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Abstract

For the purpose of motor coordination, the nervous system faces a complex control
problem, involving redundant degrees of freedom, nonlinear dynamics of limbs and
actuators, noise, and perturbations. Models and architectures have been proposed to
describe motor coordination in terms of computational processes, and identify possible
simplifying strategies that would alleviate the workload of the nervous system. Here, we
review several strategies ranging from biomechanical to function levels. We conclude
that none of the proposed strategies actually tackle the overall problem of motor
coordination. Then we present a principled approach that provides an overarching

account to motor control.

Introduction

Motor control is a fantastic challenge for the central nervous system. In fact, efficient
motor coordination theoretically requires the mastering of the laws of Newtonian
mechanics, and it is well known, from any textbook, that the equations of motion for
systems with many degrees of freedom (DOFs), as it is the case for the human body, are
nonlinear and complex (Bernstein 1967). Furthermore, ongoing actions can be
unexpectedly disrupted by deterministic (e.g. obstacles) or stochastic (e.g. noise)
perturbations. Yet, we know that humans are capable of highly skillful motor behaviors
(e.g. dancing, riding a bicycle, ...). In the view that the brain should face unconquerable
difficulties and incredible computational burden to faithfully represent the laws of
movement, it is tempting to suggest that some «simplifying» strategies have been
discovered, e.g. through phylogenetic processes, to alleviate the «cost» of motor control

(Lee 1984; Macpherson 1991; Mussa-Ivaldi and Bizzi 2000; Latash et al. 2007). We



have identified at least four (more or less formalized) approaches to motor control that
concur with the idea of simplification. Following a thorough analysis and discussion,
we conclude that the proposed strategies do not actually tackle the overall problem of
motor coordination. Then we present a principled approach that provides an overarching
account to motor control.

The scope of this review is restricted to the case of discrete movements (as defined in
Hogan and Sternad 2007). We do consider, following recent theoretical and
experimental works (e.g. Schaal et al. 2004, 2007; Huys et al. 2008), that discrete and
rhythmic movements are subserved by distinct control mechanisms. Thus conclusions

drawn for one type of movement are likely to be irrelevant or even wrong for the other

type.

Motor control: What needs to be solved

We start with a brief description of some well-known problems in the framework of

motor control.

The Bernstein’s problem

Despite multiple levels of redundancy, noisy sensors and actuators, and the complexity
of biomechanical elements to be controlled, the nervous system elaborates well-
coordinated movements with disconcerting ease (Bernstein 1967). In fact, Bernstein
(1967) observed that a motor goal can be successfully reached although each attempt to
reach this goal has unique, nonrepetitive characteristics. To succeed in this daunting
control task, powerful mechanisms should be at work in brain circuits. Their properties
should encompass the capacity: 1.to reach a goal with little error and small energy

expenditure, i.e. to choose an appropriate set of motor commands among an infinite



number of solutions (degrees-of-freedom problem); 2. to face deterministic (e.g. change
in goal, force applied on the moving limb) and stochastic (e.g. noise in motor
commands) perturbations (variability problem). The Bernstein’s problem which
encompasses both the degrees-of-freedom and variability problems, is illustrated in
Fig. 1 for a reaching movement. In this example, the moving arm has three degrees of
freedom (Fig. 1A; shoulder, elbow, wrist), and moves in a two-dimensional space to
reach a target (Fig. 1B). Thus there exists an infinite number of articular displacements
which are appropriate to capture the target (Fig. 1C). In the presence of noise, the

reaching movements are successful, but have different characteristics (Fig. 1D).

Posture/movement

The apparent easiness of motor control hides the paradoxical problem of interference
between posture and movement (Ostry and Feldman 2003). The central issue is why
processes which are responsible for postural control do not appear to overtly interfere
with movement control. Consider the following example: a mass which can move along
a line and which is attached to two muscle-like actuators (Fig. 2A). Each actuator is
represented by a muscle unit (Zajac 1989): a force generator and a parallel elastic
element. The purpose is to capture two main features of muscular functioning: 1. The
muscle generates force in response to a stimulation; 2. The muscle generates a restoring
force when lengthened. Thus a more detailed model is not necessary here. The mass is
initially in equilibrium due to the equal and opposite actions of the actuators’ forces.
The goal is to displace the mass to a new position (e.g. to the right), and maintain it in
equilibrium at this position.

We observe that activation of the rightward muscle displaces the mass to the right,

but that the final position requires maintained activation of this muscle to compensate



for the leftward restoring force induced by the displacement (Fig. 2B). In this case,
posture interferes with displacement, and initial and final postures are not equivalent.
This example shows that specification of a displacement by a force is not appropriate to
manage the conflict between postural maintenance and initiation/termination of
movement (Ostry and Feldman 2003). An alternative approach is to create a force
through a change in the origin of the muscles (Fig. 2C). In this case, one and the same
mechanism is used for posture and movement, and the initial and final postures are of
the same nature.

These two examples raise the fundamental issue of the integration between posture

and movement that should be addressed by any model of motor control.

Simplifications

We describe strategies at different levels in the brain/body system that could provide

simplified solutions to the problem of motor control.

At the biomechanical and muscular level

Motor control arises from the interplay between processes at the neural and
musculoskeletal levels. Although it is generally believed that the neural level has a
dominant role in the control of movements, there is evidence that the mechanics of
moving limbs in interaction with the environment can also contribute to control (Chiel
and Beer 1997; Nishikawa et al. 2007). Raibert and Hodgins (1993) defended the view
that «the mechanical system has a mind on its own» and that «the nervous system and
the mechanical system should be designed to work together, sharing responsibility for
the behaviour that emerges» (p. 350). For instance, Kubow and Full (1999) showed in a

model that running in the cockroach can be generated by a feedforward controller with a



self-stabilization against perturbations through mechanical feedback that alters leg
moment arms. In this sense, mechanics can act to simplify the control task. The idea of
«intelligent mechanics» has been developed mainly in the study of invertebrates, but
related ideas can be found in the study of human movements (van Ingen Schenau 1989).
Morphological computation can be performed by the tendinous network of human hand
(Valero-Cuevas et al. 2007), and the mechanics of the ocular plant (Demer 2006). In the
latter case, mobile soft-tissue sheats (pulleys) in the orbit influence the pulling direction
of extraocular muscle. This organization could provide a mechanical basis for simplified
oculomotor control by constraining eye movements to follow Listing’s law (Quaia and
Optican 1998).

It is also well known that muscles can play a self-stabilizing role during movement
due to their force-length and force-velocity properties (Brown and Loeb 2000; Jindrich
and Full 2002; Richardson et al. 2005). For instance, an immediate restoring response
can be elicited following a perturbation that stretches a muscle. Intrinsic muscular
properties contribute to compensation for perturbation in human (Rothwell et al. 1982).

Although the premise that the neural and mechanical levels share the responsibility
for emerging motor behaviors, is surely correct and makes sense for reactive control, it
remains unclear how proper coordination and predictive motor control can be obtained

with «two drivers in the car».

At the neuromuscular level

Synergies
The concept of synergy is a recurring theme in the framework of motor control

(Bernstein 1967; Lee 1984; Macpherson 1991; Tresch and Jarc 2009; CROSSREF



Ting and Chvatal, Latash). Historically, a synergy has been broadly defined as a set of
anatomical or functional elements acting together. Such a «lumping» was thought to
simplify the coordination task of the CNS in the face of multiple levels of redundancy
(motor units, muscles, degrees of freedom, ...). Macpherson (1991) addressed the issue
of muscular synergies, and concluded that, if they exist, these synergies are not hard-
wired, but highly flexible, versatile, and task-dependent (see also Soechting and
Lacquaniti 1989; Maier and Hepp-Reymond 1995; Mercer and Sahrmann 1999). In her
view, a description of motor behavior in terms of muscular synergies is a way to say
that there exists an underlying efficient, but inaccessible process of coordination.

In recent years, the concept has been redefined in more functional terms, but in at
least three qualitatively different ways. One definition is derived from microstimulation
experiments in the spinal cord which have identified a motor map of convergent force
fields, i.e. neural synergies that generate movements toward an equilibrium position
(Bizzi et al. 2000; Mussa-Ivaldi and Bizzi 2000). These spinal modules that produce
specific pattern of muscle activation, would form a set of «motor primitives», «building
blocks», «basis functions» which could be combined to construct complex motor
behaviors (Mussa-Ivaldi and Bizzi 2000). The feasibility of this idea has been assessed
in a computational model (Mussa-Ivaldi 1997).

The second definition can be considered as an extension of the first one. It is based
on the hypothesis that a small set of time-varying patterns is sufficient to generate,
through appropriate scaling and time-shifting, the entire set of muscle patterns across a
range of motor behaviors (d’Avella et al. 2003). This view has been widely used to
describe dimensionality reduction in the motor system for different species (frog, cat,

monkey, human, ...), tasks (posture, locomotion, grasping, ...), and conditions



(perturbations, motor disorders, ...) (Krouchev et al. 2006; Klein Breteler et al. 2007;
Torres-Oviedo and Ting 2007; Overduin et al. 2008). In these cases, as the natural
behavior of freely moving animals was considered, it was not possible to directly
ascertain the actual biomechanical effects of synergies. Yet, in some studies, the muscle
synergies were shown to be correlated to the control of task-related variables (e.g.
endpoint kinematics or kinetics, displacement of the center of pressure; (Ivanenko et al.
2003; Krishnamoorthy et al. 2003; Ting and Macpherson 2005; Torres-Oviedo et al.
2006). Furthermore, a modular organization of movement control at the task level is
consistent with observation of neural population recordings (Georgopoulos et al. 1993)
and microstimulation experiments (Graziano et al. 2002; Lemay and Grill 2004). A
central premise of this approach is to equate a synergy to an open-loop process that
unfolds independent of feedback signals (i.e. a motor program; d’Avella et al. 2003).
This hypothesis on the nature of synergies has been challenged by Kargo and Giszter
(2008). They showed that distortion of sensory feedback through muscle vibration
modified the timing of burst signals that control wiping movements in the frog. More
generally, control casted in termed of motor programs fails to reflect the flexible nature
of motor behaviors (see below; Desmurget and Grafton 2000; Todorov and Jordan
2002).

The third definition is based on the Uncontrolled Manifold (UCM) approach, i.e. a
technical procedure that identifies stable performance variables from trial-to-trial
variability (Schoner 1995). This method makes a partition of the variance of a set
measured variables (e.g. joint angles of a redundant limb) into two components: a
component that modifies the value of a performance variable (e.g. the endpoint position

of the limb) and one (the uncontrolled manifold) that does not affect it. The structure of



the variability revealed by the UCM define synergies characterized by stability against
perturbations and flexibility to solve concurrent tasks (Latash et al. 2007; CROSSREF
Latash).

Overall, the identification of synergies is a meaningful step toward understanding
which performance variables are controlled by the CNS, and how the CNS translates
task goals into appropriate spatio-temporal patterns of muscle activation. Yet it remains
that synergies are obtained as the outcome of a data processing/statistical analysis. The
point raised by Macpherson (1991) of the actual coordination process that produces
synergies remains an open issue: what computational mechanism could solve the
problem of motor control by a reduction of dimensionality compatible with the
characteristics of synergies? One mechanism could be the minimum intervention
principle, i.e. the fact that variability in task-irrelevant directions remains uncorrected
(Todorov and Jordan 2002; Valero-Cuevas et al. 2009; see below).

It is interesting that even some of the most ardent supporters of the notion of synergy

recognize the difficulties and ambiguities raised by this notion (Tresch and Jarc 2009).

Elimination

It has been proposed that a strategy to solve a redundant task is the freezing of
supernumerary DOFs (Bernstein 1967; Newell 1991; Vereijken et al. 1992). This
strategy would entail a radical simplification by drastically restricting the space of
possible mechanical solutions. Yet, as mechanical coupling induce interaction forces
between segments of a moving limb, freezing a DOF necessarily involves an active
control. Gribble and Ostry (1999) showed that a pure forearm movement evokes EMG
activity in shoulder muscles that stabilizes the upper arm and is proportional to elbow

velocity.



A related strategy has been observed in the control of eye movements. According to
Donders’ law, possible gaze positions in 3D space are restricted to a plane (Wong
2004), i.e. eye torsion is automatically defined by the choice of horizontal and vertical
displacements. We can make two remarks. First, Donders’ law does not apply in general
to arm movements (Gielen et al. 1997). Second, the mechanical origin of this law is
debated (Angelaki and Hess 2004; Demer 2006; Tweed 2007). For instance, frequent

violations of Donders’ law are observed during the vestibulo-ocular reflex and sleep.

At the control level

The control level encompasses processes that convert task goals into muscle activations.

Equilibrium point theory

The equilibrium point theory (EPT) proposes that movement results from imbalance
between the spring forces generated by a shift of the origin of the springs (Fig. 2C)
(Feldman and Levin 1995). In this framework, movement is a series of continuous
transitions between postures along an «equilibrium trajectory» defined by time-varying
changes in the origin of the muscles. Postural maintenance is a natural product of the
control scheme. A central tenet of the theory is that realistic movements can be
generated without knowledge on the dynamics of the object to be controlled, i.e. the
equilibrium trajectory is derived from kinematic characteristics of the planned
movement. The validity of this tenet is highly debated as the arguments for or against
the theory are based on the nature of muscle models and level of stiffness considered
(Gomi and Kawato 1996; Gribble et al. 1998; Kistemaker et al. 2006, 2007).
Paradoxically, the debate on the EPT has focused on the problem of movement

generation while its main weakness is probably on the postural side of the problem. In



fact, according to the EPT, posture is a passive stiffness-based process, which raises at
least two remarks. We first note that the geometry of muscular insertion can threaten
postural stability (Shadmehr and Arbib 1992; Dornay et al. 1993). Second, the issue of
the magnitude of stiffness is crucial, i.e. is stiffness sufficient to oppose the
destabilizing effect of gravity (Winter et al. 1998; Morasso and Schieppati 1999)?
Although agreement is still lacking on this point, converging evidence from recent
studies on postural control indicates that ankle stiffness is too low for passive postural
maintenance (Loram and Lakie 2002; Morasso and Sanguineti 2002; Casadio et al.
2005; van Soest and Rozendaal 2008).

We can also ask whether EPT really entails a simplification of motor control, since
compensation for loads applied during arm movement requires information about the
loads and arm dynamics (Gribble and Ostry 2000). In the same way, it is unclear how
anticipation of the effects of interjoint coupling can occur without knowledge of limb

inertia (Shapiro et al. 1995; Gribble and Ostry 1999).

Dynamical systems theory

The dynamical system approach to motor control attributes emergent behaviors to
regularities of nonlinear dynamical systems (Schoner and Kelso 1988). In this
framework, spatiotemporal patterns can emerge spontaneously from interactions
between coupled subsystems. If applicable, this approach entails a clear-cut
simplification in control as computation is merely replaced by a natural evolution in
space and time. This could be the case for rhythmic movement patterns which are
observed in a wide variety of coordinated behaviors (e.g. finger tapping, locomotion,
...). Application to discrete movements is more controversial as it is widely held that

discrete and rhythmic movements are subserved by distinct control mechanisms (Schaal



et al. 2004, 2007; Huys et al. 2008). Schoner (1990) proposed a model for discrete
movement generation in which movement kinematics emerged from the alternation of a
fixed-point regime and a limit-cycle regime in the same dynamical system. The model
was able to produce the timing properties of discrete movements of a mass point in a
single dimension (spatial coordination was not described). This model was extended to
a nonlinear redundant biomechanical system by Martin (2006), yet with a glaring loss in
the expected simplification. We note that an important limitation of the dynamical
system approach to discrete movements is to define posture as a fixed point attractor,
i.e. posture is an asymptotically stable behavior, unlike what has been observed

experimentally (Kiemel et al. 2002; Bottaro et al. 2005).

Muscular strategies

Discrete movements are characterized by typical and reproducible electromyographic
(EMG) patterns. For instance, fast arm movements are accompanied by a triphasic
agonist/antagonist EMG (Hallett et al. 1975). Analysis of the relationship between EMG
characteristics (intensity, timing) and movement kinematics (amplitude, duration,
velocity) and dynamics (load) has lead to propose descriptive rules for EMG, i.e. how to
build the proper EMG given movement characteristics [speed control hypothesis
(Freund and Biidingen 1978), pulse-step control (Ghez 1979), impulse timing theory
(Wallace 1981), dual strategy (Gottlieb et al. 1989), ...]. We will not enter into the
details of these strategies, but simply note that they only apply to single-joint
movements. Extension to multijoint movements would require complex rules to deal
with interaction forces, and directional anisotropy of inertia and velocity-dependent

forces. A simple scaling rule is not sufficient in the case of two-joint arm movements as



the fine details of motor coordination and timing can hardly be embedded in a rule

(Buneo et al.1995).

At the functional level

Separation of planning/execution and kinematics/dynamics

The observed invariance of trajectories and velocity profiles has led to the proposal that
movements are represented at a geometric (Torres and Zipser 2002; Biess et al. 2007) or
a kinematic (Flash and Hogan 1985) level. The planned spatiotemporal path would then
serve as a reference input for a trajectory tracking system (Flash 1987; Flanagan et al.
1993). In the framework of a strict separation between planning and execution, a
planned movement is executed irrespective of possible changes in task requirements
(e.g. unexpected target displacement). A strategy for movement correction is a simple
linear superposition of the trajectories planned for the initial target position and for the
perturbed position (Flash and Henis 1991). A notable aspect of this model is that no
information about actual hand position is necessary to generate online corrections. This
greatly simplifies the problem of motor control by suppressing the need for forward
modeling. Kinematic planning can also considered as an online process that makes no
distinction between planning and execution (Torres and Zipser 2002). The main limiting
factor of these approaches is the necessity for a trajectory tracking system that should
faithfully translates kinematics into dynamics. This «motor implementation stage»
(Torres and Zipser 2002) is frequently associated to the equilibrium point theory with its

known limitations (see above).



Separation of posture and movement

Various experimental data point to a necessary dissociation between posture and
movement control (Frank and Earl 1990; Massion 1992). The timing of anticipatory
postural adjustments can vary independently from the onset of focal movement (Brown
and Frank 1987; Schepens and Drew 2003). The timing also varies with the importance
of the destabilizing effect of the focal movement on balance (Zattara and Bouisset
1986). These results suggest that the postural and movement components may be
controlled and planned separately. A possible scenario could involve a canonical,
predefined postural synergy that would guarantee the maintenance of upright stance
during performance of the focal movement (Nashner and McCollum 1985; Frank and
Earl 1990).

It should be noted that authors arguing for specialized posture and movement
processes, basically argue against a single process, and fail to propose a clear
computational scheme that would illustrate the duality of posture and movement. In
particular, it is unclear how proper coordination can be guaranteed in a separation

scheme (Latash et al. 1995).

Is it possible to simplify?

If we try to find what is common to the preceding proposals, we see that simplification
is frequently discussed in relation to simplified motor control problems. For instance,
discrete hard-wired synergies have been described for postural control in the sagittal
plane (Rushmer et al. 1983; Nashner and McCollum 1985), but such a description is not
valid for the general case of postural sway in the horizontal plane (Macpherson 1988;
Moore et al. 1988). The EPT has addressed the control of single- (StOnge et al. 1997;

Gribble et al. 1998; Kistemaker et al. 2006) and two-joint (Flash 1987; Flanagan et al.



1993) arms, but not kinematically redundant systems (although it has been claimed to
be feasible; Balasubramaniam and Feldman 2004). These remarks lead the following
conclusion: if simplification is a solution to motor control, it remains to be proven in a

case that encompasses the main and difficult issues of motor control.

Control with internal models

Although simplification should remain an objective, it should also be in keeping with a
general solution to motor control. A general solution should not be a mere description of
all the complex problems that the CNS faces to generate motor actions and a catalogue
of mechanisms that could solve these problems, but a principled approach that captures
the spirit of motor coordination and provides computational processes that create it. The
equilibrium point theory and the dynamical systems theory could be candidate
solutions, but they fail to be comprehensive enough (see above).

In fact, from a design perspective, it would seem necessary that motor control
processes should incorporate detailed knowledge on the functioning of the object to be
controlled (CROSSREF Imamizu, Miall). This view has lead to the notion of internal
models, i.e. structures that define the relationship between commands and outcomes
(forward models), or desired outcomes and commands (inverse models). Two kinds of

architecture have been proposed that exploit internal models.

Inverse dynamics and impedance control

This architecture involves: 1. a feedforward controller that translates a desired
trajectory into appropriate control signals; 2. a feedback controller that can correct
deviations between the actual and the desired trajectory (Kawato 1999; Fig. 3). The

feedforward controller is an inverse model of the dynamics of the object to be controlled



which guarantees an efficient guidance of the object toward its goal. The feedback
controller exploits the viscoelastic properties of the neuromuscular system to
compensate for unexpected perturbations exerted on the controlled object (Shadmehr
and Mussa-Ivaldi 1994; Franklin et al. 2003; Berniker and Kording 2008).

We can make two remarks on this architecture. First, it is unclear how one and the
same neuromuscular unit can produce the appropriate combination of feedforward and
feedback commands. On the one hand, the feedforward command is a direct
specification of the force (or torque) to be produced by the neuromuscular system. On
the other hand, the feedback command, which is a visco-elastic term that depends on
actual and desired state of the controlled object, must be produced by force-length and
force-velocity mechanisms at the neuromuscular level, independently of and without
interference with the feedforward command. Thus control requires a combination of
force- and position-based commands (Ostry and Feldman 2003) that has never been
precisely described. Second, the notion of desired trajectory, which is central to the
robustness of this approach, has been strongly criticized as it fails to account for the
flexibility of motor behavior (Bernstein 1967; Sporns and Edelman 1993; Todorov and

Jordan 2002).

Control and estimation

This architecture involves: 1. a controller that elaborates appropriate control signals to
reach a desired goal for a given state of the system; 2. a state estimator that constructs
an estimated state of the system based on commands and sensory feedback (Fig. 4).

A rationale for a control/estimation architecture in the framework of motor control
has been developed recently by (Todorov and Jordan 2002). Central to their analysis is

the observation that, for reaching a behavioral goal, the CNS is directly pursuing it



rather than trying to reproduce a predetermined pattern that would fulfill it. This fact
was already noticed by Bernstein (1967), and formalized by Abbs et al. (1984):
«Program is more likely the representation of the dynamic processes whereby the
appropriate sensorimotor contingencies are set up to ensure cooperative complementary
contribution of the multiple actions to a common, predetermined goal».

To capture this notion, Todorov and Jordan (2002) proposed a computational
mechanism (stochastic optimal feedback control, SOFC; see also Bryson and Ho 1975;
Stengel 1986; Todorov 2004, 2005) that precisely accounts for the goal-directed nature
of motor actions. The recipe has three components. First, it is based on feedback
control. This component is a ubiquitous feature in the field of motor control (Houk and
Rymer 1981), but is generally used in the sense defined in classical control theory (e.g.
PID control), with its well-known limitations (e.g. necessity of high gains, oscillatory
behavior for long feedback delays). In the framework of SOFC, the feedback control is
defined by time-varying gains elaborated from a full knowledge of the properties of the
object to be controlled, and does not suffer the same limitations as classical feedback.
The second component is an optimality principle, which is also frequently encountered
in computational motor control to solve redundancy problems (review in Todorov
2004). Interestingly, optimality not only solves redundancy, but also implements a
«minimum intervention principle»: the controller does not compensate for a deviation
that does not interfere with the success of the task not to incur an unjustifiable cost. The
third component is stochastic control, i.e. the capacity to control a system in the
presence of uncertainty (e.g. noise).

The control/estimation architecture can account for kinematics, kinetics muscular

and neural characteristics of arm movements (Todorov and Jordan 2002; Guigon et al.



2007a,b), online movement corrections (Saunders and Knill 2004; Liu and Todorov
2007), structure of motor variability (Todorov and Jordan 2002; Guigon et al. 2008a,b),
formation of synergies (Todorov and Jordan 2002), and Fitts’ law and control of
precision (Guigon et al. 2008a).

There are two main limitations to the control/estimation architecture and the SOFC
approach as currently applied to motor control. First, it deals generally with movement,
and says little on the integration of posture and movement (Guigon et al. 2007b).
Second, it does not take into account low-level characteristics of the neuromuscular

system (reflex, stiffness).

Are there internal models in the brain?

Although the concept of internal models is a widely used theoretical construct in the
framework of motor control (Kawato 1999), its cogency has been questioned (CROSS-
REF Latash). Early on, Turvey et al. (1978) were concerned with the possibility to
perform movement coordination through a detailed central specification of muscular
operations. They raised the issue of the coordination of multiple degrees of freedom
(Bernstein’s problem), and the problem of context-conditioned variability, i.e. the fact
that muscles can have context-dependent mechanical actions. Incidentally they noted
that the presence of sensory feedback information can alleviate the issue of context-
conditioned variability, an observation that anticipated the necessary role of online
feedback control (Desmurget and Grafton 2000). More recently, Ostry and Feldman
(2003) discussed the failure of control based on internal models to properly address the
posture-movement problem (see Fig.2B). This issue is fundamental all the more

because it is generally ignored in the field of computational motor control (Hoff and



Arbib 1993; Wolpert and Ghahramani 2000; Todorov and Jordan 2002; Todorov 2004).

We will return to this point in the following.

Principles for motor control

On the basis of the preceding observations we describe several principles that provide a

unified basis for motor control.

Optimality

Optimality as an overarching principle for motor control is a well-substantiated idea
(review in Todorov 2004). From a theoretical point of view, it provides an efficient
solution to the Bernstein’s problem as it generates realistic movements in the face of
spatial, temporal, kinematic and muscular redundancy (Todorov and Jordan 2002;
Guigon et al. 2007b). The idea applies equally well to different motor tasks involving
the hand, the arm, the eye or the whole body (Harris and Wolpert 1998; Tweed 2007).
There is also empirical evidence that humans behave according to optimal laws
(Arechavaleta et al. 2008), or can learn to discover near optimal solutions to real-world
tasks (Inooka and Koitabashi 1990; Engelbrecht et al. 2003; Chhabra and Jacobs 2006;

Izawa et al. 2008; Sherback and D’ Andrea 2008).

Efficiency

Optimality entails the choice of a cost function, which indicates a quantity to minimize.
The nature of the cost function is a highly debated issue. Part of the confusion arises
from the fact that all the proposed cost functions (jerk, energy, torque change, ...) make
similar predictions on basic qualitative characteristics of movement, e.g. trajectories,

velocity profiles (Flash and Hogan 1985; Uno et al. 1989; Alexander 1997; Harris and



Wolpert 1998; Todorov and Jordan 2002; Guigon et al. 2007b). Yet, a thorough
quantitative analysis is in general lacking, and could provide more contrasted results.
For instance the minimum torque change model fails to produce the observed
quantitative characteristics of velocity profile (Engelbrecht and Fernandez 1997), and
the appropriate curvature of 2D movements (Soechting and Flanders 1998).

With the minimum variance model, Harris and Wolpert (1998) have drastically
changed the viewpoint on the cost functions. Their proposal is to use a behaviorally
relevant measure (variance) rather than an arbitrary and behaviorally meaningless
quantity (e.g. acceleration derivative) as a cost. This is a radical departure from the
previous optimal control models in the sense that characteristics of motor behavior
emerge from a general principle rather than from a level-specific (e.g. kinematic,
dynamic, muscular), effector-specific (e.g. arm, eye) or task-specific (e.g. posture,
locomotion, ...) criterion (see Todorov 2004, for a review). This analysis was further
refined by (Todorov and Jordan 2002), leading to an error/effort cost function, where
the effort is the size of central signals that eventually generate the movement. The
rationale for this choice is discussed in (Kawato 1996). In a series of studies, Guigon et
al. (2007a,b, 2008a,b) have used a cost function with a single effort term, error being
considered as a constraint to be fulfilled. The two types of cost function have been able
to explain a wide range of observations on motor control (Todorov and Jordan 2002;
Saunders and Knill 2004; Todorov and Li 2005; Li 2006; Guigon et al. 2007a,b; Liu and
Todorov 2007; Guigon et al. 2008a). Yet, the two approaches differ on what is
considered as a cost and what is considered as a constraint (Guigon et al. 2008b). This
point raises subtle and interesting issues if one is to identify the actual cost function that

governs motor behaviors (Liu and Todorov 2007; O’Sullivan et al. 2009). The mixed



error/effort function would predict that subjects can make a trade-off between error and
effort, e.g. sustain a larger error in order to minimize their effort. This issue could likely

be tested in an experiment (see e.g. Liu and Todorov 2007).

Feedback

Feedback is probably one of the oldest notion used for the formal description of motor
control. Yet there is some confusion on the nature and role of feedback. The nature of
feedback is clearly illustrated in the stretch reflex (e.g. Houk and Rymer 1981). Muscle
lengthening leads to increased afferent discharge through Ia and II fibers on the one
hand, and increased motoneuronal discharge and muscle force on the other hand. One
component of feedback has a sensory dimension, and can carry information on the state
of the muscle. This information is transmitted through ascending tracts to the cortex and
the cerebellum, and can contribute to central representations of posture and movement.
The other component has a motor dimension which can be exploited to compensate for
perturbations, but also to produce movements (Houk and Rymer 1981; Feldman and
Levin 1995).

On this basis, the possible role of feedback can be addressed. On the motor side,
feedback can contribute directly to movement production as in the equilibrium point
theory (Feldman and Levin 1995), or indirectly by correcting deviations from a desired
trajectory (Shadmehr and Mussa-Ivaldi 1994). This view is not backed up by
observations in deafferented patients showing that they move somewhat normally under
visual feedback (Ghez et al. 1990). Although the general motor behavior of deafferented
patients is strongly affected, the basic capacity to move appears to be preserved (Forget
and Lamarre 1987). On the sensory side, feedback provides information on the state of

the body, and is the basis for the widely acknowledged role of state estimation (Wolpert



et al.1995; Shadmehr and Krakauer 2008). The tight link between estimation and
control has lead to the idea that motor commands are continuously updated by internal
feedback loops (Desmurget and Grafton 2000), and to the notion of optimal feedback

control (Hoff and Arbib 1993; Todorov and Jordan 2002; Guigon et al. 2008b).

Effort

In motor control models, a movement is generally specified by its amplitude and
duration. Yet, although humans can performed timed actions, for instance rhythmic
movements, not all their actions are actually timed, e.g. ambulatory locomotion
movements, movements around postural states or reaching movements are not in
general specified to have a particular duration (Schoner 2002). Psychophysical studies
have shown that movement duration depends on movement parameters, €.g.
amplitude/duration scaling (Fitts 1954; Wadman et al. 1979; Gordon et al. 1994b),
load/duration scaling (Bock 1990; Hatzitaki and McKinley 2001), and systematic
direction/duration variations (Gordon et al. 1994b; Pellegrini and Flanders 1996).
Furthermore, subjects fail to adapt to time-dependent perturbations, e.g. force fields that
explicitly depend on time (Conditt and Mussa-Ivaldi 1999), and they do consider time-
dependent force fields as state-dependent force fields.

If duration is not specified for a given movement (defined its initial position and its
amplitude), it should arise from a computational process. The constant effort principle
proposes to calculate actual duration from a desired level of effort using the relationship
between amplitude, duration, and effort prescribed by the optimality principle (Guigon
et al. 2007b, 2008b), i.e. for a given amplitude and effort there exists a unique duration
such that the optimal movement for this amplitude and duration is associated with this

(minimum) effort. This principle provides a quantitative account of amplitude/duration



and load/duration scaling, and direction-dependent changes in movement duration
(Guigon et al. 2007b). A related idea is time minimization to match a given level of
terminal variability (Meyer et al. 1988; Harris and Wolpert 1998). However, this
solution predicts that scaling is associated with constant terminal variability.
Experimental observations show that variability can increase with movement amplitude
for series of movements obeying an amplitude/duration scaling law (Gordon et al.
1994a; van Beers et al. 2004). A competing proposal to explain direction-dependent
changes in movement duration is that the nervous system fails to compensate for the
inertial anisotropy of the arm (Gordon et al. 1994b; see Todorov 1998 for a model). Yet,
this view is not backed up by experimental observations (e.g. Flanagan and Lolley

2001).

Conclusion and perspectives

The idea that the nervous system could solve problems of motor control through
simplifications was thoroughly reviewed. No appropriate strategies was persuasively
and unambiguously identified that could actually address the complex issue of
movement coordination. Putting simplification aside, a set of principles was presented
based on the idea that the nervous system should possess detailed knowledge on the
functioning of the objects to be controlled. Although these principles appeared highly
successful for a computational description of motor control, it should not lead to forget
the good reasons that have driven the search for simplifications (Turvey et al. 1978;
Ostry and Feldman 2003). First, finding a solution to optimal control problems is a
highly demanding issue in computer science (Bryson 1999), and it is unclear how it

could be discovered and realized by a neural hardware. More generally the neural



substrate for the proposed principles remains elusive. Second, the problem of
posture/movement integration is only partially and unpersuasively addressed. In
particular, the lack of consideration for low-level characteristics of the neuromuscular
system (reflex, stiffness) is problematic, and prevents the study of perturbation-induced
changes in motor behavior. These limitations provide directions for future developments
in the framework of computational motor control.

Two perspectives are interesting. First, the principles were applied to the control of
the humanoid robot HRP2 (Tran et al. 2008). Interesting preliminary results were
obtained on the coordination of 7 and 9-DOF configurations involving the trunk and the
arm. On the one hand, the application of biologically-inspired principles to robotics can
offer an alternative to classical control techniques that are robust, but less flexible than
the solutions discovered by the nervous system. On the other hand, the study of robotic
systems could help validating the principles on more realistic kinematic chains (larger
number of DOF). Second, the principles could apply to understand the neuroanatomy of
motor control and associated motor disorders (e.g. Shadmehr and Krakauer 2008). For
instance, the concept of effort could play a central role in inferring the functions of basal
ganglia (Shadmehr and Krakauer 2008), and explaining behavioral disorders in

Parkinson’s disease (Mazzoni et al. 2007).
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Figure captions

Figure 1. Illustration of the Bernstein’s problem. A. Planar reaching movement with a
redundant arm (3 DOF). B. A successful movement reaches the target region (central
gray circle). C. Two successful movements with different final postures. D. Several
successful movements with different spatiotemporal characteristics. Inset: velocity

profiles. Reproduced from Guigon et al. (2008b), Fig. 1, used with permission.

Figure 2. Illustration of the posture/movement problem. A. A mass is at equilibrium
due to the equal and opposite forces of two muscles (gray horizontal arrows: actual
forces exerted on the mass; black vertical arrows: control forces). B. To displace the
mass, the equilibrium is modified by changing the control forces (more force to the
right). C. To displace the mass, the equilibrium is modified by changing the origin of

the muscles (displacement to the right).

Figure 3. Architecture for inverse dynamics and impedance control.

Figure 4. Architecture for control and estimation.
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