise was a multiplicative noise (or signal-dependent noise;
SDNm, where m stands for motor; Guigon et al. 2008a; Harris and
Wolpert 1998; Todorov 2005) defined by Eq. A8. Since m � 1, then
c � 1, C1 � [0 0 0 1/�] and 		 � �SDNm

.

Observation and observation noise

The observation functions were restricted to kinematic variables
(position, velocity). For OBJ1, from Eq. A 6, OBS(x) � Hx � [� d�/dt],
corresponding to visual/vestibular information on the position/veloc-

ity of the pendulum. For OBJ2, OBS(x) � [�H �P d�H/dt d�P/dt],
corresponding to visual information for the pendulum and proprio-
ceptive information for the hand. The observation noise was an
additive noise (or signal-independent noise; SINs, where s stands for
sensory; Guigon et al. 2008a; Todorov 2005) defined by Eq. A 9. For
OBJ1, 	
 � �SINs

� diag [1 w�P wd�H/dt wd�P/dt], where �SINs
repre-

sents the SD of noise, and wd�/dt defines the relative weight of the two
observed states. In the same way, for OBJ2, 	
 � �SINs

� diag [1 w�P

wd�H
/dt wd�P

/dt]. The first weight is 1 so that there is no redundant
parameter. The “color” of noise is likely to influence the characteris-
tics of postural sway (Newman et al. 1996; Peterka 2000). On this
basis, the assumption was made that at least information of visual or
vestibular origin could be corrupted by colored noise. This assumption
is necessary to explain detailed characteristics of pendulum balancing,
although it is not necessary to account for general characteristics of
balancing (see Supplemental Figs. S5 and S6)1. To simulate different
types of colored noise, observation noise was low-pass filtered with a
time constant �noise. The relationship between the scaling factor of
noise and �noise is shown in Supplemental Fig. S1. The nature of noise
was specified by matrix 
 that indicated the presence of colored noise
(1) or white noise (0) for each element of �. For OBJ1, 
 � diag [1 1].
For OBJ2, 
 � diag [0 1 0 1].

Parameters and boundary values

There are five types of parameter in the model: 1) parameters that
are fixed, and common to all objects (� � 0.1 s, � � 0.05 s);
2) parameters that are fixed and object-specific (OBJ1: m � 60 kg, I �
60 kg · m2, � � 1 m, �i � 0.4 m, �o � 0.05 m, LT

0 � 0.3 m, LM
0 �

0.08 m; OBJ2: mP � 51 kg, �P � 1.03 m, IP � 64.1 kg · m2, hP � 0.87
m, kS � 58, 74, 94, 106, 124, 149, 186, 249, 746% of kP);
3) parameters that can vary and are object-specific (OBJ1: kM, kT; OBJ2:
IH, hH); 4) parameters that can vary and are related to the task (�SINs

,
�SDNm

; OBJ1: wd�H/dt, OBJ2: wd�H/dt, w�P, wd�P/dt); 5) parameters that
can vary and are common to all objects (�noise, PT). The values of the
three latter types of parameters were chosen to match experimental
observations. The influence of these choices was assessed in a para-
metric study (Supplemental Figs. S2–S6). The boundary values were:
�f � �0 � 3° (OBJ1); �P

f � �P
0 � 3° (OBJ2).

Data analysis

Time domain and frequency domain analyses were performed on
pendulum sway (variables �) and muscle length and hand position for
which the term bias was used (variables LM for OBJ1 and hH�H for
OBJ2). In the time domain, a sway was defined as a unidirectional
displacement of the pendulum between two extrema. Sway size was
the mean magnitude of the sways, sway duration the mean duration of
sways. Sway frequency was 1/(2 � sway duration). The same defi-
nitions were used for the bias. In the frequency domain, power
spectral density of sway velocity (Pvv) was calculated and used to
define mean sway frequency as

fmean � �f f � Pvv ⁄ �f Pvv

Mean sway duration was then obtained as 1/2 � fmean. The same
definitions were used for the bias. Line-crossing impedance was
defined as the mean slope of the ankle/torque curve at peak velocities.

Numerical methods

The optimal feedback control problem was solved numerically in
the following way. Simulation time T was discretized with timestep
� � 0.05 s. At each time t, an optimal control problem (Eqs. A1, A2,
and A5) was formulated for proper boundary conditions (initial
boundary conditions or currently estimated state and final boundary

1 The online version of this article contains supplemental data.
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conditions) and a given planning time PT. This problem was dis-
cretized using a direct transcription method (N � 200 points; Betts
2001) and solved by a large-sparse nonlinear programming method
(interior point method; Wächter and Biegler 2006; details in Tran
et al. 2008). The solution (control signal over PT) was integrated with
noise (using a differential equation integrator with adaptive stepsize
control; odeint in Press et al. 2002) over duration � (Eqs. A1, A3, and
A4) to obtain actual and estimated states at time t � � that will serve
for initial boundary conditions at the next step. More details to
replicate the results are given in the Supplemental material.

R E S U L T S

Optimal feedback control of bias (see METHODS) was applied
to two kinds of inverted pendulum used in the study of postural
control (OBJ1, OBJ2). They correspond to different tasks and
different levels of control complexity (OBJ1: quiet stance or
control of an inverted pendulum through ankle musculature/
control through a muscle–tendon unit; OBJ2: pendulum balanc-
ing with the hand/control through a spring).

Quiet stance

The proposed mechanism is illustrated in Fig. 2A. Postural
control was represented by the control of an inverted pendulum
(similar in weight and inertia to a human) through a muscle–
tendon unit (OBJ1), i.e., a muscle in series with a tendon (Fig. 2B).
The control architecture consisted in an optimal feedback control-
ler (CO) that calculates the best command to the muscle (in the
sense of a cost function) that allows the pendulum to be displaced
from its currently estimated state to a reference state in a given
time (planning time [PT]) and an optimal state estimator (EST) that
provides the best estimate (in the least square probabilistic sense)
of the state of the pendulum (METHODS).

Results consist in 100-s simulations of the control of OBJ1 in
the presence of sensory and motor noise. An example is shown
in Fig. 2. The pendulum swayed regularly around its reference
position (Fig. 2C) and muscle length (bias) varied more fre-
quently than pendulum position (Fig. 2D).

For an appropriate choice of the parameters (for a parametric
study, see Supplemental Figs. S2, S3, and S5), the model
reproduced four main characteristics of pendulum balancing
(Loram and Lakie 2002b; Loram et al. 2001) and natural
postural sway (Loram et al. 2004, 2005a) (Fig. 3):

1 Balance consisted in complex changes in torque with
pendulum angle (Fig. 3A; also see Fig. 3 in Loram et al. 2001).
The torque required for equilibrium is indicated by a gray line
in Fig. 3A. There was no single equilibrium position as the
torque crossed the equilibrium line over a range of angles.
Balance consisted in a succession of “biphasic throw and
catch” patterns (Fig. 3B; also see Fig. 5A in Loram et al. 2001).

2 When different levels of noise were used, sway size varied,
but sway frequency remained constant around 0.4 Hz (Fig. 3C;
also see Fig. 4, B and C in Loram et al. 2001). In the same way,
line-crossing impedance (mean slope of the torque–angle rela-
tionship; Fig. 3B) was about 30 Nm/deg, irrespective of sway
size (Fig. 3D; also see Fig. 5B in Loram et al. 2001).

3 The cross-correlation function between sway angle and
bias revealed a negative correlation (r � �0.58) with zero time
lag, corresponding to the presence of “paradoxical muscle
movements,” i.e., muscle shortening with increasing sway

angle and muscle lengthening with decreasing sway angle (Fig.
3E; also see Fig. 3, A and B in Loram et al. 2005a).

4 Adjustments in bias (muscle length: 1.5 Hz) were 3.2-fold
more frequent than sway movements (0.47 Hz), which reveals
a form of intermittent control (Fig. 3F; also see Fig. 3 in Loram
et al. 2005b), i.e., there were more adjustments of bias than
changes in the direction of sway.

The parametric study (see Supplemental material) shows
that these results are highly robust across variations of the
parameters. In particular, intermittency is a ubiquitous phe-
nomenon that was observed for every tested combination of the
parameters (Supplemental Fig. S2).

The preceding results have been obtained for a value of
tendon stiffness (kT) that produces paradoxical muscle move-
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ments. We assessed the influence of kT on the characteristics of
sway and bias for comparison with experimental results on
intersubject variations in tendon stiffness (Loram et al. 2004,
2005a,b). Changes in kT produced slight variations in sway
duration (Fig. 4A; also see Fig. 3D in Loram et al. 2005b),
sway size (Fig. 4B; also see Fig. 3B in Loram et al. 2005b), and
line-crossing impedance (not shown). Variations in bias dura-
tion and size were more complex (Fig. 4, A and B). In a lower
range of stiffness, bias duration remained almost constant (see
Fig. 3E in Loram et al. 2005b) and bias size decreased (see Fig.
3C in Loram et al. 2005b). In an upper range, both duration and
size increased with tendon stiffness. This behavior is explained
by the fact that there is a quasi-rigid link between the muscle
and the pendulum at higher stiffness. This latter behavior was
not reported by Loram et al. (2004, 2005a,b), probably because
tendon stiffness is not so high in human subjects, but is
consistent with results obtained during pendulum balancing
with the hand (Lakie et al. 2003; see following text). The
correlation between sway angle and bias increased with kT, i.e.,
the paradoxical movements disappeared at higher tendon stiff-
ness (Fig. 4C; also see Fig. 4 in Loram et al. 2005a). The time
lag between sway and bias was zero when correlation was
negative, became large and negative around zero correlation,
and then increased with correlation (Fig. 4D).

These results show that active control of bias is a robust
mechanistic model of postural control during quiet stance.

Pendulum balancing with the hand

According to Loram and colleagues, pendulum balancing
with the hand is a faithful analog postural control during quiet
stance. The model was used to test this proposal (OBJ2; Fig. 5E).
Analogy with OBJ1 is based on the following correspondence:

the sway was pendulum position (xP � hP�P), the bias was
hand position (xH � hH�H), and tendon stiffness was spring
stiffness (kS).

Results consist in 200-s simulations of the control of OBJ2 for
nine values of kS (58, 74, 94, 106, 124, 149, 186, 249, and
746% of the stiffness of the pendulum kP). For an appropriate
choice of the parameters (for a parametric study, see Supple-
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mental Figs. S4 and S6), the model reproduced seven main
characteristics of pendulum balancing with the hand (Lakie
et al. 2003):

1 Balance was successfully maintained for every value of kS.
2 Sway duration was about 1 s and varied little with kS (Fig.

5A; also see Fig. 7B in Lakie et al. 2003).
3 Bias duration was about 0.4 s and varied little with kS,

except for large kS (Fig. 5A; also see Fig. 7D in Lakie et al.
2003).

4 Sway and bias sizes decreased with kS (Fig. 5A; also see
Fig. 7, A and C in Lakie et al. 2003).

5 The sway/bias correlation increased with kS and was zero
for kS � pendulum stiffness kP (Fig. 5B; also see Fig. 6A in
Lakie et al. 2003).

6 The time lag between sway and bias was zero for kS � kP,
became large and negative for kS � kP, and increased with kS
for kS � kP (Fig. 5C; also see Fig. 6B in Lakie et al. 2003).

7 The slope of the pendulum position–hand position rela-
tionship increased with kS (Fig. 5D; also see Fig. 4 in Lakie
et al. 2003).

It is interesting to note that sway size varied with spring
stiffness in the current test (Fig. 5A), but did not vary with
tendon stiffness in the preceding test (Fig. 4B), in agreement
with experimental observations (Lakie et al. 2003; Loram et al.
2005b).

The parametric study (Supplemental Figs. S4 and S6) shows
that these results are highly robust across variations of the
parameters. Thus active control of bias is a robust mechanistic
model of pendulum balancing with the hand.

Transition between posture and movement

In the preceding simulations, posture was defined by the
requirement to drive a pendulum from its currently estimated
position to a nearby target position, although the model is not
limited to a particular range of target positions. If the final

boundary conditions are suddenly modified to specify any new
target position, the controlled object should be driven to this
position. For simplicity, we assumed that the planning time
was independent of movement amplitude. Considering again
OBJ1 (with a pair of antagonist muscles; Fig. 6A, inset), we
simulated: 1) movements of constant amplitude and variable
durations (Fig. 6A): different durations were obtained by
changing the planning time; and 2) movements of constant
duration and variable amplitudes (Fig. 6B): a small range of
movement amplitude was deliberately chosen to match the
hypothesis of restricted changes in muscle length (METHODS).
We observed that the same process maintained posture against
gravity (time �0.5 s), generated a displacement with a bell-
shaped velocity profile (time �0.5 s), and maintained posture
at the end of movement.

D I S C U S S I O N

The present results together with those of previous modeling
studies (Guigon et al. 2007b, 2008a; Todorov and Jordan 2002)
suggest that one and the same computational process can
generate movement- and posture-like displacements and ac-
count for some of their experimentally observed properties. We
discuss the implications of our results at three levels: 1) in the
framework of the debate between passive versus active view of
quiet stance; 2) in the framework of postural control in the
broad sense; and 3) in the framework of the debate between
common versus separate processes for the control of posture
and movement.

Passive versus active view of quiet stance

The proposed theory, which has been derived from the study
of unperturbed postural paradigms for single inverted pendula
(pendulum and body balancing), states that, in these cases,
postural control involves an active, anticipatory process—i.e.,
an internal model of the body and the neuromuscular system—
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and a state estimator. The results provided a technical proof of
this fact.

A fundamental implication is that posture should be ad-
dressed within the scope of the analysis proposed by Todorov
and Jordan (2002) on the nature of motor behaviors, i.e.,
posture is a highly coordinated and flexible behavior. This
view is consistent with some experimental and theoretical
arguments (Bottaro et al. 2008; Loram and Lakie 2002a;
Loram et al. 2001; Morasso and Sanguineti 2002; Morasso and
Schieppati 1999), yet it is not in the mainstream of studies on
postural control that consider posture as a passive process
(Feldman and Levin 1995; Lockhart and Ting 2007; Masani
et al. 2003; Peterka 2000; van Soest and Rozendaal 2008;
Winter et al. 1998). First, we note that passive stabilization is
likely to be scarcely robust and stable in the face of transmis-
sion delays and low levels of actuator stiffness (Bottaro et al.
2005; Loram and Lakie 2002a; Morasso and Schieppati 1999).
Second, Bottaro et al. (2005) previously showed that, in the
description of posture as a fixed point of a classic feedback
controller, postural sway is the result of the action of noise and
not the action of the controller. In fact, noise and control
signals are of the same order of magnitude, corresponding to a
physiologically implausible level of noise.

The present results are not totally unexpected since many
studies have successfully addressed quiet stance in the frame-
work of optimal control and optimal state estimation (Kiemel
et al. 2002; Kuo 1995; Newman et al. 1996; Qu et al. 2007; van
der Kooij et al. 1999). Yet there is a fundamental difference
between the previous and current approaches (except Newman
et al. 1996; see following text), i.e., the optimality criteria are
different. The usual optimality criterion is derived from the
classic linear quadratic Gaussian formalism and involves the
minimization of a combination of control and error (Bryson
and Ho 1975). As applied to posture, the error term contains
position and velocity terms, i.e., posture results partly from the
minimization of the kinematics of sway over a definite time
period. Accordingly, posture is to be construed as a trajectory
following process, the trajectory being a fixed point. Our
results were obtained with a criterion involving only the
minimization of controls (Eq. A5), the kinematic variables
being constrained by boundary conditions. This criterion was
originally proposed for movement production (Guigon et al.
2007b; Harris and Wolpert 1998; Nelson 1983) and was also
used for trajectory formation during postural control (Ferry
et al. 2004; Martin et al. 2006; Menegaldo et al. 2003). One
study (Newman et al. 1996) has shown that the two power-law
scaling regimes that are typical of physiological sway move-
ments (Collins and De Luca 1993) actually emerge with this
same criterion.

Implications for postural control

A central issue is whether this theory, which accounts for the
control of an unperturbed single inverted pendulum, is relevant
to the more general case of multijoint redundant kinematic
chains in the presence of perturbations. The fact that we consid-
ered only a single inverted pendulum could in fact be viewed as
a limitation of this study. The reason for this choice is twofold.
First, the model is intrinsically able to coordinate systems with
multiple degrees of freedom and kinematic and muscular
redundancy (Anderson and Pandy 2001; Guigon et al. 2007b;

Todorov and Jordan 2002). Second, we have not found suffi-
ciently quantitative data on the control of multiple inverted
pendula that would put enough constraints on the model. The
successful coordination of a double (e.g., leg/trunk) or triple
(shank/thigh/trunk) inverted pendulum with the model could
not be considered as a major achievement and, for lack of
stringent constraints, would not add further support to the
proposed theory.

The issue of perturbations is complex for any theory of
motor control. In fact, a theory is in general built to be as
simple as possible and to account for the largest set of exper-
imental observations. For instance, optimal feedback control
can account for trajectory formation and on-line control of
movement, but because it does not include any low-level reflex
operations, it cannot implement short-latency corrections in-
duced by unexpected perturbations. At this point, we see a
clear limitation of an approach (computational) that is not
based on physiological processes. However, there is no reason
why a more detailed model could not address postural pertur-
bations.

In summary, the present results do not allow us to draw
conclusions on the general issue of postural control, but point
to a new theoretical framework for the study of posture.

Coordination of posture and movement

The present theory also contributes to the debate on the
coordination between posture and movement. At the most
general level, there are three ways to consider this coordina-
tion: 1) movement is posture (equilibrium point theory; Ostry
and Feldman 2003); 2) posture is movement (present theory);
3) posture and movement are separate processes (Kurtzer et al.
2005; Massion 1992). We focus the discussion on the issue of
common versus separate processes and we do not specifically
address the equilibrium point theory, which has frequently
been discussed in the literature (Feldman and Levin 1995). The
central point of the debate is that the different views are based
on arguments at different levels. The first two views claim, on
a computational ground, that a unique process is necessary for
the sake of coordination. In the scheme of Massion (1992),
separate movement and posture controllers are considered and
interact only through an efferent copy of the commands from
the former to the latter. In this configuration, any postural
adjustment is unknown to the movement controller and should
lead to motor errors. In fact, arguments for separation are
mainly anatomical and physiological necessities. For instance,
the stretch reflex could be considered as a specific postural
pathway that can maintain stable postures through a negative
feedback loop (Houk and Rymer 1981), whereas supraspinal
inputs to the motoneurons would convey movement-related
commands. For the case of unperturbed quiet stance, there is
little evidence for an involvement of the stretch reflex (Loram
and Lakie 2002a). This example shows that the mere existence
of separate anatomical and physiological pathways for posture
and movement should not be considered as a conclusive
argument in the absence of a computational framework that
describes their involvement in the coordination of posture and
movement.

A different view of separation is based on the idea that
posture and movement processes would pursue different goals
or optimize different functions, e.g., related to gravity, control
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of the center-of-mass or stability issues for the former, and
related to velocity, accuracy, or energy savings for the latter.
Although this proposal is attractive, there is no specific exper-
imental support for it. On the contrary, results reported by
Nishikawa et al. (1999) go against this view. They reasoned
that, because the relative contributions of antigravity and
movement-related forces vary with movement velocity, opti-
mization in relation to gravity forces should lead to changes in
terminal posture with velocity. For instance, the posture at the
end of a slow movement should be chosen to minimize the
influence of gravity. Their results did not back up this predic-
tion because the terminal posture of three-dimensional redun-
dant arm movements was independent of movement velocity.

Neural bases of posture and movement

The present theory states that postural control involves an
internal model of the body and the neuromuscular system and
a state estimator. The former element has not yet been formally
identified at the neural level, but observations of paradoxical
muscle movements and the absence of reflex contribution
during postural sway (Loram and Lakie 2002a; Loram et al.
2004) suggest a supraspinal origin. In quadrupeds, activity of
motor cortical neurons is closely related to the pattern neces-
sary for postural maintenance (Beloozerova et al. 2003) and the
production of anticipatory postural adjustments (Yakovenko
and Drew 2009). The presence of an internal model of the
motor apparatus has not been proven in these cases, but related
experimental and theoretical results in the primate motor cortex
concur with this idea (Guigon et al. 2007a; Scott 2007;
Todorov 2000). The latter element (state estimator) is likely
located in the cerebellum (Wolpert et al. 1998), which is
consistent with impaired postural control in the case of cere-
bellar ataxia (Morton and Bastian 2004). At a more elaborated
level, the theory suggests that posture and movement would
result from the same anticipatory process. Evidence for com-
mon or separate neural processes for posture and movement is
clearly mixed (Kurtzer et al. 2005; Sergio et al. 2005). On the
one hand, many motor cortical neurons are recruited for both
isometric and movement tasks (Sergio et al. 2005). On the
other hand, populations of M1 neurons display load-related
activity in a task-specific way, i.e., only during a posture or a
movement task (Kurtzer et al. 2005). This discrepancy is
difficult to settle, but might be related to the general difficulty
to infer the role of a neuron from its discharge pattern (Fetz
1992). Although the theory supports the “common” view of
posture and movement, it could also be relevant for the “sep-
arate” view. In fact, as mentioned earlier, the theory has been
derived from the study of axial posture and might not be
adequate to describe postural control of the upper limb, e.g.,
posture maintenance of the forearm against gravity. A reason
for this could be related to properties of tendons: shorter and
stiffer tendons would render control of bias similar to control
of force (i.e., muscle force is directly translated into joint
torque), which is inappropriate for postural control (Ostry and
Feldman 2003) and would require an additional postural con-
troller.

Intermittency

The model displays an intermittent behavior characterized
by adjustments of bias (muscle length or hand position) that are

more frequent than sway (pendulum position) variations. This
behavior, which fits observations on postural sway (Lakie and
Loram 2006; Loram et al. 2005b), occurs in the absence of
intermittent processes in the model. A parametric study reveals
that the level of intermittency (ratio of bias and sway fre-
quency) is modulated only by the planning time (i.e., the time
to reach the boundary conditions as defined by the amplitude/
duration scaling law) and the characteristic of sensory noise
(i.e., the frequency content of sensory noise). The fundamental
point is that these two parameters should remain unchanged by
task conditions (e.g., instructions to the subjects). Conversely,
the level of intermittency is not modulated by parameters that
could change with the task conditions (e.g., level of noise).
Thus intermittency appears to be an intrinsic property of the
interaction between the control process and the controlled
object, which would explain its ubiquitous presence and in-
variant nature across experimental studies (Lakie and Loram
2006; Lakie et al. 2003; Loram et al. 2005b). The emergent
nature of intermittency in the model contrasts with other
approaches in which an intermittent control mechanism is a
built-in feature, involving a periodic or state-dependent switch-
ing process between active and inactive modes of control
(Bottaro et al. 2008). The proposed view of intermittency also
differs from classic accounts that ascribe intermittency to
constraints that would limit the functioning of a controller
(e.g., deadzone, refractory period, etc.; Miall et al. 1993).

Colored noise

In previous models of postural control, colored noise was
deemed necessary to explain characteristics of postural sway
(Newman et al. 1996; Peterka 2000). The same observation
was true for the present model, i.e., colored noise in sensory
feedback was necessary to reproduce quantitative aspects of
pendulum balancing. The exact origin and meaning of this
observation are unclear, but might be related to transduction
mechanisms at the level of sensory receptors that act as
low-pass filters (e.g., Fitzpatrick and Day 2004). Yet the issue
of noise is globally orthogonal to the central topic of this
study—i.e., the problem of posture and movement control.

Representation of time

Time is central to motor control (Schöner 2002), yet its role
in postural control remains unclear. Three proposals can be
considered. First, in the framework of classic feedback, there is
no explicit time in the control process, since the behavior in the
vicinity of a fixed point is governed by a time constant and is
thus determined by the parameters of the feedback controller
(Supplemental Fig. S7). This view of posture is clearly at
variance with experimental observations (Lakie et al. 2003;
Loram et al. 2005b). Second, in usual models of movement
production, a movement duration is chosen for a given goal
and time decreases toward zero as the command to the con-
trolled object unfolds. Extension to posture is not straightfor-
ward since there are no well-defined temporal boundaries for
postural displacements. More generally, on-line movement
perturbations induce updating of movement duration (Prablanc
and Martin 1992; Shadmehr and Mussa-Ivaldi 1994), which is
not easily captured in this framework. The third proposal is
control along an amplitude/duration scaling law (with a non-
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zero intercept). The present study shows that this mechanism
could provide a unified representation of time for posture and
movement.

Testing the theory

A critical issue for any computational theory is to show that
it can be in some way invalidated. Two directions can be
proposed, corresponding to two aspects of the model that could
be faulty. An extension of our modeling framework to multiple
degrees of freedom (DOFs) including the trunk and leg should
be able to explain the patterns of coordination between the
trunk and leg segments during quiet stance (Creath et al. 2005;
Saffer et al. 2008; Zhang et al. 2007), i.e., the angular displace-
ments of the trunk about the hip and legs about the ankle are
aligned in phase below 1 Hz and in antiphase above 1 Hz. The
simultaneous measurements of ankle/hip displacements and
changes in ankle muscle length during quiet stance should
provide sufficiently quantitative data for a critical test of the
model. Yet a difficulty is that the number of parameters
(muscle parameters, muscle insertions and moment arms, pa-
rameters of the state estimator) increases with the number of
DOFs. Thus a success would not be particularly significant as
it could be ascribed to a clever choice of the parameters, but a
failure would be highly significant. Second, the influence of the
planning time on the characteristics of postural sway (Supple-
mental Figs. S2A and S3A) could be exploited. Amplitude/
duration scaling laws can be modified by task instructions
(Brown et al. 1990) and pathological states (Hefter et al. 1996).
An interesting case is Parkinson’s disease, which induces
upward shifts in amplitude/duration scaling laws (and down-
ward shift in amplitude/velocity scaling) compared with con-
trol subjects (see Fig. 6 in Flowers 1976, Fig. 2 in Berardelli
et al. 1986, Fig. 5 in Warabi et al. 1986, Fig. 6 in Sheridan et al.
1987, Fig. 3 in Hefter et al. 1996, and Fig. 3 in Pfann et al.
2001). The same effect is also observed for unmedicated versus
medicated PD patients (see Fig. 2 in Robichaud et al. 2002).
According to the model, an upward shift in amplitude/duration
scaling corresponds to an increased planning time that should
modify motor control (in terms of velocity for movement and
in terms of frequency/amplitude of sway for posture). This is a
testable prediction, for instance with a comparison of postural
sway between medicated and unmedicated Parkinsonian pa-
tients: medication should lead to a decrease in sway duration
and sway size (Supplemental Figs. S2A and S3A). A failure to
observe these effects would be significant and would invalidate
the model. A related idea would be to exploit circadian varia-
tions in movement duration (Gueugneau et al. 2009) and to
show that they are accompanied by corresponding variations in
the characteristics of postural sway.

A P P E N D I X

The model is cast in terms of an interaction between a controlled
object (OBJ), a controller (CO), an observer (OBS), and a state estimator
(EST). In this framework, the following variables are used: x is an
n-dimensional state vector (bold indicates a vector, italic is for scalar,
and underlined is for matrix) that contains position, velocity, . . . , of
OBJ; u is an m-dimensional control signal provided by CO; y is a
p-dimensional vector provided by OBS, representing observation of the
state vector through sensory feedback; x̂ is an n-dimensional vector
computed by EST as an estimate of x.

The model is made of 1) the controlled object with dynamics

dx ⁄ dt � OBJ[x(t), u�t�]�nOBJ(t) (A1)

where nOBJ is an n-dimensional process noise (NOISE); 2) the control-
ler defined by

u�t� � CO[x̂(t), xf, tf, OBJ] (A2)

that calculates the appropriate u to displace the object from its
estimated state x̂ at time t to its goal xf at time tf (boundary conditions,
BOUND); 3) the observer

y�t� � OBS[x(t � � )] � nOBJ(t) (A3)

where nOBS is a p-dimensional observation noise (NOISE) and � is the time
delay in sensory feedback pathways; 4) the state estimator defined by

dx̂ ⁄ dt � EST[x̂(t), y�t�, u�t�, OBJ] (A4)

that calculates the state estimate based on u and observation y.
If CO is an optimal controller for the optimality criterion (CRIT)

J(t) � ��t;tf�
�u(w)�2dw (A5)

and EST is an optimal state estimator, the ensemble {CO, CRIT, OBS, EST,
NOISE}, applied to {OBJ, BOUND}, defines an optimal feedback control
architecture. To generate the movement of an object from initial state
x0 at time t0 to final state xf at time tf, the optimal feedback control
(OFC) calculates at each time t in [t0; tf] the best command that
displaces the object from its currently estimated state x̂(t) to its goal
state xf in the remaining duration tf � t.

To obtain a complete description of the model, OBS, EST, and NOISE

must be specified. Observation is defined by

OBS[x(t)] � Hx(t) (A6)

where H is a p � n observation matrix. The estimated state is obtained
using a Kalman filter

dx̂ ⁄ dt � OBJ[x̂(t), u(t)] � K(t)�y(t) � OBS[x̂(t � 
)]	 (A7)

where K is the n � p Kalman gain matrix (Guigon et al. 2008b). Both
dynamics and observation are corrupted by noise (Guigon et al.
2008b; Todorov 2005). Object noise is a signal-dependent noise

nOBJ(t) � �i�1 · · · c 	i(t)Ciu(t) (A8)

where � � [	1 . . . 	c] is a zero-mean Gaussian random vector with
covariance matrix 		 and [C1ÊCc] is a set of n � m matrices
(Todorov 2005). Observation noise is a signal-independent noise

nOBS(t) � 

(t) (A9)

where � is a p-dimensional zero-mean Gaussian random vector with
covariance matrix 	
. The rationale for Eqs. A8 and A9 is the
following. Signal-dependent noise on object dynamics is necessary for
OFC to implement a minimum intervention principle (Guigon et al.
2008b; Todorov and Jordan 2002). Signal-independent noise on ob-
servation is the simplest form of noise on sensory feedback. Thus Eqs.
A8 and A9 specify the simplest noisy environment for OFC.

The present formalism for optimal control is slightly different from
the stochastic optimal control framework of Todorov and Jordan
(2002). The difference is related to the optimality criterion (Eq. A5),
which includes both a control term and an error term in Todorov and
Jordan. The error term is used in place of the hard final boundary
constraint, but in fact requires additional parameters to determine the
weights of state costs (not only position, but also velocity, etc.)
relative to control costs. Despite this difference, the two frameworks
share similar properties (Guigon et al. 2008b).
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Supplemental Material 

Active control of bias for the control 
of posture and movement 

Emmanuel Guigon 

 

1. Generation of colored noise 

Colored noise nc was obtained by low-pass filtering of Gaussian white noise nw  

 �n o i s e  dn c /dt  = �n c  + nw,  

where �noise is the filtering time constant. The relationship between the scaling factor of noise 

� and �noise is shown in Fig. S1. 

2. Parametric studies 

The models for OBJ1 and OBJ2 are defined by 16 parameters. It is important to understand how 

these parameters determine the behavior of the models. The parametric study is based on a 

detailed analysis of the parameters that creates five classes (see Main text). We addressed the 

influence of parameters in classes 3, 4, 5 (7 parameters for OBJ1, 9 for OBJ2), corresponding to 

parameters that were adjusted to match experimental observations. The principle of the study 

is to define a range of variations for each varying parameter around its reference value (the 

value used in the Main text), and simulate the model for several values of the parameter in 

this range, all the other varying parameters being at their reference values. The case of �noise is 

particular since white noise is not directly obtained with �noise = 0. Thus the case of white noise 

vs. colored noise is treated separately. 
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Model for OBJ1 

The results are shown in Figs. S2 for duration and S3 for size for 6 parameters (the case of kT 

has already been addressed; Fig. 4). We made several observations: 1. the typical pattern 

described in the Main text was robustly found across variations of the parameters; 2. sway 

and bias durations were modulated only by PT and �noise; 3. sway and bias sizes were 

simultaneously modulated by all the parameters, except PT that influenced only sway size. 

 These observations concur with the central result revealed by the studies of Loram, Lakie 

and collaborators, i.e. sway and bias duration remain unchanged when sway and bias size are 

altered by changes in task conditions (e.g. nature and availability of sensory feedback, 

instructions to the subjects, ...; Loram et al. 2001; Lakie et al. 2003; Loram et al. 2005b; Lakie 

and Loram 2006). 

Model for OBJ2 

The results are less easy to visualize as they need to be plotted against percentage stiffness 

(see Fig. 5). For simplicity, we used the same format as Fig. 5, and we superimposed the 

curves obtained for all the parameters (Fig. S4). We observed that the typical pattern 

described in the Main text was robustly found across variations of the parameters. 

3. Colored vs white noise 

The results described in the Main text were obtained with the following assumptions: 1. for 

OBJ1, sensory feedback was visual/vestibular information on the position/velocity of the 

pendulum; 2. for OBJ2, sensory feedback was visual information for the pendulum, and 

proprioceptive information for the hand; 3. visual/vestibular information was corrupted by 

colored noise. Here we show that these assumptions are necessary to explain detailed 

characteristics of pendulum balancing, although it is not necessary to account for general 

characteristics of balancing. 
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 We considered the case where visual/vestibular information was corrupted by white noise. 

For OBJ1, intermittency was preserved, yet sway and bias durations were not in the proper 

range (Fig. S5; for comparison see Fig. S2). For OBJ2, the general pattern of balancing was 

preserved (Fig. S6; for comparison, see Fig. 5), yet sway duration was lower than expected 

(Fig. S6C), and bias duration did not match sway duration at high percentage stiffness 

(Fig. S6D). 

4. Comparison with a PID controller 

Classical feedback control is frequently used as a model of postural control (Peterka 2000). 

We simulated a PID (proportional, integral, derivative) controller to assess the influence of 

the proportional gain (stiffness) on sway size and frequency of a single inverted pendulum 

(model and parameters as in Peterka 2000). Proportional gain was varied between 100 and 

300% of pendulum stiffness (mass�g�height). We observed that sway size decreased 

(Fig. S7A), and sway frequency increased (Fig. S7B) with percentage stiffness. The latter 

result is not consistent with experimental observations (Fig. 4). Thus classical feedback 

control cannot explain the properties of pendulum balancing. 

5. How to replicate the results? 

The principle of a simulation is the following (Fig. S8). A simulation time T is chosen and 

discretized with timestep � (tk = k�; k = 0, ..., T/�-1). The initial state is x0 at t0. The desired 

final state is xf. At each time tk, the following steps are performed: 

1. Calculate the optimal trajectory for boundary conditions (Fig. S8A): x^(tk) at tk (red circle), 

and xf at tk+PT (red square). The result is a control signal u([tk;tk+PT]) (green curve; 

Fig. S8B). Note that u is the ideal control signal to reach the desired state, and is not affected 

by noise; 

2. Integrate simultaneously 
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- the dynamics of the object (Eq. A1) with object noise, initial condition x(tk) (black circle), 

and control signal u([tk;tk+�]) (Fig. S8C). The result is the actual trajectory (plain black line) 

of the controlled object between tk and tk+1 = tk+�, which defines the new initial condition 

x(tk+1). Note that u([tk+�;tk+PT]) is not used (dashed green curve; Fig. S8B), but it is 

necessary to calculate it to guarantee that u([tk;tk+�]) is in fact optimal (Bellman principle of 

optimality); 

- the state estimate equation (Eq. A7) with observation noise, initial condition x^(tk) (red 

circle), and control signal u([tk;tk+�]) (Fig. S8C). The result is the estimated trajectory (plain 

red line) of the controlled object between tk and tk+1 = tk+�, which defines the new initial 

condition x^(tk+1). 

 Step 1 is the central difficulty of the simulation, i.e. a nonlinear optimization problem. The 

formal description of the problem is: find a control vector u(t) and a trajectory x(t) over 

[tk;tk+PT] such that x(t) is a solution of 

 dx/dt  = OB J(x( t) ,  u( t)), (Eq. S1) 

satisfying the boundary conditions x(tk) = x^(tk), x(tk+PT) = xf, and u(t) minimizes the 

quantity 

 J( tk)  = �[ tk ;tk+PT] ��u(w)��2  dw.  (Eq. S2)  

For simplicity of notation, we rewrite the problem on the interval [t0;tf] for boundary 

conditions xinit and xfinal (we used these notations to avoid confusion). To solve this problem, 

we need to transform it into the canonical form 

 minX f(X) with constraint c(X) = 0, (Eq. S3) 

which is proper for numerical resolution (Wächter and Biegler 2006). 

 The following steps are necessary: 

1. Discretize the time interval [t0; tf] into N+1 points (t0, t1, ..., tN = tf); 
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2. If n is the size of x and m the size of u, consider the vector 

 X = (x1
0, ..., xn

0, u1
0, ..., um

0, x1
1, ..., xn

1, u1
1, ..., um

1, ..., x1
N, ..., xn

N, u1
N, ..., um

N), 

where xi
k and ui

k correspond to states and controls at time tk; 

3. The constraint of the dynamics (Eq. S1) is written as 

 xi
k+1 - xi

k - (tk+1-tk)(OBJ(xi
k, ui

k) + OBJ(xi
k+1, ui

k+1))/2 = 0, (i=1,...,n; k=0,...,N-1) 

and the boundary constraints are written  

 xi
0 - xi

init = 0 (i=1,...,n) 

 xi
N - xi

final = 0 (i=1,...,n) 

This set of equations defines a function c(X) = 0; 

4. Define the function 

 f(X) = �i=1,...,n �k=0,...,N (ui
k)2, 

corresponding to the criterion to minimize (Eq. S2). 

 With these definitions, we obtain a problem as defined by Eq. S3, which can be solved 

using the Ipopt solver (https://projects.coin-or.org/Ipopt; Wächter and Biegler 2006). 

 Step 2 requires the integration of a system of ordinary differential equations: simply use a 

differential equation integrator with adaptive stepsize control (e.g. odeint in Press et al. 

2002). 
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Figure captions 

Figure S1. 1/f characteristic of noise simulated by low-pass filtering of white noise with time 

constant �noise. Power spectral density was calculated for 500-s duration signal (time step 0.05 

s), and fitted with 1/f � (�: scaling factor) The range of �noise was chosen to encompass pink 

(� = 1), and Brownian (� = 2) noise. 

 

Figure S2. Parametric study of OBJ1. Influence of parameters on sway (black) and bias (blue) 

duration. Horizontal dashed lines: sway (black) and bias (blue) duration from Loram et al. 

(2005b), and Lakie and Loram (2006). Vertical dashed line: reference value of parameters 

(PT = 0.6 s; �noise = 25 s; 	SINs = 10-2; wd�/dt = 0.06; 	SDNm = 10-4; kM = 45 N/mm; kT = 200 

N/mm). A. PT = [0.5-0.85] s. B. �noise = [0.1-35] s. C. 	SINs = [0.4-1.9]�10-2. D. wd�/dt = [0.01-

0.21]. E. 	SDNm = [0.01-1] �10-3. F. kM = [27.7-125] N/mm. 
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Figure S3. Parametric study of OBJ1. Influence of parameters on sway (black) and bias (blue) 

size. Same as S2.  

 

Figure S4. Parametric study of OBJ2. Parameter ranges (reference value in parentheses) were: 

PT = [0.35-0.55] s (0.5); �noise = [0.5-30] s (25); 	SINs = [0.5-4]�10-3 (2�10-3); w�P = [10-30] 

(20); wd�H/dt = [0.1-2] (1); wd�P/dt = [1-3] (2); 	SDNm = [0.1-5] �10-3 (10-3); hH = [0.25-1] m 

(0.85); IH = [5-45] kg�m2 (25). Same format as Fig. 5. Experimental data are in red for better 

legibility. 

 

Figure S5. Parametric study of OBJ1 in the presence of white noise. Influence of parameters on 

sway (black) and bias (blue) duration. Horizontal dashed lines: sway (black) and bias (blue) 

duration from Loram et al. (2005b), and Lakie and Loram (2006). Vertical dashed line: 

reference value of parameters (PT = 0.6 s; �noise = 0 s; 	SINs = 10-1; wd�/dt = 0.06; 	SDNm = 10-4; 

kM = 45 N/mm; kT = 200 N/mm). A. PT = [0.4-1.1] s. B. kT = [25.1-284] N/mm. 

 

Figure S6. Simulation of pendulum balancing with a spring (OBJ2) when all sensory sources 

are corrupted by white noise. Same format as Fig. 5. Parameters were: PT = 0.7 s; �noise = 0 s; 

	SINs = 8�10-3; w�P = 20; wd�H/dt = 0.1 wd�P/dt = 2; 	SDNm = 10-3; IH = 25 kg�m2; hH = 0.85 m. 

 

Figure S7. Study of a PID controller. A. Sway size as a function of percentage stiffness. 

B. Sway frequency as a function of percentage stiffness. Frequency was defined 1/(2�sway 

duration), where sway duration is the mean duration of unidirectional displacements of the 

pendulum between two extrema. C. Mean relationship between position and torque at positive 

peak velocities. Simulation duration was 1000 s with a 0.025-s time step. Parameters were: 

�noise = 30 s; 	noise = 75. 
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Figure S8. A. Illustration for step 1 of the numerical method. A solution has already been 

calculated for [0; tk] (actual state x: dashed black curve; estimated state x^: dashed red curve). 

A trajectory is planned on [tk;tk+PT] (plain red curve) starting from the estimated state at tk 

(red circle) to target state at time tk+PT (red square). B. Step 1 produces a control signal u 

over [tk;tk+PT] (green curve). Only the portion in [tk;tk+�] (plain green curve) is necessary for 

step 2. C. Illustration of step 2 of the numerical method. The trajectory of actual (plain black 

curve) and estimated (plain red curve) states is obtained on [tk;tk+�] from the control signal 

u([tk;tk+�]). 
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