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Introduction

Traditional views of cortical function define the postero-anterior dimension of the cortex
as a substrate for the gradual transition from perceptual to motor processes, and then to
organizational functions. Simple behavioral tasks have been used to assess this
organization. A subject (rat, monkey, human) is asked to discriminate between or
recognize visual, auditory or somatosensory stimuli (sensory integration), to perform arm,
eye or body movements (motor performance), and more generally to produce a series of
actions in response to environmental stimuli (temporal organization of behavior).

Although much remains to be understood, the mechanisms and cortical networks
involved in sensory integration and motor performance have begun to be well
characterized (Maunsell and Newsome, 1987; Johnson, 1992). Experimental studies of
these functions also benefit from invaluable theoretical support, which defines the nature
of the problems that must be solved by the brain.

The temporal organization of behavior has been far more difficult to deal with.
Although convergent experimental evidence has demonstrated the critical role of the
prefrontal cortex (PFC) in the acquisition and expression of complex behaviors
(Goldman-Rakic, 1987; Fuster, 1988), the underlying information processing principles
have not been identified. They may be related to short-term memory, expectation of
forthcoming events, preparation for response (Fuster 1973; Niki and Watanabe 1976), and
higher-level behavioral processes (Watanabe 1981, 1986a,b; Joseph and Barone 1987;
Barone and Joseph 1989; Watanabe 1990, 1992). Theoretical studies have suggested that
the PFC is involved in “working memory” (Goldman-Rakic, 1987), in “mediation of
cross-temporal contingencies” (Fuster, 1988), in “planning and problem solving”
(Shallice, 1988). These definitions are attractive since they provide a formal, overall
description of prefrontal functions. However, they provide no information on local
mechanisms contributing to prefrontal functions.

These observations give rise to two main questions:

1. What is the specificity of information processing in the prefrontal cortex? The early
work of Hubel and Wiesel (1968) described the mechanisms involved in processing
sensory information (receptive field). Georgopoulos et al. (1982) recently provided
important insights into mechanisms of motor information processing (population code).
Although these mechanisms are far from being precisely understood, they can help to
understand experimental outcomes. However, no specific mechanisms have been
identified, which may be responsible for processing in prefrontal circuits.
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2. How are sensory-motor programs represented in a neuronal network? We are now
familiar with the ways visual objects may be stored in long-term memory (associative
memories; Kohonen, 1988; Rolls, 1990) and with the way direction of movement is coded
(Georgopoulos et al., 1986; Caminiti et al., 1991; Burnod et al., 1992). But what is the
neuronal representation of a temporal sequence of events?

3. Do similar mechanisms contribute to simple and complex cognitive functions? Since
the prefrontal cortex reaches its maximum phylogenetic development in humans, in
parallel with acquisition of the language, one can wonder whether development of the
prefrontal cortex corresponds to acquisition of new processing mechanisms or whether it
corresponds simply to greater processing and memorization capacities.

The goal of the present work is to address these issues through a series of
computational models.

Information-processing models of brain functions

When facing a complex system, a valuable approach is to attempt to approximate its
organization and/or its function by a model. In recent years, numerous information-
processing models have attempted to address issues on brain functions. The main
characteristic of these models is the great diversity of levels of representation, underlying
assumptions and expected outcomes.

A classical approach in brain modeling is to study the computational problems that
must be solved, independently of underlying biological constraints (Marr and Poggio
1977; Marr 1982). Emphasis is on representation of information, algorithms, symbolic
description. For example, Artificial Intelligence models assume that brain circuits
manipulate symbolic information according to production rules (Pylyshyn 1984). These
models are well suited for representing abstract and logical aspects of behavior but far less
efficient for perceptual and motor problems. Computational vision is another typical
example of this approach (Marr 1982; Feldman 1985; Poggio et al. 1985).

Churchland and Sejnowski (1988) have stressed the limitation of Marr’s approach for
understanding complex information processing systems (in particular brain systems).
Dissociation between hardware and software may be misleading since neurobiological
data provide essential constraints on computational theories (Churchland and Sejnowski
1988; Douglas and Martin 1991).

Connectionist models provide implementation of biological functions in terms of
synaptic interactions (McCulloch and Pitts 1943; Hebb 1949; Rosenblatt 1958) and are
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thus likely to resolve elegantly the software/hardware dissociation. Furthermore, they are
susceptible to learn through the modification of synaptic efficacy. This property has
greatly contributed to the popularity of these models. Recently, Rumelhart and McClelland
(1986) have described “ready-to-use” techniques to build connectionist models,
including a powerful algorithm to train neural networks (back-propagation of error;
Rumelhart et al. 1986 LeCun 1987). Subsequently, back-propagation-based models were
shown to capture biological (Zipser and Andersen 1988; Lehky and Sejnowski 1988;
Lockery et al. 1989; Pouget et al. 1993) as well as psychological (Hinton and Shallice
1991; Cohen and Servan-Schreiber 1992) features of information processing in the brain.

Constraints on models of brain functions

Great care has been taken to justify the validity of models based on the back-propagation
algorithm, and to assess their predictive value (Rumelhart and McClelland 1986).
However, Crick (1989) has stressed that these models can merely be considered as
demonstrations1 since they result from an optimization-based training process which is
not likely to be implemented in brain circuits. Going further along the critic, Reeke and
Edelman (1988) have argued that neurobiological foundations of a model are still not
sufficient to ensure the predictive value of the model and to avoid errors of interpretation.

To assess the actual relevance of a model, one should ask about assumptions
underlying the model and about explanations and predictions produced by the model
(Reeke and Sporns 1993). We can summarize the modeling requirements in 4 “quality
criteria”:

1. Assumptions concerning neuronal processing, adaptive properties, representation of
information and neural architecture must be consistent with experimental data.

2. Learning must occur through natural interactions, corresponding either to a
conditioning protocol or to a developmental stage.

3. Outcomes of the model must be consistent with experimental results available at the
level(s) of representation used in the model (neuronal activity, behavior).

4. The model must make testable predictions.

                                                
1Models demonstrate that it is not impossible to a find a neural network, which performs a given
function. However, they do not prove that brain circuits performing the same function have similar
structure or similar internal mechanisms.
2Models demonstrate that it is not impossible to a find a neural network, which performs a given
function. However, they do not prove that brain circuits performing the same function have similar
structure or similar internal mechanisms.
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Modeling cortical functions

Since the claim of many models addressing issues on brain functions would probably
impinge on the severe requirements for successful theories (Reeke and Sporns 1993), the
development of models should follow carefully selected principles. In this regard, an
objective of this work is to provide a modeling framework which allows the
quality criteria to be fulfilled. The modeling framework is based on the architectural
and processing characteristics of the cerebral cortex (Burnod 1988). Its key features are:
(i) a multicellular processing unit (cortical column) reflecting the modular nature of
cortical organization and function; (ii) a group of units (area) corresponding to the
parcellation of the cortical surface according to the regional variations of
cytoarchitectonics, connectivity, and integrative and registering properties of cortical
circuits; (iii) a network of areas corresponding to the architecture of intracortical pathways.

Within this framework, models for visual integration and motor performance have
been developed in the group NEUROSCIENCES & MODELISATION at Institut des
Neurosciences (Paris, France) under the direction of Yves Burnod. They correspond to
two types of transformation of retinal information, either toward an object-centered
reference frame: (1) model of perceptual grouping developed by Jean-Luc Anton and
Patrick Marchal (Anton 1992); (2) model of invariant pattern recognition developed by
Isabelle Otto (Otto et al. 1992), or toward an arm-centered reference frame: (3) model of
coordinates transformation for 3D arm reaching movements developed by Philippe
Grandguillaume and Yves Burnod (Burnod et al. 1992) in collaboration with Roberto
Caminiti (Roma, Italy); (4) model of acquisition of context/reinforcement motor behavior
developed in collaboration with Yves Burnod (Guigon and Burnod 1993).

Model of prefrontal functions

These models have allowed the neuronal processes involved in visual integration and
motor performance to be characterized. The goal of the present work is (1) to describe
the computational properties of a neural network involved in the acquisition and execution
of tasks, which use temporal delays for structuring behavioral reactions to environmental
stimuli (delayed tasks); (2) to characterize the neural representation of these tasks in
prefrontal circuits; (3) to provide a comparison between information processing principles
underlying visual integration, motor performance, and temporal organization of
behavior.
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A neural network model has been designed in close relation to the properties of the
prefrontal cortex and has been trained to execute a spatial delayed response task. This task
has been chosen for the following reasons: (i) It has been well documented in non-human
primates by a number of neurophysiological and neuropsychological studies; (ii) It
appears to strongly challenge prefrontal functions for both learning and execution of the
task (Jacobsen 1935); (iii) It involves integration of visual cues and production of
movements and thus provides a basis for the comparison of different information
processing mechanisms.

Methodology

The presentation of the models during the course of this document, follows the same
logical order. First, we give an overview of anatomical, physiological, and behavioral data
which are relevant for building the model. Then we present the model through the
description of its main components, following the principles of cortical modeling.
Evaluation of by computer simulations illustrates outcomes and limitations of the model.
Results are discussed in relation to biological data.

We have tried to keep the same (simple and classical) mathematical notations across all
models. Equations describing temporal evolution of variables (neuronal activity, synaptic
efficacies) are quantized time difference equation with terms ensuring convergence and
stability.

Plan of work

This document is organized in 3 PARTS (I, II and III) and 6 chapters (1 to 6). PART I
consists of two chapters (chapter 1: Neural Modeling Principles and chapter 2:
Framework for Modeling Cortical Functions).

Chapter 1 gives an overview of neural modeling principles derived from connectionist
models. A modeling framework based on principles of cortical organization and operation
is exposed in chapter 2. The goal of this chapter is to provide a formal description of
these principles for the use of modeling. In particular, mathematical equations
corresponding to computational properties of cortical circuits are given. A short summary
of models described in following chapters 3, 4, and 5 terminates this chapter, and
illustrates “cortical solutions” to important information processing problems.
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The following PART II (chapters 3, 4, and 5) provides detailed descriptions of models
concerning visual integration, motor performance, and temporal organization of
behavior. Chapter 3 (From Retinal to Object-centered Reference Frame) illustrates
transformations of retinal information for object recognition and chapter 4 (From Retinal
to Arm-centered Reference Frame) transformations of retinal information for arm
movement. Chapter 5 (Modeling Prefrontal Functions) begins by a review on prefrontal
functions and then presents a neural network model for the acquisition of the delayed
response task.

PART III contains the chapter 6 (Learning Rules and Biological Substrate). In this
chapter, we first present recent results on neuronal processing and synaptic plasticity.
Then we discuss the biological and computational properties of a number of synaptic
plasticity rules used in neural models. A tentative theory relating synaptic plasticity rules,
anatomical brain regions and learning behavior is presented, which is a synthesis of the
results of this work.

Collaborations

Studies by other related groups have influenced the present work: theoretical and applied
studies on cortical column-based networks by Frédéric Alexandre and Frédéric Guyot
(Alexandre 1990; Guyot 1990; Alexandre et al. 1991) at CRIN-INRIA (Nancy, France);
models of cerebellar functions by Michel Dufossé, Sandrine Allemand and François
Blanc at IMT (Marseille, France).

The model of prefrontal functions (chapter 5) has profited from several collaborations:

- with Bernadette Dorizzi at Institut National des Télécommunications (Evry, France): we
have worked out formal aspects of time in neural networks (Dorizzi et al. 1991).

- with Wolfram Schultz at Institut de Physiologie, University of Fribourg (Switzerland):
we have discussed the assumptions and the predictions of the model in relation to current
knowledge on frontal lobe functions (Guigon et al. 1993).

- with Xavier Mondon, June Hirsch and Francis Crépel at Laboratoire de Neurobiologie et
Neuropharmacologie du Développement (Orsay, France): we have discussed the
properties of channels and the form of plasticity found in the prefrontal cortex (Mondon
1991; Guigon et al. 1991).

- with Bruno Delord and Arno Klaassen at LIMSI (Orsay, France): we have begun the
simulation of analogue models of neurons in order to investigate the contribution of
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currents and modulators in the temporal integrative properties of prefrontal neurons
(Klaassen 1992; Burnod et al. 1993).
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Part I
Frameworks for

modeling
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CHAPTER 1

Neural Modeling Principles

Contents

Summary
1 Introduction
2 Basic aspects of neural modeling

Neural processing
Adaptive properties
Neural architecture
Representation of information

3 Discussion

Summary

This chapter gives an overview of neural modeling principles derived from connectionist and PDP models.
We describe the classical notions of neural processing, learning rules, architecture of neural networks, and
representation of information. We discuss outcomes and limitations of these principles.

1 INTRODUCTION

Information processing models of brain systems have a long historical tradition
(McCulloch and Pitts 1943; Hebb 1949). However, only recent developments within
cognitive science have provided a set of consistent modeling principles, which capture
biological features of information processing in the brain (connectionism, Feldman and
Ballard 1982; Parallel Distributed Processing models, Rumelhart and McClelland 1986).
These principles have been drawn from the main aspects of brain organization and
operations, and allow computer simulation models of transformations performed by
brain circuits to be built.

In these models, the basic processing unit is a neuron-like element which receives a set
of inputs from other units and adjusts its output in response to inputs. In relation to real
neurons, unit output can be seen as a firing frequency. Units can be grouped in subsets
(such as layers, maps) and connected according to some given rules (random connections,
full or partial connections between subsets, ...) to form a network. A network usually
contains input and output units, which define a processing pathway and provide a way to



11

put constraints on the network. The ability of such a network is given by the set of
modifiable connection weights3 between units, which shape unit activation. During a
training session where inputs and/or outputs of the network are constrained to particular
values, connection weights are modified according to a learning rule. Initially, the network
has a random behavior defined by random values of connection weights. The training
results in functional changes, which reflect the adaptation of the network to external
constraints. Such network models can help to explore the relation between local properties
of neurons and global performance of large-scale neural networks.

The goal of this chapter is to provide an overview of the basic aspects of neural
modeling. However, since good textbooks on neural modeling are now available (Hertz et
al. 1991), we focus on main concepts, which will be used in the following chapters.

2 BASIC ASPECTS OF NEURAL MODELING

Neural processing

Neural processing relies on a mathematical model of the neuron. Choosing a model of
neuron mainly depends on the intended goal. When one is concerned with the cooperative
behavior of an assembly of neuron-like elements, binary devices performing a simple
logical operation should provide a correct approximation of real neurons (McCulloch and
Pitts 1943; Rosenblatt 1958). Hopfield (1982, 1984) has shown that the emergent
properties of a large network of interconnected neurons are rather insensitive to the details
of the neuron model.

On the other hand, complex processors based on the functional role of membrane
currents, synaptic receptors, transmitters and modulators of real neurons can be designed
to investigate the behavior of small neuronal networks (Buonomano et al. 1990).

Although the two approaches have different goals, the former may benefit from the
latter. In fact the input/output function of a simple unit can be designed from the repertory
of possible transformations observed in real neurons (Sheperd and Koch 1989). For
instance, Koch et al. (1983) have shown that nonlinear interactions in a dendrite may result
in an analog AND-NOT operation. Accordingly, units performing products instead of
summation have been proposed as computing elements (Feldman and Ballard 1982;

                                                
3Different terms are equivalently used in neural modeling to describe the connection between two neurons:
synaptic efficacy, learning coefficient, learning weight, ...
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Williams 1986; Burnod 1988; Durbin and Rumelhart 1989). In the following, we describe
some classical computing elements.

The formal neuron. Since McCulloch and Pitts (1943), a popular neuron-like adaptive
element has been the formal neuron (Fig. 1.1). It has several weighted input pathways
{xi(wi)  1≤i≤n} and an output y. Activation is generally modeled by a thresholded-

convolution:

y ( t )  =  


1   i f   ∑

i =1

n
w i ( t ) x i ( t ) > θ

0   e l s e
 ( 1 . 1 )

where θ is a positive constant determining the threshold of the neuron and t a quantized
time. This rule reflects the fact that neurons display all-or-none responses (action
potentials) when they are depolarized above a threshold. Other models of neuron use a
graded output (for instance, between 0 and 1), which may represent the average spike rate
of the neuron. Formulation by first-order differential equations has also been proposed, to
allow continuous time description of neural dynamics (Amari 1980).

x 1

y

x n

x i

w1

wi

wn
Σ

Figure 1.1. The formal neuron has n input pathways (xi ) and an output pathway y. A
connection weight (wi ) is associated with each input pathway.

A more realistic model (stochastic neuron) approximates the stochastic behavior of a
neuron (Sejnowski 1986). The principle is to compute the weighted sum of the inputs as
in Equation 1.1, to convert the result to obtain a value p between 0 and 1 and to use p as
the probability of having an output equal to 1. It reflects the equivalence between firing
rate of neuron and its probability of firing.

Sigma-pi unit. Most neural models used formal neurons. Williams (1986) has proposed a
more general processing element, the sigma-pi unit (Fig. 1.2):
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y ( t )  =  f [ ∑
S j ∈P

w j ( t ) ∏
i ∈S j

x i ( t )  ] ( 1 . 2 )

where P is the power set of [1, .., n], n the degree, and f a non-decreasing function in [0,1].
The sigma-pi unit computes a sum of contributions from multiplicative clusters of input.
Mel (1991) has stressed the computational interest of such a unit to represent
multidimensional receptive fields or higher-order feature detectors.

y

w1

wi

wn
Σ

Πx 1

x n

x i Π

Π

Figure 1 .2 . The sigma-pi unit has n input pathways (xi ) and an output pathway y.
Processing is performed in two steps (product ∏ and weighted summation ∑).

Temporal processing. Neural processing has been mainly described in terms of spatial
integration. Another important dimension is defined by the temporal integrative properties
of neurons. It has been recently stressed that the dynamics of a real neuronal network may
depend not only on synaptic current flow, but also on intrinsic electroresponsive
properties of single neurons in the network (see review in Llinás 1988). These properties
are determined by the ionic currents present in the cell and by the sensitivity of these
currents to neurotransmitters. Interactions between currents and neurotransmitters may
generate complex temporal patterns of activity (Sheperd and Koch 1989), which may have
computational functions. These aspects have not been frequently used in models (Sutton
and Barto 1981; Lisberger and Sejnowski 1992).

Adaptive properties

Modifications of connection weights modulate neural processing and are thus responsible
for adaptation of neural networks. The rule governing changes in synaptic weights is
called a learning rule and can be formally described by the following equation

w i ( t + 1 )   =  w i ( t )   +  ρ i ( t )  
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where ρi  is the quantity defining the time and direction of change. This quantity ρi 
should depend on past and/or present values of {xj }, y, {wj }, and ρi . A number of rules

have been so far designed. Some provide activity-dependent changes in connection
weights [Hebbian rule (Hebb 1949), reinforcement rule (Widrow et al. 1973); for a review,
see Levine 1991]; others, such as the well known and widely used back propagation
algorithm (Rumelhart et al. 1986) or the delta rule (Widrow and Hoff 1960) are global
procedures, which minimize network error through gradient descent. A detailed
description of learning rules is given in chapter 6.

The functional properties of a neural network are defined both by adaptive properties of
its component processing units, and by a training set and a training protocol. The training
set contains examples, which will be presented to the network. The training protocol
defines the order of presentation and the number of repetitions.

A general way to train a network is to form a mapping from examples. In this method
(supervised learning), a “teacher” provides for each input the desired output (error-
correction method) or a reinforcement that characterizes whether the output generated was
correct or not (reinforcement method). On the other hand, unsupervised methods exploit
the statistical regularities of the raw input to form a more meaningful internal
representation (Kohonen 1982; Barlow 1989).

Neural architecture

Neural architectures are classically defined in terms of layers organized in a hierarchical
fashion (multilayered perceptrons; Rosenblatt 1958; Rumelhart and McClelland 1986).
These architectures are defined by an input and output layer, which interact with the
external world, and some hidden layers, which learn internal representations (Rumelhart et
al. 1986). Such architectures are particularly suitable and somewhat consistent with
anatomical data for the modeling of sensory systems. Several aspects of the visual system
have been addressed using such networks (Lehky and Sejnowski 1988; Zipser and
Andersen 1988). Hierarchically organized layers are also well-suited for models of motor
system, for example coordinate transformations (Massone and Bizzi 1989) or
computation of kinematic and dynamic transformations (Kawato et al. 1987).

Layer organization is implicitly related to hierarchical information processing. In most
models, there are no reverse or sideways connections. The flow of information is one way
and corresponds to a progressive integration and the creation of higher order
representations. Such an architecture reflects the general organization of sensory systems
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(De Yoe and Van Essen 1988). The limitation of hierarchical architectures is related to
advances in the description of anatomical pathways in the brain. For instance the visual
system has as many feedback projections as forward ones and is made of different
pathways laterally interconnected (Mishkin et al. 1983). As a correlate, it becomes difficult
to define the different processing steps by a “levels of processing”.

Network organization has also been proposed in terms of maps, which reflect variations
in the value of a parameter across one or more dimensions of the biological substratum
(Knudsen et al. 1987). It has been used for invariant pattern recognition (Fukushima
1988; Otto et al. 1992), coordinate transformations (Burnod et al. 1992), learning arm
kinematics and dynamics (Ritter et al. 1989).

The main difference between layer and map organization is related to the spatial
arrangement of units in a map. Neighboring relationships within a map contribute to
neural processing (Kohonen 1982), while layer codes may reflect any property of
incoming information, without metric or order, using arbitrary coding schemes.

Representation of information

The question of the representation of information in networks of neurons is a fundamental
issue in neural modeling (see review in Thorpe 1989). The main debate is between local
and distributed coding, i.e. whether each unit codes for particular attribute of information
or whether information is coded by a large subset of non specialized units.

Directly derived from the labelled line hypothesis of Müller and from the feature-
detector theory (Hubel and Wiesel 1962), the local coding theory (Barlow 1972) makes
the assumption that each unit stands for a particular feature or concept (“grand-mother
cell”). This kind of storage is very limited in the number of discriminable input states that
can be coded (as many as neurons if using a binary code), as well as in its ability to
generalize.

Using distributed coding allow each input state to be coded by a set of active units, each
unit representing one component of the pattern. The representational capacity in a
distributed code is higher due to the combinatorial use of units (for n neurons, 2n  if using
a binary code). On the other hand, the mapping becomes more complex (Kohonen et al.
1981). Coarse coding is a form of distributed coding frequently used to represent
continuous variables. The principle is that units have broad overlapping receptive fields
whose peak sensitivities vary systematically from unit to unit across the population.
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The advantages of local and distributed coding can be combined by sparse coding. In
this case, input patterns are represented by a small proportion of the available units. This
proportion defines a trade-off, on the one hand, between representation capacity (large
capacity for a high proportion) and memory capacity (large capacity for a low proportion),
and on the other hand, between generalization ability and complexity of mapping (no unit
carries explicit information). Note that sparse coding may correspond to a semi-local code
(each stimulus is coded by several units, each unit being related to a particular attribute of
the stimulus) or to semi-distributed code (each attribute is coded separately, but no unit
carries explicit information).

Original coding schemes have been proposed. We can mention the representation by
correlation graphs (Bienenstock and von der Malsburg 1987) and code carried by the
temporal pattern of activity (Strehler and Lestienne 1986; Lestienne and Strehler 1988;
Eskandar et al. 1992).

3 DISCUSSION

In this chapter, we have pointed to a set of basic principles, which allow features of brain
organization and operation to be incorporated into models. In this framework, spectacular
models have been built, concerning sensory (Lehky and Sejnowski 1988) and sensory-
motor transformations (Kuperstein 1988; Zipser and Andersen 1988; Pouget et al. 1993),
as well as cognitive functions (Sejnowski and Rosenberg 1987; Dehaene and Changeux
1989; Servan-Schreiber et al. 1990; Dehaene and Changeux 1991; Cohen and Servan-
Schreiber 1992).

However, the most promising results have been provided by modeling studies using
back-propagation algorithm (Zipser and Andersen 1988; Lehky and Sejnowski 1988;
Pouget et al. 1993). This algorithm approximates learning in real neural networks in the
sense that, after learning, similar properties can be seen in both systems. But
“trajectories” followed by models and by brain networks to reach a particular final state
may be quite different (Crick 1989; Reeke and Sporns 1993). The effective outcomes
provided by such network models, are thus more likely to be interpreted in terms of
statistical analysis rather than in terms of neuronal processing. Another difficulty arises
from the fact that learning corresponds to an accurate tuning of each unit in the network.
As a consequence, learning new features would most surely erase the previous
experiences. This drawback emphasizes that the back-propagation-based modeling
method should be unpromising at addressing many problems solved by the brain, in
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particular, problems related to ontogenetic development, in which a progressive maturation
occurs through successive refinement of neuronal networks.
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CHAPTER 2

Framework for Modeling Cortical Functions

Contents

Summary
1 Introduction
2 Modular organization of the cortex

Representation of information - Mapping of multidimensional parameters
Architecture of cortical networks
Cytoarchitectonics
Input/output organization and intrinsic connectivity of a cortical column
Columnar processing
Adaptive properties
Conclusion

3 A unit for cortical processing
Representation of information
Connectivity in cortico-cortical circuits
Column-like processing unit
“Columnar” operations
Adaptive properties
Conclusion

4 Columnar organization and sensory-motor programs
Cortical network architecture: Circular representation
From retinal to object-centered reference frame
From retinal to arm-centered reference frame
Time integration in prefrontal circuits

5 Discussion

Summary

The organization and operation principles of the neocortex are described. On this basis, computational
constraints on representation of information, connectivity, neural processing, and adaptive properties in
cortical circuits are proposed as a modeling framework. The key feature of this framework is a
multicellular processing unit reflecting the modular nature of cortical organization and function. The
mathematical equations corresponding to the computational properties of cortical circuits are given. A
short summary of the models described in following chapters terminates this chapter, and illustrates
“cortical solutions” to important information processing problems.

1 INTRODUCTION

In the previous chapter, we have described a set of modeling principles, which form a basis
for the development of information processing models of brain functions. This approach
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may be defined as “top-down”, since a restricted number of hypothesis are made on
biological features, and outcomes are mainly derived from algorithmic constraints.
However, we have stressed that these hypothesis may not provide enough biological
constraints to build successful models (Crick 1989; Reeke and Sporns 1993).

A complementary approach is to ask how the brain is likely to solve problems (Ballard
1986). This “bottom-up” approach focuses on the structural and functional
characteristics of brain circuits and their involvement in the implementation of problem-
solving algorithms. The goal is not to take into account the greatest number of brain
properties, but to point to the critical aspects, which contribute to appropriate computation.
The main difficulty of “bottom-up” modeling is to choose the appropriate levels of
organization (Churchland and Sejnowski 1988), and at these levels, to face the great
diversity of biological components and processes.

Recent works (Ballard 1986; Burnod 1988; Alexandre 1990; Guyot 1990) have
proposed a consistent “bottom-up” modeling theory based on the architectural and
processing characteristics of the cerebral cortex. The appeal of the neocortex relies on the
following facts: (i) Great regularity is observed in its organization; (ii) Cortical circuits
process any set of data with a single format, whatever the modality; (iii) The phylogenetic
development of the cortex is correlated with the acquisition of higher level behavior
structures. However, to focus on the cerebral cortex does not deny the contribution of
subcortical systems, such as basal ganglia, cerebellum, or medial temporal lobe structures.
It is a mean to describe the computational principles underlying various brain functions
within one and the same framework.

Modeling principles are constructed from the modular organization of the cortex
(Szentágothai 1975; Mountcastle 1978; Eccles 1981) and concern cortical representation
of information, architecture of cortical networks, cytoarchitectonics, input/output and
intrinsic connectivity, columnar processing and adaptive properties of cortical circuits. In
continuity with previous works (Ballard 1986; Burnod 1988; Alexandre 1990; Guyot
1990), this chapter describes a computational framework based on the properties of the
cerebral cortex. The main novelty in this framework is to combine two approaches: (1) We
describe organizational and operating principles common to different cortical areas; (2)
We address issues concerning the regional specialization of the cortical surface. To this
end, we introduce three modes of operation and three modes of adaptation (termed tuning,
gating, and timing). In chapters 3, 4, and 5, we will show that these operation and
adaptation modes are sufficient to solve problems of visual integration, motor
performance, and temporal organization of behavior.
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2 MODULAR ORGANIZATION OF THE CORTEX

The modular organization of the neocortex is now referred as an organizing principle for
cortical functions (Szentágothai 1975; Mountcastle 1978; Eccles 1981). However, this
organization does not correspond to a unique and absolute concept, but can be related to
six aspects of cortical organization and operation: (1) Representation of information; (2)
Architecture of cortical networks; (3) Local circuits and intrinsic neuronal organization of
the cortex; (4) Intrinsic connectivity and input/output organization; (5) Nature of cortical
processing, and (6) Adaptive properties of cortical circuits.

These aspects are exposed and discussed in the following. For each point, we have
selected a restricted number of considerations which appear to be relevant from the point
of view of modeling. For more exhaustive presentations, the reader is referred to the
literature (Mountcastle 1978; Rakic and Singer 1988; Burnod 1988).

Representation of information - Mapping of multidimensional parameters

Principles. The organization of sensory cortex is defined by the simultaneous mapping of
different modalities on the cortical surface. This mapping has the following characteristics:
(i) Neurons recorded in penetrations normal to the cortical surface share similar properties
such as place, modality, dynamic response characteristics, abstracted features (Powell and
Mountcastle 1959); (ii) The neighboring relationships at the level of the peripheral
receptor are preserved (retinotopy, tonotopy, body surface representation); (iii) The
cortical surface is shared in interdigitated clusters each corresponding to a specific
modality. Sharp transitions are observed when passing from one column to the next.

There are numerous experimental illustrations of these principles. In the
somatosensory cortex, the place parameter is the location of the receptive field on the body
surface and modalities are muscle and joint afferents. Segments of the body surface are
mapped into stripes extending along the rostrocaudal axis through areas 3a, 3b, 1 and 2
(Werner and Whitsel 1968). In the visual cortex, the corresponding parameters, derived
from geniculate projections, are the location of the receptive field in the visual space and
information concerning color, luminance, spatial frequency, motion (Hubel and Wiesel
1977). The thalamic inputs are segregated in different laminar terminations (Hubel and
Wiesel 1972) as well as segregated within layers for the ocular dominance (stripes; Hubel
and Wiesel 1969).
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Cortical maps. A fundamental feature of cortical organization is the map, which can be
described with different structures (Knudsen et al. 1987; Stryker et al. 1987): (i)
Topographical maps are groups of neurons in which the place parameter corresponds to
the topography of the projected sensory surface, according to a given metric; (ii)
Computational maps provide an ordered representation of parameters obtained by
transformation of sensory inputs or motor outputs (direction of motion in middle temporal
area; Albright et al. 1984); (iii) Interdigitated maps have several levels of organization
(fine-grain and coarse-grain). The primate primary visual area is a topographic map at a
large scale and an interdigitated map at lower scale (low spatial frequency and color-
sensitive map intercalated into the cytochrome oxidase blobs; Hubel and Wiesel 1974a,b).

The mapping also concerns output representation. Asanuma et al. (1968) have shown
that efferent zones of the motor cortex are organized in vertically oriented arrays of cells,
which elicit movement of a single muscle or muscle group. The XY dimensions
correspond to location in the pattern of body musculature. Similarly, systematic variations
of the direction of eye movements are represented topographically across the superior
colliculus (Wurtz and Albano 1980).

Tuning properties. An important property of the mapping is that neurons have a broad
tuning, i.e. a large subset of neurons is activated by a given stimulus (for orientation, see
Schiller et al. 1976; Albright 1984). Neurons can also be tuned for several parameters.
However, tuning curves are peaked and allow a high resolution representation of inputs
through relative responses of neurons. Two complementary vectorial methods have been
proposed to describe the tuning of neurons. On the one hand, broad tuning has been
associated with the notion of population code (Georgopoulos et al. 1986). In this case,
each neuron is associated with a vector and neuronal activity is interpreted as the
projection of this vector on a population vector (Fig. 2.1A). On the other hand, vectorial
coding allows the tuning of a neuron for several parameters to be described (Fig. 2.1B).
The sensitivity of a neuron to a given parameter is defined by the projection on the
corresponding axis.
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Figure 2 .1 . Cortical representation of information. A vector is associated to a neuron
(thin arrow). A. Population coding: activity of the neuron is obtained as the projection of
the vector on a population vector (thick arrow). B . Vectorial coding: sensitivity of the
neuron to a given parameter (p1, p2, p3) is defined by the projection on the corresponding
axis.

Efficient representation and computation. From a computational point of view, mapping
has numerous advantages (Kohonen 1982), and among them: (i) Information can be easily
accessed by other neuronal systems with simple schemes of connectivity; (ii) Processing
is rapid since information is accessed in parallel; (iii) Local continuity defines a metric in
the parameter space in relation to anatomical distance.

The fact that the same representation mode is used in different modalities (auditory,
somatosensory, visual) argues for a single processing mode, whatever the nature of the
incoming information.

In summary, the mapping provides a natural interface between the physical dimensions
of parameters and the anatomical dimensions of the cortex. Furthermore, it contributes to
optimal representation, computation and connectivity in neuronal circuits. Vectorial and
population coding are complementary ways to extract information from a map. In the
following chapters, we will show that the mapping of information may be an essential
component in the acquisition and expression of cortical functions.

Architecture of cortical networks

The anatomical basis of the modular organization is related to the nonrandom form of the
terminations of thalamo-cortical and cortico-cortical projections. Terminations may be
organized in horizontal or vertical patterns of different characteristic forms such as layers,
patches, stripes, slabs, columns.

Laminar distribution of connections. In this case, the termination is restricted to a subset
of layers. Laminar terminations have been characterized as feedforward or feedback
patterns (Maunsell and Van Essen 1983). Feedforward projections terminate mainly in
layer IV and III. On the other hand feedback projections terminate in layers I and VI,
sparing layer IV. Such a pattern is observed in the successive connections between areas
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17, 18, 19 and TE of the primate visual cortex. The form of the termination has been
proposed as a way to characterize the level of processing of a cortical area. Comparative
processing complexity between two areas is defined by the nature (feedforward or
feedback) of their interactions.

Columnar distribution of connections. Projections can terminate in vertically oriented
columns extending throughout the depth of the cortical surface. Generally, labelled
columns alternate with columns of similar size and devoid of labelling. Note that input
columns are also output columns (Schwartz and Goldman-Rakic 1984)

Interestingly, regular organization of connections is not restricted to cortico-cortical
networks, but is also observed in cortico-subcortical projections. For instance, cortico-
striatal projections terminate in an intricate pattern of irregularly shaped patches separated
by free areas (Goldman and Nauta 1977a). This observation stresses that the modular
nature of cortical interaction may be a general principle in the definition of cortical
interacting networks (Goldman-Rakic 1988).

In summary, cortical interconnections are regularly organized in either the horizontal
dimension or the vertical dimension of the cortex. Patterns of connectivity define different
modes of interaction between cortical structures, which are compatible with the modular
representation of information. The models described in the following chapters illustrate
the functional role of the types of interactions.

Cytoarchitectonics

A number of anatomical studies have shown that the cerebral cortex is not to be seen as an
uniform lattice of neurons, but is made of local circuits of cooperative neurons arranged
throughout the depth of the six cortical layers (column; Szentágothai 1975). A column can
be characterized by (i) a small group of closely related pyramidal neurons and (ii) a set of
local-circuit interneurons (Marín-Padilla 1990). The longitudinal size of a column is 30 to
50 µm.

These stereotyped neuronal circuits (about 100 neurons) are repeated, with local
variations (for example cytoarchitectony features such as layer IV thickness), throughout
the cortical sheet (Szentágothai 1975; Mountcastle 1978). Consistency across cortical
areas and across species has been demonstrated, excepted in area 17 of the primate
(Rockel et al. 1980).

The architecture of the columns is related to the distribution of neuronal types in the
cortical layers. The cortical neurons show great morphological diversity (Ramón y Cajal
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1922; Lorente de Nó 1922). However, one classically distinguishes two types of cortical
neurons, according to the presence or absence of dendritic spines.

Spiny neurons. The main type of spiny neurons is the pyramidal neuron. Pyramidal
neuron is characterized by its specific developmental, structural and functional features
(see Marín-Padilla 1990). Four types of pyramidal cell can be distinguished: giant cells of
layer V, large cells of layer V and lower layer III, medium cells of upper layer III, small
cells of layer II. Whatever their size and laminar position, pyramidal cells have a
characteristic apical dendrite extending vertically toward the pial surface and shorter basal
dendrites remaining within a single layer. Apical dendrite increases pyramidal neuron
inputs in a specific and restricted fashion to only certain layers by emitting a number of
side branches in these layers only (Lund and Boothe 1975). Axons of almost all
pyramidal cells leaves the cortex (Lund et al. 1975).

Nonpyramidal spiny neurons have been termed spiny stellate neurons and are
distinguished of the pyramidal type by their uniform dendritic length. In the visual cortex,
they are found in layer IV and receive thalamic excitatory inputs (Lund 1984; White
1981). They send an excitatory projection vertically, toward the supragranular pyramidal
neurons. Note that axons of nonpyramidal cells generally remain within the cortex. High
density of spiny stellate neurons is found in sensory areas (granular layer).

Non-spiny cells. These neurons have smooth or sparsely spined dendrites. It has been
observed that (i) the lateral extend of axon terminal fields of these neurons does not
exceed the lateral extend of the dendrites, and (ii) very few non spiny cells have axons that
spread horizontally within a layer. Several classes have been distinguished, mainly on the
basis of the morphology of the axon arborization (Jones 1975; Szentágothai 1975; Jones
1981): chandelier cells, basket cells, double bouquet cells, bipolar cells. Description of the
neuronal types can be found in Peters and Jones (Peters and Jones 1984).

Properties of neocortical neurons. The role of the types of cells is defined not only by
their anatomical location, but also by their intrinsic properties. Neocortical neurons have
various electrical properties due to membrane properties. Prince and Huguenard (1988)
have discussed the comparative electrophysiological behavior of neurons in relation to
ionic conductances. Particularly they have emphasized the great diversity of ionic channels
found in neocortical neurons. Classical sodium and potassium currents responsible for the
generation of action potentials interact with a great variety of ionic channels sensitive to
voltage, transmitters, modulators, and generate a rich repertory of membrane behavior
(Connors and Gutnik 1990).
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A simple illustration is given by the properties of GABAergic interneurons (basket,
chandelier and double bouquet cells) and pyramidal cells. The former have a linear relation
between spike frequency and thus respond faithfully to inputs. The latter have nonlinear
membrane properties and have thus a more integrative role.

In summary, local cortical circuits are made of neurons with different laminar
distributions, orientations, and integrative properties. They have a large repertory of
operations both in the horizontal and vertical directions. Modeling will use such units as
basic computing elements, which are more likely to approximate cortical processing than a
single prototypic neuron.

Input/output organization and intrinsic connectivity of a cortical column

Cortical columns are units which receive convergent inputs from other units, process
incoming information, and project divergently to many other units. The integrative
function of a column is determined both by input/output connectivity and intrinsic
connections.

Input/output organization. The connections of a column are related to the its layer
organization in the vertical dimension of the cortex. The intermediate layer IV (which
contains granular cells) divide two subsets of pyramidal neurons, the upper division
(supragranular cortical layers I, II and III) and the lower division (infragranular cortical
layers V and VI). The supragranular layers are mainly specialized in cortico-cortical
connections, toward adjacent cortical zones or toward more distant cortical areas
(Szentágothai 1975; Jones 1981; Feldman 1984).

The infragranular layers project outside the cortex toward other neural structures or
participate to feedback connections (Van Essen and Maunsell 1983; Zeki and Shipp
1988). Cortico-thalamic projections arise from layer VI (Gilbert and Kelly 1975; Lund et
al. 1975; Jones and Wise 1977) and cortico-subcortical projections from layer V (Jones
and Wise 1977).

Intrinsic connectivity. The cortical column is mainly defined by vertically oriented
interactions which occur between layers and link neurons in different layers. Three
systems of vertical interactions have been identified: (i) an excitatory spiny system based
on stellate cells; (ii) an inhibitory non-spiny system based on different interneurons
(basket, chandelier, double bouquet); (iii) a system based on collaterals of pyramidal cell
axons.
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Interlaminar interactions have been well characterized in the primary visual cortex
(Lund and Boothe 1975; Fitzpatrick et al. 1985; Blasdel et al. 1985). Each layer
establishes elaborate sets of projections to other layers, either with a point-to-point
organization, or with lateral spread, or with a periodic termination (Blasdel et al. 1985).
These modes of projection are generally reflected in the differential properties of two
interconnected layers. If the two layers have a similar topographical organization, their
interconnections are precise with little lateral spread.

The role of vertical interaction is illustrated by the role of interlaminar connections in
the formation of receptive field properties. Thalamic-receiving cells have simple receptive
fields while those in deeper and in more superficial layers have more complex one.

In summary, the organization of cortico-cortical connectivity allows transformations on
different flows of inputs to be performed and different information to be conveyed
selectively to different targets. These transformations are a combination of operations
within each layer, and operations between layers. The form of the processing may be
similar in all cortical areas, but the functional differences come from the differences in the
sources and terminations of their connections.

Columnar processing

The columnar organization of neocortical circuits results in specific operations. The term
“columnar processing” reflects the fact that (i) processing is not determined by the
properties of a single neuron, but by a whole circuit; (ii) the dynamics of cortical circuits
tend to preserve the modular mode of representation.

Feature extraction. Feature extraction processes allow the construction of an ordered
representation of abstract parameters. It corresponds to the tuning of the sensitivity of
neurons to a particular combination of afferent signals that depicts a stimulus attribute not
specifically encoded by any single set of primary afferent fibers, but which is
reconstructed from combinations. These operations have been well characterized in
thalamic-receiving neurons in sensory areas (visual, somatosensory, auditory).

Typical examples are orientation columns in V1 (Hubel and Wiesel 1977), axis of
motion columns in the middle temporal area (Albright et al. 1984). Higher level columnar
processing has also been observed in the primate middle temporal (MT) area in the form
of a band-like segregation of local and global motion processing (Born and Tootell 1992).
Columnar processing is also observed in motor areas. A peripheral input from a particular
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body part is relayed through the sensory cortex to the discrete region of the motor cortex
that produces movement of that body part (Waters et al. 1982).

Gating. Experimental studies have suggested that cortical inputs have a gating
(multiplicative) effect on other inputs. Cortico-cortical projections from somatosensory to
motor areas in the cat have been shown to influence motor activity only when combined
with other inputs to the motor cortex (Asanuma et al. 1982). Sandell and Schiller (1982)
have shown that, during reversible cooling of area 18 in the cat, activity in infragranular
layers of area 17 is depressed. Note that infragranular layers of 17 are the recipient of
feedback projections from area 18. More specifically, Alonso et al. (1993) have observed
that local blockade of layer V in area 18 locally and retinotopically suppresses responses
of area 17 V1 to high-velocity stimuli. Nonlinear interactions have also been observed in
the posterior parietal cortex, between eye position and retinal position (Andersen et al.
1987), and in motor and premotor cortical areas between arm position and visual target
(Caminiti et al. 1991; Burnod et al. 1992). All these results support the idea of a gating
effect of cortical inputs.

Timing. Generation of oscillatory neuronal responses has been proposed as a form of
columnar processing. Gray and Singer (1989) have shown that intracolumnar processing
may result in 40Hz oscillation responses to optimally oriented stimuli. Moreover,
stimulus-specific synchronous oscillations were observed both within functional columns
(Gray and Singer 1989), and between spatially separate columns (Gray et al. 1989).

More generally, sustained activities have been reported in several cortical areas. There
are no experimental demonstrations that sustained activities may result from columnar
processing. However, neurons with different patterns of discharge have been found with
differential laminar distributions in the prefrontal cortex (Sakai and Hamada 1981): (i)
Neurons with sustained activity have their soma in layers III and VI; (ii) Transient neurons
related to visual stimuli are found in supragranular layers; (iii) Neuronal activity related to
motor performance is distributed preferentially in the infragranular layers (V and VI)
(Sawaguchi et al. 1989a). Furthermore, this laminar distribution of neurons is functionally
related to the laminar organization of connectivity: (i) Projections from the inferotemporal
cortex to the PFC terminate in lower layer III and layer IV (Barbas and Mesulam 1981);
(ii) Deep layers of the PFC projects to the thalamus, caudate nucleus, and superior
colliculus, and are thus likely to participate to initiation or preparation of a motor
command. These arguments support the idea that vertical processes may be involved in the
construction of these neuronal responses, in particular the sustained ones.

In summary, cortical processing is strongly related to the way information is mapped in
cortical circuit and to architecture of local cortical circuits (“columnar processing”).
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Columnar processing results both in spatial anatomical reordering of topography and
functional changes. It can be characterized by functionally well defined mechanisms such
as tuning, gating, and timing.

Adaptive properties

There is now a great deal of evidence that neocortical neurons can express long lasting
modifications of synaptic transmission such as long-term potentiation (LTP) and long-
term depression (LTD) (Tsumoto 1992). These phenomena have been observed in the
visual cortex (Artola and Singer 1987; Artola et al. 1990), in the motor cortex (Baranyi
and Féher 1981), in the prefrontal cortex (Hirsch and Crépel 1991) and have been related
to the presence of NMDA receptors.

These cellular mechanisms may form the basis of cortical plasticity. In the visual
cortex, Frégnac et al. (1988) have demonstrated that the development of functional
properties such as orientation, ocular dominance, disparity may result from activity-
dependent modulations of synaptic transmission following a Hebbian rule (adaptive
tuning). Plasticity of somatosensory maps has been observed following peripheral lesions
(Merzenich 1987). Ahissar et al. (1992) have shown that functional connections between
neurons in the auditory cortex change with the behavioral relevance of external stimuli,
following a generalized Hebbian rule.

An hypothesis about the mechanism of plasticity is that experience-dependent synaptic
changes depend on correlations between pre- and postsynaptic activity (Hebbian rule).
However, the Hebbian paradigm may not be efficient in all cortical areas (such as
premotor and prefrontal cortex).

In summary, adaptive properties of cortical circuits may reflect activity-dependent
modifications of synaptic transmission. The rule governing modifications is of Hebbian-
type in sensory areas, but may be different in other cortical areas.

Conclusion

These principles reflect the computational properties of cortical circuits resulting from the
columnar organization of neocortex. They are not at all sufficient to characterize the
diversity and the complexity of cortical functions. However, they provide a framework for
describing cortical networks and expressing computational constraints on cortical
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processing. Formal description, based on principles of Parallel Distributed Processing
models (see chapter 1) is given in the following section.

3 A UNIT FOR CORTICAL PROCESSING

Several functional circuits have been proposed as a model of the cortical column
(Szentágothai 1975; Eccles 1981). These models provide a simplified description of the
intrinsic organization of the column. On this basis, Burnod (1988) has designed a model
including possible and plausible processing and adaptive mechanisms of the cortical
column. Alexandre and Guyot (Alexandre 1990; Guyot 1990; Alexandre et al. 1991) have
demonstrated the computational properties of the model of Burnod (1988) on artificial
problems such as pattern recognition and speech recognition.

In this section, we describe a generic cortical column-like processing unit for the use of
neural modeling. The unit does not reflect the exact arrangement of layers, interneurons
and pyramidal cells in a column. It is drawn from the following organizational and
computational principles of cortical columns: (1) Inputs and outputs are segregated by
layers according to their source and target structures, respectively; (2) Horizontal and
vertical integrative processes participate to the functional properties of the unit; (3) The
columnar circuits have adaptive properties.

This section is organized following the plan of the previous section (representation of
information, connectivity, processing unit, columnar operations, adaptive properties). The
goal is to provide correspondences between biological data and modeling principles. The
biological basis of the mechanisms (Equations 2.1 to 2.6) are discussed in chapter 6.

Representation of information

Ballard (1986) has proposed a formal way to characterize the layout of cortical maps when
multiple parameters are simultaneously represented. The two dimensions of the cortical
surface are primary indices, generally related to the coordinates system of a peripheral
structure. Secondary indices are characteristic parameters within the modality of afferent
information (Fig. 2.2A). In the visual system, primary indices are retinal coordinates and
secondary indices are orientation, color, motion, or spatial frequency.
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Figure 2.2. Primary and secondary indices. Primary indices are the XY dimensions of a
two-dimensional maps. Secondary indices (i,j) are related to different orientations found at
each position (A). In B, a reordering of primary and secondary indices has been performed.

In chapter 3, we illustrate the role of primary and secondary indices in the interaction
between two flows of information. Reordering of indices, as shown in Fig. 2.2B, allows
the transition from a retinal reference frame to an object-centered reference frame (see
Fig. 3.4).

Connectivity in cortico-cortical circuits

On the basis of laminar terminations, anatomical studies have characterized patterns of
connectivity, such as feedforward, feedback, and lateral pattern (Van Essen and Maunsell
1983; Zeki and Shipp 1988). Furthermore, a functional role has been proposed for the
patterns related to the level of processing. Accordingly, we can give the following formal
description of cortical connectivity (Fig. 2.3): (i) Feedforward connections carry
information from lower to higher-level processing steps; (ii) Feedback connections carry
information in the opposite direction; (iii) Lateral connections carry information at one
level of processing either locally within an area or between two areas. Intrareal connections
are defined either by topographic proximity (with close primary indices) or by topologic
proximity (same primary indices, but different secondary indices).

Figure 2.3 summarizes the types of connections, which are found in a cortical network.
In the following, we will frequently use the terms feedforward, feedback, and lateral to
characterize the flow of information in a network.
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Figure 2 .3 . Model of cortico-cortical connectivity. The types of connection found in a
cortical network are illustrated (see Text).

Column-like processing unit

In the previous section, we have stressed that cortical columns are multicellular circuits
organized around a small set of pyramidal cells and local-circuit interneurons. Following
this description, the main components of a plausible column-like unit must be the
following: (i) a layered organization corresponding to the selective processing of different
types of inputs; (ii) a set of laminar interactions corresponding to the filtering operation
performed on columnar inputs; (iii) a set of interlaminar interactions corresponding to the
vertical integrative role of pyramidal cells within a column; (iv) a set of registration
coefficients defining the adaptive properties of the column. These components are
summarized in Fig. 2.4. The laminar organization of the column is represented by a set of
input/output divisions4 {Di , 1≤i≤N}. A division Di  receives a subset of inputs (xi

j ,
1≤j≤ni ) sharing a common origin or a common modality. Each division provides a

specific output yi , computed from the contribution of each division (uj , 1≤j≤N), to a
particular target. Adaptive properties are provided by a set a modifiable columnar
registration coefficients, both within a division and between divisions (see below). Note
that the unit is a generic processing element. A division is functionally equivalent to a
cortical layer, but does not correspond a priori to one particular layer. However, once the

                                                
4We call them “divisions” and not “layers” to avoid the confusion with the classical use of “layers”. In
the framework of neural networks, the term “layer” refers to a set of neurons with similar connectivity.
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unit is embedded in a network, a correspondence can be drawn from the integrative
properties of the division and its input/output connections.

inter-division coefficients Q

division coefficients L

intra-division coefficients wx j
k

w j
k

u k

y ix j
i ui

division k

division i

w j
i

Figure 2 .4 . Model of the cortical column. The column-like unit is represented as a
multicellular circuit. Each circle corresponds to an operation. The unit is made up of several
input/output divisions (separated by horizontal hatched lines). Each division has two parts
separated by the vertical hatched line. It corresponds to the two processing steps of the unit:
(1) Each input-division receives a subset of inputs, which are integrated independently; (2)
The second step is a polynomial (sum-product) combination within each output-division of
input-divisions activities. It produces an output per division. Each symbol refers to a
particular coefficient.

“Columnar” operations

According to the architecture of the cortical column, processing is performed in two steps
(Fig. 2.4): (i) first within each division (feature extraction), and (ii) then between divisions
(gating, timing).

Within a division: feature extraction operation. This operation reflects the properties of
cortical neurons receiving thalamic inputs. Distributed incoming signals are integrated
through a weighted convolution-like operation:

u i ( t )   =  F ( ∑
j =1

n i
   w i

j ( t )  x i
j ( t )  ) ( 2 . 1 )

where the “intra-division” coefficients {w} = {wi
j  ∈ [0,1], 1≤j≤ni } define the “tuning”

properties of the division Di , ui  ∈ [0,1] is the filtering outcome, t a quantized time, which
describes the course of processing5, and F a nonlinear non-decreasing function in [0,1].
Note that the processing within a division is similar to that of most of the neural units in

                                                
5Neuronal dynamics can described either by discrete time equation or by continuous time differential
equation.
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the classical neural networks. The set of coefficients define the receptive field of the
division. Activity-dependent modification of the coefficients {w} is termed adaptive
tuning and is described below (Equation 2.4).

Between divisions: vertical integrative process. Each division Di  provides an output
activity yi  resulting from the division-specific filtering contributions (ui , 1≤i≤N; Equation
2.1). The output activity yi  depends upon the combination of two terms: the first term
expresses the influence of each division Dj (1≤j≤N)  independently, with a “division”
coefficient Li

j , and the second one expresses the nonlinear interaction between pairs of

divisions (Dj  and Dk ), with an “inter-division” coefficient (Qi
jk ). We have stressed that

the integrative function of a column should result in two processing modes, namely gating
and timing.

1. Gating. The formulation of the gating effect is the following:

y i ( t )   =  F [ ∑
j =1

N
  ∑
k =j +1

N
   Q i

j k ( t )  u j ( t )  u k ( t )  + ∑
j =1

N
   L i

j ( t )  u j ( t )  ] ( 2 . 2 )

This equation expresses that the division Di  can perform adaptive linear and bilinear
combinations on incoming information flows. The modification rules for coefficients {L}
and {Q} are collectively termed adaptive gating, and are described below (Equation 2.5).
The computational properties associated with Equations 2.2 and 2.5 are efficient for
solving problems of visual integration and motor performance, as illustrated in the
following chapters 3 and 4.

2. Timing. This mechanism is related to the production of long-lasting activities. and is
defined by



A i ( t )  =  M A X j =1 . . N   { L i

j ( t ) u j ( t ) }

A ' i ( t )  =  M A X j =1 . . N   { u j ( t ) }
 

and

y i ( t )   =  


g [ A i ( t ) ]   i f   y i ( t - 1 ) = 0

e l s e  


g [ A ’ i ( t ) ]   i f  A ’ i ( t ) ≠ 0  

e l s e   g [ η y i ( t - 1 ) ]

 ( 2 . 3 )

where g is the function defined by
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g ( z )  =  


1  w i t h   p r o b   z
0  w i t h   p r o b   1   -   z  

Equation 2.3 expresses that the division Di  is likely to become active (yi(t)  = 1) for an
incoming activation (Ai ), to stay active for a while (with a probability ηyi(t - 1) ) and then
to return to rest (yi(t)  = 0) for a new activation (A’i ). Transitions between rest and
sustained states depend on the coefficients Li

j . which can change with learning according
to Equation 2.6 (adaptive timing, below). In chapter 5, we will show that Equations 2.3
and 2.6 provide explications and predictions on the role of the prefrontal cortex in the
temporal organization of behavior.

Adaptive properties

In the previous section, we have shown that the cortical columns have a large repertory of
adaptations corresponding to intrinsic properties of neocortical neurons and intrinsic
connectivity. Here, we make the proposal that three types of adaptation should reflect
major adaptive properties of the cortical column: adaptive tuning, adaptive gating, and
adaptive timing. In a column-like unit, the adaptations are related to activity-dependent
modifications of columnar registration coefficients (w, Q, L) according to a learning rule
(see chapter 1). More details on learning rules are given in chapter 6.

Adaptive tuning. It corresponds to associative modifications of coefficients {w} related to
receptive field properties. This phenomenon can be described by

Δw i
j ( t , t + 1 )   =  λ [ σ x i

j ( t )   -  w i
j ( t )  ] y i ( t - 1 )  u i ( t )  ( 2 . 4 )

where λ is a positive constant determining the rate of learning and σ a positive constant.

This rule is derived from the Hebbian rule and expresses that (1) the coefficient wi
j 

increases toward σ with the coincidence of pre- and postsynaptic activity when the column
has been previously active, and (2) decreases toward 0 with postsynaptic activity alone in
the same condition. In this way, coefficients can be tuned around values that correspond to
the most probable input within division Di  when this division has been active.

Adaptive gating. Coefficients {Q} and {L} involved in gating effects can change
according to
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

ΔQ i

j k ( t , t + 1 )  =   y i ( t - 1 ) [ - λ u k ( t - 1 )  +  µ u k ( t - 1 ) u j ( t ) ]

ΔL i
j ( t , t + 1 )  =   y i ( t - 1 ) [ - λ u j ( t - 1 )  +  µ u j ( t ) ]

 ( 2 . 5 )

where λ and µ are parameters. The logic of the modification is that of operant
conditioning. When the activation of the division Di  is always followed by the same
afferent input in division Dj , the division coefficient Li

j  increases toward a maximal value,
which reflects an unconditional coupling (independent of any other conditions) between
the two divisions. On the other hand, when the afferent input occurs only sometimes, it
means that another condition is required and may be represented by input in another
division, say Dk . If the conjunction of the two inputs in Dj  and Dk  has an higher
probability of being related to the activation of Di , then the inter-division coefficient Qi

jk 
increases and the incoming information in one of the divisions acts as a gating signal
(AND gate) or a gain signal (product) on the other input. The rule defined by Equation 2.5
is an original proposal of this work and will be termed     R1    in the following.

Adaptive timing. The control of long-lasting activities can be obtained by modifications of
division coefficient according to



Δ

i -
j k ( t )  =   u k ( t ) y i ( t - 1 )

Δ
i +
j k ( t )  =   u– k ( t ) y– i ( t ) r ( t )

ΔL i
j ( t , t + 1 )  =   e j ( t ) { ∑

k =1 , k ≠ j

N
  [ -α Δ i -

j k ( t ) + β Δ
i +
j k ( t ) ] }

 ( 2 . 6 )

where α and β are parameters. Equation 2.6 is coupled with Equation 2.3 and its
functioning is explained in chapter 5. Basically, Equation 2.6 allow the relation between
two temporally non simultaneous inputs and a reinforcement signal to be learned. The rule
defined by (2.6) is another original proposal and will be termed     R2   .

Summary

Principles of cortical organization and computation have been translated into modeling
principles. On this basis, models can be constructed formally, and then tested by computer
simulations, in order to assess their actual behavior in conditions, which resemble a real
environment (chapters 3, 4, and 5).
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4 CORTICAL NETWORK ORGANIZATION AND SENSORY-
MOTOR PROGRAMS

Investigations of cortical functions are generally based upon studies of subjects (monkeys,
humans) performing sensory-motor tasks. These tasks generally require the integration of
processes such as discrimination, recognition, reaching, into a coherent behavior, defined
by some internal or external contingencies. A classical example is the delayed-response
task (Fig. 2.5). In this task, the monkey is asked to touch a lever indicated by an
instruction given for some time before.

instruction light
trigger light

lever

resting key

Figure 2.5. An example for the basic form of a spatial delayed response task. A monkey
installed in a primate chair faces a panel containing at least two instruction lights mounted
directly above two horizontally arranged levers and a trigger light of different color and
form. While the animal sits with its arm relaxed on a resting key, one of the two
instruction lights comes up for a short period, e.g. 1s. A few seconds after the instruction
is extinguished, the trigger light comes up and the animal reaches and touches the lever
indicated by the instruction and receives a drop of liquid as reward.

To perform this task, at least three fundamental processes must be carried out by the
cerebral cortex: (i) in order to recognize the target object, the cortex has to transform the
pattern of excitation on the retina from a retinotopic coordinate system to a coordinate
system centered on the object itself; (ii) in order to bring the hand to the desired position
in space, the cortex must transform the visual information related to the target location
(relative to the hand) into an appropriate motor command of the reaching hand; (iii) in
order to control the temporal order of behavioral actions, the cortical circuits must
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contribute to processes such as short-term memory, expectation of forthcoming events,
and preparation for response.

The functional cortical networks subserving such perceptual and motor transformations
can be described using the principles of cortical organization and operation exposed in the
previous section (Burnod 1988; Burnod et al. 1991). Basically, these transformation can
be defined by the nature of representations used, the nature of neuronal processing, and
the repertory of adaptive properties (Table 2.1). Following this principle, we give in this
section a general view of cortical networks involved in visual integration, motor
performance, and temporal integration of behavior. This presentation introduces the
following chapters (3, 4, 5).

Table 2.1. Characteristics of the models.
chapter 3 chapter 4 chapter 5
Perceptual
grouping

Invariant
recognition

Coordinate
transformation

Context/
reinforcement

Temporal
sequences

topographic maps x x x x
non topographic maps x x
population code x x x x
feedforward/lateral x
feedforward/feedback x
feedforward/feedforward x x
multiple interactions x

tuning x x x
gating x (3.1) x (3.2) x (4.2) x (4.6) x (5.1)
timing x (5.2)
adaptive tuning x (4.3)
adaptive gating x (3.3) x (4.4) x (4.8)
adaptive timing x (5.3)

Notes. References to equations are in parenthesis.

Cortical network architecture: Circular representation

Cortical networks involved in visual integration, motor performance, and temporal
integration of behavior can be described by a circular representation (Burnod 1988;
Morel and Bullier 1990; Young 1992). Figure 2.6 provides a simplified view of the
circular network, with four input-output poles and reference frames: (1) External sensory
inputs such as visual inputs in a retinal centered reference frame; (2) Sensory interoceptive
inputs and motor commands: for example, this input represents the position of the arm in
body centered reference frame; (3) Information relative to the objects, stored in an object
centered reference frame, with an input specifying their significance; (4) Internal coding of
sensory-motor programs in a time related reference frame.
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TEMPORAL

PARIETAL
visual input 

(retinal centered 
reference frame)

motor command (body and 
arm centered reference frame)

object recognition (object 
centered reference frame)

sensory-motor 
programs (time related 

reference frame)
prefrontal cortex

motor cortex

primary
visual cortex

inferotemporal
cortex

Figure 2 .6 . Circular multilayered network for sensory-motor
transformations with reference frames and corresponding cortical maps.

From retinal to object-centered reference frame

Two important transformations are performed by the visual system: (1) a low level
transformation resulting in the perceptual grouping of textured surfaces; (2) a higher level
transformation resulting in invariant recognition of objects. Neurobiological data give
some insights in the nature of these transformations. Low-level processing is probably
performed at early stages of the visual system. Responses to textured stimuli have been
found in the primary visual cortex (Knierim and Van Essen 1992). Visual information is
then processed at least in two parallel streams (Fig. 2.7), the dorsal stream to the parietal
lobe for target location (the WHERE pathway) and the ventral stream to temporal lobe for
target identification (the WHAT pathway) (Ungerleider and Mishkin 1982). The more
anterior portions of the temporal lobe tend to be critical for storing prototypes of visual
objects in a form that is accessible even with large variations in texture, position,
orientation, size. The posterior regions are more concerned with addressing transforms of
the retinal images to the stored prototypes (Weizkrantz and Saunders 1984) and receive
projections from the parietal stream which can be involved in geometrical transformations
necessary to match the incoming signal with the stored prototypes. The main constraint of
visual processing is to capture the diversity in the flow of visual information and to form
invariant internal representations.

Perceptual grouping of textured surfaces can be obtained in two processing steps
combining tuning and gating (Anton 1992; Table 2.1, chapter 3): feedforward
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retinotopically organized primary indices and lateral secondary indices related to feature
extraction (tuning) are combined through gating. Following a relaxation process and
without any adaptation, the neurons, which perform the same filtering and which have their
receptive fields in a textured surface, tend to have the same response. Accordingly, each
population of filtering cells becomes sensitive to uniform surfaces.

The architecture of the model for invariant recognition is a double-branched
multilayered network (Fig. 2.7), with one input (in retinal coordinates) and two outputs:
form identification in the temporal branch and form location in the parietal branch (Otto et
al. 1992; chapter 3). After learning, the temporal branch shows significant size-invariance
and shift-invariance which are both related to the anatomical convergence pattern of the
network. The parietal branch computes in parallel both direction and distance of the target
from the center of the retina. When the temporal branch fails to directly recognize the
pattern, it can trigger the parietal branch output which drive an eye movement which reset
the eccentric pattern to the central zone where it is then successfully recognized. The two
processing streams interact and the processing units in the temporal branch can combine:
(i) feedforward information from the retina; (ii) positional information from the parietal
branch; (iii) feedback information which indicates success or failure of the recognition
process. The main components of this model are (Table 2.1): feedforward retinotopically
organized primary indices and secondary indices related to feature extraction (tuning),
feedback nonretinotopically organized indices related to prototype coding, adaptive gating
between feedforward and feedback flows of information, semi-distributed population
code.

TEMPORAL

PARIETAL
visual input 

(retinal centered 
reference frame)

object recognition (object 
centered reference frame)

primary
visual cortex

inferotemporal
cortex

Figure 2 .7 . Cortical circuit for visual transformations (perceptual grouping, object
recognition).
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From retinal to arm-centered reference frame

Following integration through the visual system, visual information arising from retinal
stimulation can be used to guide visual reaching movement toward targets in space.
Cortical areas involved in the control of reaching behavior in the primate are the primary
motor cortex (M1), the premotor cortex (PM), the supplementary motor area (SMA), and
the posterior parietal cortex areas 5 and 7 (Fig. 2.8; review in Johnson 1992). Studies on
neuronal activity within the motor cortex (Georgopoulos et al. 1982) have shown that the
activity of individual arm-related neurons is broadly tuned around a preferred direction of
movement in 3D space. Recent data demonstrate that these cells preferred directions rotate
with the initial position of the arm and the rotation of the population of preferred
directions predicts the rotation of the arm in space (Caminiti et al. 1991). The population
vector, which sums all the cell preferred directions weighted by their own activities, always
predicts the direction of movement even if the initial position of the arm is changed. The
control of an output map organized around a continuous parameter puts strong constraints
on neuronal processing underlying computation of the direction of the movement.

Visual reaching can be modeled by a neural network, which computes the appropriate
motor command corresponding to the ballistic phase of the movement (Burnod et al.
1992; chapter 4). In this network, processing units combine: (i) Feedforward visual
information on the desired trajectory; (ii) Kinesthetic information concerning the
orientation of the arm in space and (iii) Feedback information from areas which command
the effective movement (efferent copy of the motor command). The input-output
operations which are learned by these units during spontaneous movements can be
approximated by a bilinear combination which is sufficient to predict the cortical activity
before reaching both at the level of single neurons and at the level of the whole neuronal
population. In this model, the neural circuits converging toward a single neuron in the
motor cortex learn to predict the vectorial effect of the synergistic contraction of muscles
on the hand trajectory by generalizing the result of few trials in 2D subspaces, but not in
the whole 3D space. The population of cortical neurons can compute the appropriate
command in the whole 3D space thanks to the fact that the distribution of cell preferred
directions is uniform in this population (Caminiti et al. 1991). Critical features of this
model are summarized in Table 2.1: mapping of input and output parameters, adaptive
tuning and adaptive gating in two feedforward information flows, population code.

A movement can be driven by a target to reach, but also by a goal corresponding to the
delivery of a reward (context/reinforcement behavior). Burnod et al. (1982) have described
the relationships between neuronal activity of movement-related cells in the motor cortex
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and movement changed with the performance rate during a context/reinforcement
behavior. They found the neuronal activity became more closely time-locked with the
onset of the movement, as the performance improved. This modification reflects an
increase in the conditional probability of discharge of neurons in relation to the beginning
of the movement. Reward-related cells also change their activity with learning in such a
way that, after learning, termination of activity strongly predicts a new movement.

 A network model has been proposed which illustrates the neural computation
underlying acquisition of context/reinforcement behavior (Guigon and Burnod 1993;
chapter 4). The network is made of units, which are broadly tuned around a preferred
direction of movement. Each unit combines two flows of information: one carries a
contextual signal and the other a drive/reinforcement signal. The combination results in a
movement determined by the population activity over all the units of the network. The
model shows that efficient control of the movement is obtained through acquisition of
conditional relations between the two flows of information. Table 2.1 indicates the main
components of this model: mapping of output parameter, adaptive gating in two
feedforward information flows, population code.

PARIETAL
visual input 

(retinal centered 
reference frame)

motor command (body and 
arm centered reference frame)

motor cortex

primary 
visual cortex

Figure 2 .8 . Cortical circuit for motor performance (visual reaching,
context/reinforcement behavior).

Time integration in prefrontal circuits

Complex sensory-motor sequences are learned and produced by a cortical network
(Fig. 2.9) which relates temporal, parietal and motor areas with the prefrontal cortex
(Goldman-Rakic 1988). Neuronal activities recorded in PFC during the delayed tasks in
behaving monkeys appear to be a striking correlate of behavior (Fuster 1973, 1988). For
example, neurophysiological studies have demonstrated sustained neuronal activity during
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the delay between an instruction cue and the final permission to use the information
contained therein for a spatial reaching movement (Fuster and Alexander 1971; Kubota
and Niki 1971). The delay related activity may reflect short-term mnemonic aspects related
to the instruction cue, the expectation of forthcoming signals and the preparation of the
behavioral reaction.

A model of prefrontal circuits has been proposed (Guigon et al. 1993; chapter 5). The
model indicates that the main characteristics of prefrontal neuronal activities, both during
acquisition and execution of a task by behaving monkey, can be explained as the product
of two factors: a learning rule based on the control of sustained activities, which is
proposed as the main property of prefrontal neuronal circuits, and a specific step-by-step
conditioning program. A simulated neural network illustrates the abilities of the model: (i)
to learn, via a natural step-by-step training protocol, the paradigmatic task (delayed
response) used for testing prefrontal neurons in primates, (ii) to display the same
categories of neuronal activities, and (iii) to predict how they change during learning. In
agreement with experimental data, two main types of activity contribute to the adaptive
properties of the network. The first is transient activity time-locked to events of the task
and its profile remains constant during successive training stages. The second is sustained
activity that undergoes non-monotonic changes with changes in reward contingency that
occur during the transition between stages. The characteristics of this model are (Table
2.1): non-topographical representations, gating and adaptive timing in multiple
information flows.
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TEMPORAL

PARIETAL

motor command (body and 
arm centered reference frame)

object recognition (object 
centered reference frame)

sensory-motor 
programs (time related 

reference frame)
prefrontal cortex

motor cortex

inferotemporal 
cortex

Figure 2 .9 . Cortical circuit for sensory-motor programs. Higher-level visual and motor
transformations are integrated in programs.

5 DISCUSSION

Most neural models of brain functions have been constructed using some or other
principles of cortical organization. However, in many cases, biological principles were
mixed with “alien” principles and models became complex hybrid systems, which give
rise to strong criticism (see chapter 1). Ballard (1986) has addressed more directly the
computational properties of cortical circuits, but made no reference to possible adaptive
properties. Global consideration of the architectural and processing characteristics of the
cerebral cortex has been worked out by Burnod (1988), Alexandre (1990), Guyot (1990).
The novelty of the present work is to propose a set of cortical mechanisms, which are
sufficient to solve problems of visual integration, motor performance, and temporal
organization of behavior (see following chapters for details). The main interest relies in
the fact the same set of principles underlies the expression of rather different problems,
which have been generally solved using specific principles.

The modeling principles encompass several levels of brain organization, including
synapses, neurons, networks, and maps. It allows multiple the constraints in the
construction of models of cortical functions to be taken into account. A central, original
component of the framework is a multicellular processing unit (cortical column), reflecting
the layered organization of the cortex and the differential laminar distribution of cell types.
The architecture of unit allows various processing and learning modes to be embed as a
basis for regional variations. Furthermore, the layered structure of the unit facilitates the
construction of neuronal networks with various patterns of connectivity.
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The unit implements two levels of processing (feature extraction and vertical
integration). In this way, there is a dissociation between the specific operation performed
by cortical circuits and the nature of data on which they act. It means that processing is
independent of particular input codes since feature extraction provides an unique format,
whatever the modalities. This unit resembles the sigma-pi unit (chapter 1). However, it is
different for the following reasons: (i) The cortical unit has several independent input
pathways (divisions) and several output pathways; (ii) Nonlinear interactions are not
performed directly on the inputs, but only after a filtering process. The computational
interest of sigma-pi units is to represent multidimensional receptive fields or higher-order
feature detectors. However, there is no easy way to set the coefficients of the unit. Durbin
and Rumelhart (1989) have proposed a method to train networks of sigma-pi units, but the
method was based on the backpropagation algorithm.
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Part II
Models of cortical

functions
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CHAPTER 3

From Retinal to Object-centered Reference Frame

Contents
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Discussion

4 General discussion

Summary

This chapter presents two models, which illustrate cortical computation in the visual system. The goal of
both models is to extract information from a retinal image. In the first model, a perceptual grouping of
textured surfaces is obtained by filtering and multiplicative combinations between feedforward
retinotopically organized primary indices and lateral secondary indices related to feature extraction. The
second model shows that invariant pattern recognition can result from filtering and multiplicative
combinations between feedforward retinotopically organized indices and feedback secondary indices related
to semantic representations. These models illustrate the fact that similar cortical mechanisms may be
involved in different functions of the visual system.

1 INTRODUCTION

Visual processing aims at transforming the retinal image into successive representational
stages (representation of local properties of the image, representation of properties of
visible surfaces in a viewer-centered coordinate, object-centered representation of the
shape; Marr 1982). Many models of the visual system have proposed many solutions to
explain various aspects of its function (Bienenstock et al. 1982; Frohn et al. 1987;
Fukushima 1988; Lehky and Sejnowski 1988). The goal of this chapter is to show that the
same set of computational and organizational properties of the visual cortex is likely to
contribute to the solution of different visual problems at different representational stages.



47

The visual system performs two main transformations: (1) a low level transformation
resulting in the perceptual grouping of textured surfaces; (2) a higher level transformation
resulting in invariant recognition of objects. Following the principles exposed in the
previous chapter (chapter 2), models have been constructed taking into account issues
concerning representation of information, architecture of cortical networks, cortical
processing and adaptive properties.

2 PERCEPTUAL GROUPING

Visual mechanisms have been studied using mainly simple stimuli such as spots and bars
(Hubel and Wiesel 1965). However, visual stimuli in the natural world have complex
properties such as texture. A texture is made of a great number of interdigitated patterns,
the form and arrangement of which characterize the texture. Perception and discrimination
of textures should provide an important contribution to object discrimination and
recognition. For instance, it allows the borders between objects to be recognized, which are
similar for other parameters. The present model developed by Anton (1992) investigates
the possible neurobiological basis of texture discrimination.

The main characteristics of this model are: feedforward retinotopically organized
primary indices, lateral secondary indices related to feature extraction (tuning), gating
between feedforward and lateral flows of information.

Description of the model

Anton (1992) has proposed a model of texture discrimination based on computational
principles of cortical processing (see chapter 2). A major hypothesis of this model is that
texture information is processed at early stages of visual processing. The model has two
processing steps:

Tuning. The retinal image is transformed in 10 new images as a result of 10 filtering
operations. If retinal coordinates are primary indices, the 10 filtering outputs Vαβ  = (A1

αβ

,..,A10
αβ ) at a point (α,β) can be considered as secondary indices (Fig. 3.1).

Gating. Activity of filtering cells are modulated by neighboring cells performing similar
filtering (same secondary indice). When considering the 4 neighboring cells, the output
activity yi

αβ  of the neuron at position (α,β) with secondary indice i (1≤i≤10) at time t is
given by
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y i
α β ( t )   =  λ y i

α β ( t - 1 )   +  ∑
α ’ β ’

 
   ϕ ( Vα β  , Vα ’ β ’  ) y i

α ’ β ’ ( t - 1 )  ( 3 . 1 )

where {yi
α’β’ }α’β’  are the inputs from neighboring neurons for the same secondary

indice i, λ a parameter, and ϕ a coupling function between two populations of filtering
cells Vαβ  and Vα’β’ . Equation 3.1 expressed a gating effect of lateral interactions related

to the coupling between secondary indices, on the feedforward flow of information derived
from filtering processes.

retinal image

populations of 
filtering cells
(10 types)

iterative 
process of 
perceptual 
grouping

y

x

A10
 .
 .
 . 
 .
 .
A2
A1

frontiers between textures

Figure 3 .1 . Architecture of network for perceptual grouping of textured surfaces (From
Anton 1992).

Behavior of the model

Initially, filtering cells are inactive. When a retinal image is presented, neuronal responses
are defined by receptive field properties. Equation 3.1 defines an iterative process which
gives the temporal evolution of neuronal responses. Within a few iterations, neurons
which perform the same filtering and which have their receptive fields in a textured surface
tend to have the same response. Accordingly, each population of filtering cells becomes
sensitive to uniform surfaces.

Choosing the coupling function ϕ defines three types of perceptual grouping (Anton
1992). The model shows that the coupling between primary indices (retinotopic
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proximity) alone (ϕ = constant) produces fuzzy frontiers between textures (non
differential grouping). On the other hand, coupling between secondary indices greatly
enhance the discriminating capacities of the network (similarity and
similarity/homogeneity grouping).

Discussion

This model illustrates a mechanism of local columnar interactions in a topographical map
which produces perceptual grouping of textured surfaces. Emergent properties of the
network are strongly related to the underlying organization since performance depends on
(i) filtering of retinotopically organized incoming information (tuning); (ii) intercolumnar
interactions: primary indices are connected following neighboring relationships, and (iii)
intracolumnar interactions: activities related to neighboring primary and secondary indices
are combined multiplicatively (gating; Equation 3.1).

Hence the model demonstrates the adequation between the organization of the primary
visual cortex (Hubel and Wiesel 1977), a simple form of columnar processing based on
local correlations (Gray and Singer 1989) and the texture discrimination (Knierim and
Van Essen 1992).

3 INVARIANT RECOGNITION

A particular object can correspond to an infinite number of possible retinal images. A
bottle, for example, can be seen at different distances, in different positions and with
different shapes and colors. However, we can always recognize it. This is what we call
invariant visual recognition (IVR). This property is of very great interest for both
neuroscientists and engineers. From a neurobiological point of view, IVR raises the
question of what kinds of processes operate on the retinal image to allow the previously
stored “internal representation(s)” necessary for recognition to be retrieved. From a
traditional engineering point of view, it would be extremely useful to design computers
and robots that would be able to recognize objects in naturally varying perspectives and
contexts.

In this section, we describe a neural network which models specific biological
properties which could be responsible for the invariant visual recognition capabilities of
the brain. We first expose relevant biological data and previous modeling approaches.
Then we turn to the presentation of the model. Computer simulations illustrate the
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properties of the model. A more detailed description of this model can be found in Otto et
al. (1992).

The main components of this model are: feedforward retinotopically organized primary
indices and secondary indices related to feature extraction (tuning), feedback
nonretinotopically organized indices related to prototype coding, adaptive gating between
feedforward and feedback flows of information, semi-distributed population code.

References

1. The primary visual cortex (V1) is the source of two major cortical pathways
(Ungerleider and Mishkin 1982). The ventral pathway coursing through striate (V1),
extrastriate (V2, V4), and inferotemporal (TEO, TEp, TEa) cortex, is involved in 3D form
identification, surface properties, color extraction, and, in a more general way, in object
discrimination and recognition. The dorsal pathway leads to the posterior parietal cortex. It
is involved in motion detection, spatial location, three-dimensional relationships
(visuomotor performance, visuospatial perception, spatial attention).

2. VENTRAL PATHWAY. The physical properties of a visual object (shape, color, size,
texture) are analyzed in the successive processing steps of the dorsolateral system.
Integration proceeds through foveal receptive fields of increasing size (Maunsell and
Newsome 1987). Cortical neurons exhibit differential selective properties along the
processing pathway. Neurons are selective: (i) to simple features like oriented edges, color,
direction of movement of moving patterns in the first steps; (ii) to complex patterns in the
highest steps (and not to their component features; Miyashita 1990); and (iii) to both in
intermediate associative levels (Tanaka et al. 1991). No clear visuotopic organization is
found in area TE, at the cortical extremity of this stream (Desimone and Gross 1979), and
neuronal responses become invariant with respect to stimulus size, orientation or color
(Miyashita 1990).

Functionally the inferotemporal cortex can be divided in two distinct areas: (i) the
anterior portion (area TE) involved in mnemonic functions which is hypothesized not only
to synthesize the analyzed attributes into a unique configuration, but also to work as the
storehouse for central representations of the objects (Miyashita 1990) and (ii) the
posterior portion (area TEO) which seems to be responsible for linking the object
reference frame (in TE) to the retinal reference frame (in striate and extrastriate areas;
Weiskrantz 1990). Lesions in the lower part of IT (TE) lead to lasting deficits in the
learning of new visual discriminations and the recollection of previously learned memories
(Dean 1976) while lesions of intermediate temporal cortex (TEO) impair the visual
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discrimination of objects per se whether the discriminanda differ in color, orientation,
brightness, pattern or shape (Ungerleider and Mishkin 1982; Mishkin et al. 1983).

3. DORSAL PATHWAY. The dorsal pathway can be subdivided into two streams: (i) a
dorsomedial stream involving the parieto-occipital visual area (PO) and area PG (or 7a) in
the inferior parietal lobule (IPL), and (ii) a dorsolateral stream involving areas MT and
MST as well as the lateral intraparietal areas. Neurophysiological explorations of the
parietal areas (Mountcastle et al. 1975) have shown that they process complementary
aspects of space. The dorsolateral pathway processes visual motion (MT), with more and
more integrated aspects (MST). The dorsomedial pathway seems to be involved in coding
the location of visual stimuli for spatial orientation, spatial perception (Lamotte and Acuna
1978) and visual guidance of hand movements (Ungerleider and Mishkin 1984;
Weiskrantz and Saunders 1984). For example, in area 7a, neurons can combine
information on the retinal location of visual stimuli and on the position of the eyes in the
orbits possibly to locate visual targets in a head-centered space (Andersen and
Mountcastle 1983; Andersen et al. 1985). The two subsystems can contribute to the
control of eye movements: MST neurons for smooth pursuit, 7a neurons for fixation and
area LIP for programming saccadic eye movements (neurons can hold in short-term
memory the metrics of planned eye movements in motor coordinates) (Hyvarinen 1981;
Andersen et al. 1985).

4. Computer-based studies of pattern recognition (particularly alphanumeric patterns) has
focused on methods such as: (1) Template matching: the simplest way to recognize
patterns would be to match each incoming pattern against the set of stored templates. Not
only does this method need a previous “cleaning up” of the image to normalize the
patterns in size, angle ..., but also it is not satisfactory for generalization processes; (2)
Feature analysis: it would be more efficient to discriminate patterns by dealing with the
combination of local features which can distinguish one from another. But descriptions of
patterns in terms of a set of mini-templates, such as a Pandemonium system adapted from
Selfridge (1958), will fail on capturing overall structural relations. It will confuse patterns
built up from common local features, but globally organized in a different spatial
arrangement (like a “T” and a “L”); (3) A more flexible representation of patterns is
provided in humans by language: a set of symbolic propositions can describe the
components of a pattern, making explicit the structural arrangements of these primitives.
This symbolic approach has often been attempted in Artificial Intelligence, but the main
problem lies in the necessity for human to make an a priori cognitive description of what
is pertinent to recognize a particular pattern and what is not.
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More recently, neural network approaches have tried to get rid of these top-down
inferences. It is the network itself which provides, by learning from examples, the adequate
configuration of local primitives to discriminate each pattern from the others. Various
global properties such as parallel data processing, noise suppression and associative recall
can be used to improve performance. However, Invariant Visual Recognition is typically
not an emergent property of these networks and thus particular models have been
proposed to improve Invariant Visual capabilities: combination of AND/OR functions
with increasing receptive field size (Fukushima 1988), graph matching with short-term
plasticity (Bienenstock and Von der Malsburg 1987), networks with Sigma-Pi units
allowing autocorrelations (Glünder 1987).

5. Mathematical studies have stressed the interesting properties of distributed
representations of information as synaptic weight in a group of neurons (Kohonen 1988).
Information about visual images can be represented by the distribution of active neurons
in a form of associative memory (Rolls 1990). Associative memories have nice
computational properties such as completion of novel patterns, content addressability,
resistance to noise and degradation, and generalization.

Description of the model

Network architecture. The architecture is a Y-like multi-layered network organized in six
maps along four sequential processing stages which model the main functional steps of
the actual cortical areas (Fig. 3.2). The two low-level stages are learning-independent and
the two high-level stages are learning dependent: (i) Primary areas perform low-level
processing, such as elementary feature extraction, on the retinal information; (ii)
Secondary areas perform more elaborated processing using larger receptive fields, but still
with a retinal reference frame; (iii) Associative intermediate areas relate the resulting
pattern of activity with the (iv) highest-level steps which store the learned prototypes.
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Figure 3.2. Visual areas of the primate. Visual information is first processed by V1 and
V2 and then by two major pathways: a ventral pathway toward the inferotemporal lobe
rather involved in object recognition and the dorsal pathway toward the parietal lobe rather
involved in localization and motion detection. The figure shows some important functional
steps in each stream: V4 and IT subdivisions (TEO, TEp, TEa) in the ventral pathway, PO
and PP (including 7a and LIP) in the dorso-medial pathway and MT and MST in the dorso-
lateral pathway (From Otto et al. 1992).

All the units in a given map perform the same type of local processing on the afferent
information flow. They are classified according to three kinds of indice (which correspond
to the dimensions of the processing maps in Fig. 3.3: (1) topographic (X,Y) (2) local
indice l and (3) global indice g:

- The topographic indice defines the ordered relations between the successive maps: two
neighboring units in a given map have two neighboring receptive fields in the afferent
map. This topography becomes less precise along the processing hierarchy. This index
corresponds to the two planar coordinates (X,Y) labelling the relative location of each unit
in its respective map and consequently the location of its retinal receptive field.

- The local feedforward indice (l) labels the specific filtering process that each unit
performs on the sensory information. For each topographic indice (X,Y), four units (l = 4)
of the Primary Sensory Area (PSA) detect four orientations of edges modeling the tuning
properties of the cortical columns in striate and extrastriate cortices: horizontal (H), vertical
(V) and the two diagonals (D1,D2). Units of the Secondary Sensory Area (SSA) detect six
combinations of orientations (l = 6) with larger receptive fields: (HH), (VV), (D1D1),
(D2D2), (HV) and (D1D2). Such extraction evokes simplified models of complex and
hypercomplex cells found in the striate and extrastriate cortices. This organization with 3
indices is maintained in the Associative areas.
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- The global feedback index g, found only in the Associative maps tAA and pAA,
characterizes units receiving feedback links from groups coding a given prototype g in the
Semantic maps. These feedback links will allow the association between a configuration of
local features (l, through feedforward links) and a given prototype (g, through feedback
links) within the associative map to be learned. After learning, a pattern presented on the
retina will activate a configuration of local features l and this ascending information will be
matched with the stored internal representations.

- The first three dimensions (X, Y, l) are maintained in groups of neurons coding for
different prototypes (g) in the Semantic maps (semi-distributed coding), but with still
larger receptive field sizes (less precision on X and Y). In these maps, a pattern (for
example, a particular view of a given prototype) is thus not encoded in a single unit, but is
encoded by a population, i.e. is reflected in the pattern of activity across this population of
units coding for different relative positions, orientations and other characteristics of the
same prototype. The summed population activity will be the same for various views of a
prototype, even if at the level of the single cells (or automata) the pattern of activation can
be different and reflects the particular characteristics of each view. Recognition of a
prototype corresponds to a strong population activity in the corresponding cell cluster, and
if several groups are simultaneously active, the discrimination is made through a winner-
take-all mechanism.

The response in the WHERE branch is also the result of a population code. The units vote
for a given position (upper left / upper right / lower left / lower right) with a strength
proportional to their activation. Since they model populations of neurons in the parietal
stream which project to structures commanding eye movements, a vectorial sum of the
activities can be interpreted as a shift command to reset a pattern on the fovea.

Processing units, neural processing, and learning rule. The processing unit is a column-
like units with 3 divisions, corresponding to the classical division of vertical dimension of
the cortex: supragranular (layers II and III), granular (layer IV), and infragranular (layer V
and VI) divisions. The unit combines three types of inputs:

- Feedforward (or bottom-up) inputs, in the intermediate division (modeling cortical
granular layer IV), from previous stage units, providing sensory information from the
outside world that has already been subject to selective filtering through previous
processing steps;
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Figure 3.3. Architecture for invariant pattern recognition. The global architecture of the
network is Y-like shaped with a WHAT pathway performing pattern recognition and a
WHERE pathway encoding the location of the pattern (From Otto et al. 1992).

- Feedback inputs from higher stage units (modeling top-down effects), in the upper
division, which control the ascending flow of information by a gating or an inhibitory
effect which is determined by both previous learning and the internal state of expectation
of the system;

- Lateral inputs provided by neighboring units, in the upper division, which can become
either excitatory or inhibitory, depending upon the differential activities of the units,
modeling the intracortical balance between columns.

The processing unit produces two kinds of outputs:
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- The upper division (modeling the supragranular cortical layers) makes local connections
with surrounding units of the same map and long-range connections to other maps;

- The lower division (infragranular cortical layers) projects outside the network to other
structures involved in oculo-motor commands or generates the feedback connections for
selective control of the incoming information provided by lower maps.

Interactions between feedforward and feedback connections through reciprocal
connections between the Associative map and the Semantic map in both WHAT and
WHERE pathways (i.e. between tAA and tSA and between pAA and pSA), are used for
learning. Connections between RETINA and PSA, between PSA and SSA, between SSA and
the two Associative Areas (tAA and pAA) involve only feedforward connections and are
thus not influenced by learning. Local connections are not used in this model.

Each unit in each area combines information entering in its divisions i (1≤i≤3)
according to

u i ( t )   =  F [ ∑
j =1

n i
   w i

j ( t )  x i
j ( t )  ]

and

y i ( t )   =  F [ ∑
j =1

N
  ∑
k =j +1

N
   Q i

j k ( t )  u j ( t )  u k ( t )  + ∑
j =1

N
   L i

j ( t )  u j ( t )  ] ( 3 . 2 )

This two-step transformation has been described in chapter 2 (Equations 2.1 and 2.2).

Initially, receptive field weights are pretuned as described in the previous paragraph. All
linear interaction coefficients are equal to 1, excepted the feedforward coefficients in
associative maps (tAA and pAA), which are chosen randomly and vary according to



ΔQ i

j k ( t , t + 1 )  =   y i ( t - 1 ) [ - λ u k ( t - 1 )  +  µ u k ( t - 1 ) u j ( t ) ]

ΔL i
j ( t , t + 1 )  =   y i ( t - 1 ) [ - λ u j ( t - 1 )  +  µ u j ( t ) ]

 ( 3 . 3 )

where λ and µ are parameters. This rule expresses that the feedforward coefficient would
(i) increase when a feedforward output is followed by a feedback input; (ii) decrease when
a feedforward output is not followed by a feedback input. Practically, it means that
associative units will change their transmission to the semantic maps with an increase
when a positive association occurs (feedforward activation followed by a feedback input),
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a decrease when a negative association occurs (no feedforward activation followed by a
feedback input).

Behavior of the model

Training set. The learning corpus is constituted of a set of 28 binary patterns digitized in a
12x12 grid (the 26 capital letters of the alphabet plus two geometrical figures: triangle and
diamond). During the learning session, a given pattern is presented once on the central
part of the retina. At the same time, all the units in both Semantic Areas are inactive
excepted those corresponding to the adequate prototype (uniform population activation
over all the local indices l of the prototype g) and its location (uniform activation
corresponding to a centered position), which are forced at an active state. Information
propagates in the whole network according to the connectivity and the functional rules
both in the bottom-up direction (through feedforward connections) from the retina to the
two associative areas and in the top-down direction (through feedback connections) from
Semantic Areas down to Associative Areas. At the level of the Associative Areas, the two
flows interact and build up by learning the excitatory or inhibitory learning coefficients
which correspond to the internal representations of the external pattern. In accordance with
the differences in the receptive field size between the two branches of the network, two
schemes of internal representations (Fig. 3.4) are obtained at the end of the learning
session:

- in the Temporal Associative Area (tAA), the model has associated each prototype with a
set of local features with their relative spatial arrangement. This maintained configuration
of local features will allow patterns to be differentiated during the recognition session;

- in the Parietal Associative Area (pAA), although the local features of each pattern have
been detected as well, their relative positions have been mixed by wider receptive fields: the
local features have been spread and thus learned everywhere in the Associative Map.
Ambiguous patterns built up with the same local features, but in a different spatial
configuration (like a square and the letter 'H') will thus be confused. However, they will
always be localized, whatever their position on the retina.
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Figure 3 .4 . Learning coefficients in temporal and parietal associative areas. This figure
compares the two sets of learning coefficients stored in the feedback connections from the
Semantic areas down to the corresponding Associative ones: they store two "internal
representations" (represented within the same map: dark squares only for the temporal
coefficients and dark squares plus grey ones for the parietal ones) of the 28 learned
prototypes. Each prototype (p) is coded in a cluster of 4(X)x4(Y)x6(i) processing units
(semi-distributed coding, with 6 blocks of 16 units for 6 features HH, D1D1, VV, D2D2,
HV, D1D2 in 16 positions). Black squares signal for both (i) the basic features componing
each learned prototype and their topographical location (X,Y). Notice that an adequate set of
features is extracted in both the WHAT and WHERE pathways, but their relative positions
(spatial configuration) is maintained only in the Temporal Associative map (From Otto et
al. 1992).
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Size invariance. During the recognition session, the network reaches its stable state in one
time step and gives a response in the two Semantic Areas. Figure 3.5 shows that the model
has a recognition rate of 100% when the patterns are presented in the same conditions as
in the learning set (size 12, at the center). Figure 3.5 also shows that, when the size is
decreased by 25% (from size 13 down to size 9), the network also responds with a very
satisfactory rate (superior to 70%) for varying sizes. Other investigations using smaller
sizes for the learning set show that the recognition rates for patterns with increasing or
decreasing sizes are roughly symmetrical with respect to the learned one. Thus moderate
size invariant properties are obtained in the temporal branch.
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Figure 3 .5 . Performances of the temporal pathway: effect of changing size only. After
the 28 patterns have been learned at one size (size 12, 24x24 pixels) and in the central
position, they are presented, during the recognition session, in the central position, but
with varying sizes: from a size 13 (26x26 pixels) down to a size 3 (9x9 pixels). Notice that
the recognition rate remains above 70% despite decreases from the learned size of up to 33%
(From Otto et al. 1992).

Shift invariance. The pattern, with the learned size (size 12 = 24x24 pixels) is allowed to
vary in location, from one side to the other of the retina, on both the vertical and horizontal
axes (corresponding to a shift up to 6 pixels on each axis and in the two directions). The
model shows a very interesting invariant recognition rate: it remains superior to 70% for a
translation on RETINA corresponding to the size of the receptive fields of the Temporal
Associative Area (|δx| = 4 and |δy| = 4 pixels on RETINA). This effect is due to the
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convergent connectivity. Thus moderate shift invariant properties are obtained without
ocular movement.

Parieto-temporal cooperation. Figure 3.6 shows the behavior of the Y-like network when
both size and location of the presented pattern are changed (for each size from 13 to 3, the
pattern is presented in all the locations over the retina). When the pattern is not too small,
the WHAT branch can perform direct recognition at different locations, mainly around the
center of RETINA: the positions of the patterns where this direct recognition is satisfactory
are represented in Fig. 3.6 by the darkened squares. In this case (temporal satisfaction),
the WHERE computation is performed in parallel in the parietal branch, but is not used for
recognition. A recognized pattern finally results in a well-contrasted pattern of activity in
the Temporal Semantic area (tSA). We consider that the overall effect of this Temporal
activity is inhibitory on the output from the WHERE branch (driving the ocular command).

By contrast, failure of recognition corresponds to spread of activities within the
Temporal Semantic map (tSA), without any emergent well-contrasted pattern. The overall
effect on the WHERE branch is considered as an excitatory gating effect on its oculomotor
output. The WHERE branch has already extracted a global location of the pattern displayed
on the retina (population coding). The output effect of the Parietal areas toward the
structures that command the extraocular muscles (colliculus, FEF) is modeled by a vector:
the population code is transformed into a motor command (vectors shown in Fig. 3.6)
which drives the movement to be performed to reset the pattern in the foveal region.

Figure 3.6 shows that the WHERE branch not only computes the good direction, from
the target location toward the center of the visual field, but also calculates an amplitude
which increases, in a step-like fashion, with the eccentricity of the target: the greater the
eccentricity of the target, the larger the amplitude of the resetting vector.

Discussion

This model proposes a computational solution to the invariant recognition problem -
invariance in size, invariance in position - which is based on neurobiological knowledge.
The invariance property in the whole visual field mainly comes from the cooperation
between two regions which are known to extract two different information, one which has
limited invariant capacities for object recognition in the center of the visual field and the
other which can extract object locations in the periphery and drive eye movements to reset
the pattern in the central region.
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Figure 3.6. Cooperation between temporal and parietal pathways. With the same learning
paradigm as in Fig. 3.4 and Fig. 3.5, a pattern is presented during the recognition session
with varying sizes and position shifts on the retina of up to -10/+10 “pixels”. This figure
shows the behavior of the double-branched network for a prototype (here the capital letter
“X”) presented with one size (size 10, 20x20 pixels) in all the positions (in the upper
quarter of the retina, the other quarters can be deduced by symmetry). Dark squares represent
the positions where the pattern is directly recognized by the WHAT branch. Arrows
represent the vectorial population coding of an ocular movement performed in the WHERE
branch when the WHAT branch fails to recognize the pattern. Notice that these vectors
contain the directional information needed to reset the pattern closer to the positions where
it is directly recognized (dark squares). Furthermore, the amplitude of the vector increases
with the distance of the pattern from the center (From Otto et al. 1992)

A Y-like double branched network allows these two aspects (form and location) to be
extracted, with an optimal trade-off between precision of recognition and invariant
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capabilities in each branch which is due to a differential distribution of receptive field sizes
and visual field representation in the two streams. Invariant capabilities in the central part
of the visual field are due to the increase in the receptive field size along the successive
steps of the WHAT pathway. These steps have clearly different functional roles since only
the associative area has the optimal trade-off between the size of the receptive fields and
the maintenance of spatial configuration of features to learn patterns efficiently. A semi-
distributed coding of information allows a limited number of prototypes to be represented
in the network by independent neuronal groups: each neuron can optimally learn a specific
feature of a given prototype and different views of the same prototype are represented by
different patterns of activation within the same neuronal group. The lamination of the local
cortical circuits in input-output divisions allow information along each stream to be
integrated (through feedforward processing), local features and prototypes in the
associative areas to be associated (through feedforward and feedback interactions), and the
functional cooperation between the two branches to be achieved (through lateral
interactions). The learning rules of these units are based on conditional probabilities
(consequence of a multicellular circuit) which allow immediate learning.

As in other models (Rumelhart et al. 1986), the learning signal is provided by a
feedback flow of information. But in this model, the feedback connections do not send an
abstract error signal, but rather neuronal activities representing the top-down expectations
of the system. Furthermore, these feedback projections are modifiable by learning,
providing a semi-distributed storage of the learned prototypes which will be matched
during the recognition session with the incoming patterns.

The only adaptive connections in this model are feed-back connections that are
modifiable in either excitatory or inhibitory direction. Lateral and long range connections
could also be adaptable with similar learning rules (Bouthkil and Burnod 1992). They
could introduce supplementary controls on the recognition process.

This model illustrates the importance of several features of cortical organization for
solving a difficult computational problem (invariant recognition): (i) The columnar
organization allows distributed interactions between two flows of information
(feedforward and feedback) and the construction of a distributed long-term memory for
objects; (ii) Packing of information in terms of primary and secondary indices provides of
efficient and economical mean for neuronal processing and neuronal storage; (iii)
Adaptive gating (Equations 3.2 and 3.3) is an efficient mechanism for the formation of
long-term memory representations.
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4 GENERAL DISCUSSION

This chapter illustrates the consistent relationships between principles of cortical
organization and emergent properties of cortical networks in the visual system. Starting
from a common retinal input, different functions are expressed depending on the nature of
primary and secondary indices.

At early stages of visual processing, primary indices corresponding to retinotopic
mapping are predominantly represented and secondary indices correspond to parallel
processing of submodalities (for instance different filtering processes). Information flow
has two components: a feedforward and a lateral one. Neuronal interactions can be viewed
as local correlations within or between indices, as in perceptual grouping process.
Transformations result in a spatial anatomical reordering of topography and in a function
change. However, the reordering is respectful of retinotopic coordinates, which remain the
primary indices.

Higher level functions, such as recognition, are related to combinations between several
flows of information and to the use of non-retinotopic representations. In this case,
functional changes are correlated with a transition from retinotopic to object coordinates.
In these new coordinates, computation cannot be described in terms of filtering processes,
since neighboring relations are no longer significant. At this level, receptive fields can
correspond to the convergence toward a grand-mother cell, which computes the
“population” code over the field (as in the WHAT branch). In the WHERE branch, the
population code is not related to object coordinates, but to local retinotopic indices within
object representation, which carry coarse-coded information on spatial location. In the
following chapter, another type of population code is presented based on the vectorial
contribution of each neuron to the direction of the movement (Georgopoulos et al. 1986).

It is important to note that the population code is informative on the behavior of a group
of neurons, but may not be explicitly computed, i.e. no single neuron responds as the
whole population. It means that the representations derived from a transformation are used
for successive processing steps keeping with the simultaneous and parallel mapping of
parameters and operations.
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CHAPTER 4

From Retinal to Arm-centered Reference Frame

Contents
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2 Coordinates transformation

Description of the model
Behavior of the model
Discussion

3 Operant learning of the direction of a movement
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Discussion

4 General discussion

Summary

This chapter presents two models, which illustrate cortical computation in an arm-centered reference
frame. The goal of both models is to control a set a broadly tuned neurons indicating the direction of the
movement. In the first model, the movement is aimed at a visual target and the neural network learns
sensory-motor correspondences between vision, arm position and movement toward the target, through
spontaneous movements. The operation which is learned by the network can be approximated by a
bilinear combination, which can be interpreted as a projection of the visual information on a reference
frame which rotates with the arm. In the second model, the movement is oriented toward a goal arbitrarily
defined by a reward. Learning the correct movement depends on the acquisition of conditional relations
between incoming signals and results in a multiplicative transformations. Both models rely on
multiplicative neuronal interactions, but for different reasons. They show that learning of visually guided
movement and goal-directed movement can result from similar adaptive processes, and illustrate the
generality of cortical processing.

1 INTRODUCTION

Following integration through the visual system, visual information arising from retinal
stimulation can be used to guide movement toward targets in space. Cortical networks and
mechanisms involved in this transformation are not fully identified and are under intensive
investigations (review in Caminiti et al. 1992). However, an important computational
constraint has been clearly identified: the direction of movement is represented by a
population code in a set of broadly tuned neurons (Georgopoulos et al. 1986; Caminiti et
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al. 1991). Accordingly, controlling the direction of the movement requires the acquisition
of the relationship between behavior of single neurons and behavior of a population.

This chapter describes two models corresponding to two modes of control of
movement: (1) A model for the computation of the direction of a movement toward a target
(Burnod et al. 1992); (2) A model for the operant learning of the direction of a goal-
directed movement (Guigon and Burnod 1993). In both cases, the training follows the
logic of operant conditioning: spontaneous behaviors, which modify the environment, are
used to discover the correct sensory-motor correspondences.

These models illustrate interactions between incoming flows of information for the
control of an output map organized around a continuous parameter (direction of
movement). Following the principles exposed in chapter 2 and used in the previous
chapter, transformations are characterized by a neuronal network with a specific
organization and specific processing and adaptive columnar properties.

2 COORDINATES TRANSFORMATION

In order to bring the hand to a desired position in space, the cortex must transform visual
information related to the target location and kinesthetic information related to arm
position into an appropriate motor command of the reaching hand. Cortical areas involved
in the control of reaching behavior in the primate are the primary motor cortex (M1), the
premotor cortex (PM), the supplementary motor area (SMA), and the posterior parietal
cortex areas 5 and 7 (review in Johnson 1992). Neurophysiological studies on arm
movement direction toward visual targets have shown that neural activity in the motor
(Georgopoulos et al. 1986; Caminiti et al. 1991), premotor (Caminiti et al. 1991) and
parietal cortices (Kalaska et al. 1990) is broadly tuned around a particular direction of
movement, the cell's preferred direction. Furthermore, the direction of the movement is
precisely predicted by a population vector constructed from the vectorial contribution of
each neuron along its preferred direction. Recently Caminiti et al. (1991) have shown that
the cell’s preferred direction changes with the position of the arm. However, the
population vector computed from the preferred direction vectors over a group of cells
always predicts the direction of the movement, whatever the position of the arm in space.

On the basis of these data and of principles of cortical computation (chapter 2),
Burnod et al. (1992) have proposed a neural network model to perform coordinates
transformations. The main characteristics of this model are: mapping of input and output
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parameters, adaptive tuning and adaptive gating in two feedforward information flows,
population code.

Description of model

The network (Fig. 4.1) is made of two maps (matching and synergy). Matching units are
cortical column-like units with 3 input/output divisions, which receive three kinds of input:
(i) a visual input representing the direction of the desired trajectory toward the visual
target; (ii) a somatic input representing the current initial arm position; (iii) a feedback
input composed of the outputs of the synergy units. Each synergy unit also receives three
kinds of inputs in three divisions: (i) a feedforward input from the matching units; (ii) a
lateral input from other synergy units, and (iii) a feedback input from somesthetic
receptors activated by the movement. Synergy units project to “motor output units”
modeling motor units in the spinal cord.

Following Equations 2.1 and 2.2 (see chapter 2), neural processing is performed in two
steps, for each division i:

u i ( t )   =  F ( ∑
j =1

n i
   w i

j ( t )  x i
j ( t )  ) ( 4 . 1 )

and then

y i ( t )   =  F [ ∑
j =1

N
  ∑
k =j +1

N
   Q i

j k ( t )  u j ( t )  u k ( t )  + ∑
j =1

N
   L i

j ( t )  u j ( t )  ] ( 4 . 2 )

where ui  is the result of the filtering process in channel i and yi  the output of the channel
i. Rules for modifications of registration coefficients are the following:

1. Coefficients w are modified by adaptive tuning according to

Δw i
j ( t , t + 1 )   =  λ [ σ x i

j ( t )   -  w i
j ( t )  ] y i ( t - 1 )  u i ( t )  ( 4 . 3 )

where λ and σ are parameters. This rule allows the coefficients to be adjusted around
values that correspond to the most probable input within division Di  when this division
has been previously active.



67

somatic 
input

visual 
input

synergy units

matching units

motor 
units

movement

feed-forward input

visual input

somatic input

feed-back input

strong lateral input

weak lateral input

Figure 4.1. Architecture of the neural network modelling the operations performed by the
cerebral cortex for visuomotor transformations. The processing units model the cortical
column, with inputs and outputs organized in layers. A set of synergy units and a set of
matching units are reciprocally connected. Each synergy unit addresses a motor command to
a subset of motor units, whose contraction produces a vectorial effect on the hand position.
A matching unit receives sensory information from two sources: a somatic input (on its
somatic layer-division) which encodes the initial arm position, a visual input (on the visual
layer-division) which codes for the desired trajectory and feedback information (on the
feedback layer-division) from active synergy units. Each matching unit projects to synergy
units. Synergy units receive a feedforward input from matching units a lateral input from
other synergy units and a feedback input from peripheral receptors (not shown in the
figure). Input connections to synergy and matching units are adaptive and are tuned by the
feedback loop produced by spontaneous movements. (From Burnod et al. 1992).
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2. Coefficients L and Q are modified by adaptive gating according to



ΔQ i

j k ( t , t + 1 )  =   y i ( t - 1 ) [ - λ u k ( t - 1 )  +  µ u k ( t - 1 ) u j ( t ) ]

ΔL i
j ( t , t + 1 )  =   y i ( t - 1 ) [ - λ u j ( t - 1 )  +  µ u j ( t ) ]

 ( 4 . 4 )

Equation 4.4 allows conditional interactions between incoming information flow to be
captured. Accordingly, the division coefficient Li

j  becomes maximal when division Dj  has
an unconditional influence on division Di (see chapter 2) . On the other hand, the inter-
division coefficient Qi

jk  increases when interactions between Di  and Dj  are conditional to
activation of another division Dk . Different values of L and Q coefficients correspond to
different processing operations such as AND and OR operations.

Behavior of the model

The network learns self-consistency between sensory and motor signals through
spontaneous movements (Kuperstein and Rubinstein 1989). Associations between
synergy signal (output), kinesthetic signal (arm position), and reafferent visual signal
following a spontaneous movement are stored in filtering (w), linear (L), and bilinear
coefficients (Q) in a distributed fashion (Equations 4.3 and 4.4).

After training, visual inputs (corresponding to a target in space) are able to trigger
synergy units activation that produce a population vector indicating the direction of the
movement, taking into account the initial position of the arm. The operation which is
learned by the network can be approximated by a bilinear combination, which can be
interpreted as a projection of the visual information on a reference frame which rotates
with the arm. The bilinear combination is sufficient to predict the cortical activity before
reaching both at the level of single neurons and at the level of the whole neuronal
population. Neural circuits converging toward a single neuron in the motor cortex learn to
predict the vectorial effect of the synergistic contraction of muscles on the hand trajectory
by generalizing the result of few trials in 2D subspaces, but not in the whole 3D space.
The population of cortical neurons can compute the appropriate command in the whole 3D
space thanks to the fact that the distribution of cell preferred directions is uniform in this
population
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Discussion

This model illustrates a “cortical” solution to a problem of coordinates transformation.
The solution corresponds to an internal representation of sensory-motor self-consistency
and is produced by emergent properties of a network of cortical column-like units.
Appropriate control of the neuronal population results from two columnar adaptive
mechanisms: (1) Adaptive tuning (Equation 4.3) allows the filtering properties of
matching units on incoming signals to be adjusted; (2) Adaptive gating (Equation 4.4) is
responsible for the acquisition of a bilinear operation in matching units.

Besides its explicative and predictive value (discussion in Burnod et al. 1992), this
model points to a general form of multimodal neuronal combination. When two
independent flows of information can be related by a third one through self-consistency,
the fusion of the two flow can be obtained by extracting the geometrical properties of the
self-consistency relation. The same type of model can thus be used for other types of
coordinates transformation, such as coordinates transformation for saccadic eye
movements in the superior colliculus (Gazeres 1993).

3 OPERANT LEARNING OF THE DIRECTION OF A MOVEMENT

Output maps can be controlled either through self-consistency of visuo-motor
input/output relationships as shown in the previous section, or through arbitrary
consistency defined by a goal. In the latter case, learning occurs by progressive
adjustments to external requirements. In this section, we first review recent studies
describing quantitative variations in brain activity during acquisition of simple behavior or
change of behavior. It concerns mainly primates (monkeys and humans) and comes from
different recording techniques (brain potentials, cortical fields, single unit recordings).
Then we describe a model of a simple task, which illustrates a way to control the direction
of a population vector (and thus of a movement) by local adaptations in each neuron of the
population (Guigon and Burnod 1993). The main components of this model are: mapping
of output parameter, adaptive gating in two feedforward information flows, population
code (Table 2.2).

References

1. Burnod et al. (1982) have described the short-term changes in neuronal activity in
motor and parietal areas during the operant acquisition of self-initiated flexion movements.
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Monkeys were trained to perform a flexion movement from a starting position to a final
predetermined angular sector without visual control. The size of the sector was
progressively reduced in order to increase the precision of the movement. During the
training session, the manner in which the movements were performed gradually changes.
At the beginning, movements were made by progressive adjustments until the correct
angular position was reached. As learning proceeded, the movement amplitude became
more precise, the intervals between movements more regular. The performance rate
(number of rewarded movements per unit of time) increased with training. The
relationships between neuronal activity of movement-related cells and movement changed
with the performance rate: as the performance improved, the neuronal activity became
more closely time-locked with the onset of the movement. This modification reflects an
increase in the conditional probability of discharge of neurons in relation to the beginning
of the movement. Reward-related cells also change their activity with learning in such a
way that, after learning, termination of activity strongly predicts a new movement.

2. Using a different technique, Sasaki and Gemba (1982; Gemba and Sasaki 1984) have
described cerebral field potentials in various areas during the acquisition of a skilled
conditioned movement. Monkeys were instructed to lift a lever by wrist extension within
the duration of a light stimulus, duration which depends on the stage of the learning
process. Premovement potentials in the different areas were found to develop with
learning. At early stages of learning, monkeys lifted the lever randomly and short-latency
responses to the stimulus were found in striate, prestriate, premotor and prefrontal
cortices. Early premovement potentials (s-P, d-N) appeared in the motor cortex once the
monkey started to perform correctly. As the performance improved, late premovement
potentials (s-N, d-P) developed in the motor cortex. Steady responses were observed in
the final stages of training. Sasaki and Gemba have shown that the late premovement
activity in the monkey motor cortex is related to cerebello-thalamo-cortical connections.

3. Long-lasting, learning-dependent changes in brain activity are thus observed in different
cortical structures when an animal is operantly trained to execute a skilled movement.
Correlates of the performance of skilled movements have also been found in humans,
using movement related brain macropotentials (MRBMs; Papakostopoulos 1978;
Chiarenza et al. 1983, 1990). These potentials were recorded when subjects perform self-
initiated skilled movements and received visual feedback on the performance
(Papakostopoulos 1978). Different potentials have been characterized corresponding to
ongoing behavior: (i) The Bereischaftpotential (BP; Kornhuber and Deecke 1965) is
observed in precentral regions well before the movement (~1s). It precedes the muscular
activity and reflects preparatory processes of the movement; (ii) The motor cortex potential
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(MCP; Papakostopoulos et al. 1975) appears in the precentral regions with EMG activity.
It may be regarded as an index of sensory reafferent activity (Papakostopoulos et al.
1975); (iii) The skilled performance positivity (SPP; Papakostopoulos 1978) is a
postmotor potential observed mainly in parietal regions. It appears during skilled activity
in relation to a feedback on the behavioral efficiency.

4. Developmental studies have shown that MRBMs undergo age-dependent changes. In
one study (Chiarenza et al. 1983), the MRBM correlates of motor performance of 6 to 13
year-old subjects were analyzed. Although EMG activity was independent of age, brain
potentials were found to vary significantly with age. Whereas characteristic potentials (BP,
MCP, SPP) were present in older subjects, younger subjects lacked BP and showed a
smaller SPP.

Description of the model

The following task is used to illustrate the acquisition of a simple goal-directed behavior.
A monkey is operantly trained to perform arm movements in the horizontal plane from an
initial central position to the periphery in such a way that the final hand position is in a
given angular sector (Fig. 4.2A). We have chosen a task in which the controlled variable is
the direction of the movement since simple representation of movement direction has been
found in motor cortical areas of the monkey (Georgopoulos et al. 1982). For a sake of
simplicity, we do not consider the amplitude of movement.

We consider a network of n units (Na ,1≤a≤n) each tuned for a preferred direction
pa (bold characters are used for vectors)  in such a way that the vectors pa  are uniformly
distributed in the 2D horizontal space (Fig. 4.2B). At each time t, each unit Na  contributes
to the direction of the movement in proportion of its activity a y(t) along its preferred
direction pa . The resulting movement is characterized by the direction d(t) according to

d ( t )  =  
1
n  ∑

a=1

n
ay ( t ) p a ( 4 . 5 )

Each unit Na  in the network has two input pathways, which enter in two divisions (the left
index is used for the unit, the right index for the division):

- One for a contextual signal, indexed 1 (a x1 ). This signal is different at each time and for
each unit. It corresponds to the ability of the network to generate all possible behaviors (all
directions of movement).
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- One for a drive/reinforcement signal, indexed 2 (a x2 ). We have assumed that the same
pathway can convey both the neural correlate of an internal motivational state related to the
expectation of a reward (Toates 1986) and the effective reward. The drive/reinforcement
signal is the same for all units (Fig. 4.2B).

A B

y 1 y 2 y i y n

x 11 x 21 x i1 x n1

x 12 x 2
2 x i2 x n

2

p 1
p 2 p i

p n

d

Figure 4.2. Neural network model for the acquisition of a goal-directed behavior. A . The
drawing is a schematic description the task used to illustrate acquisition of a goal-directed
behavior. The goal of the task is to move the arm (represented by two connected lines)
between an initial central position (thin line) to a peripheral position (thick line) in the
shaded angular sector. B. The neuronal network used to model the acquisition of the task is
shown. Each neuron has two input pathways (x), indexed 1 and 2, and one output pathway
(y). Thin dashed arrow at the center of a neuron represents the preferred direction of the
neuron (see Text). Thick dashed arrow is the population vector.

The pathways are either active or inactive, the corresponding signal being 1 or 0,
respectively. Following principles of chapter 2, cortical processing can be approximated
by weighted additive contributions of each input and weighted multiplicative contributions
of pairs of inputs. The unit Na  is thus activated according to

y ( t )  =  F [ L 1 ( t )  x 1 ( t )  + L 2 ( t )  x 2 ( t )  + Q 1 2 ( t )  x 1 ( t )  x 2 ( t )  ] Z ( t )

( 4 . 6 )

where L1  and L2  are the additive coefficients of pathways 1 and 2, respectively, Q12  the

multiplicative coefficient between pathways 1 and 2 (we have omitted the right index in
reference to the unit), and F the stochastic output function defined by
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F ( u )  =  


1  w i t h   p r o b a b i l i t y   g ( u )
0  w i t h   p r o b a b i l i t y   1 - g ( u )   g ( u )  =  

1
1 + e - γ ( u - φ )  

where γ and φ are parameters. The term Z(t) corresponds to the influence of the population
of units on unit Na  through lateral interactions, and is defined by

Z ( t )  =  c o s ( p a  , d ( t ) )

(cosine of the angle between vectors pa  and d(t)). Note that Equation 4.6 corresponds to
Equation 2.2. Learning coefficients are likely to change between time t and t + 1 according
to



L 1 ( t + 1 )  =  L 1 ( t )  +   g 1 ( x 1 , y , t )

L 2 ( t + 1 )  =  L 2 ( t )  +   g 2 ( x 2 , y , t )

Q 1 2 ( t + 1 )  =  Q 1 2 ( t )  +   g 1 2 ( x 1 , x 2 , y , t )

 ( 4 . 7 )

where g1 , g2 , and g12  are functions which define coefficient variations, and with the
initial values L1(0) , L2(0) , Q12(0) . These relations express that additive coefficients are

specific to one pathway, whereas the multiplicative coefficient is related to the two
pathways. The behavior of the network is fully described by Equations 4.6 and 4.7.
Arbitrary activation of the input pathways 1 and 2 at time t produces a movement in the
direction d(t) predicted by Equations 4.5 and 4.6. If the movement is in the intended
angular sector, the drive/reinforcement pathway is activated at time t+1. Learning
coefficients in the network are then modified according to Equation 4.7. The contribution
of each unit to the correct movement is measured by the quantity y(t)x2(t+1) , which is
non-zero if activation of the neuron (y(t)) has been followed by a reward (x2(t+1) ).
Similarly, the contribution of the neuron to an incorrect movement is measured by y(t)[1 -
 x2(t+1) ]. In order to be efficient for the acquisition of the task, modification of learning
coefficients must depend on both quantities. The consequences are the following:
1. The additive contributions (L1 , L2 ) do not provide efficient adaptation since the context

pathway (indexed 1) has an unconditional influence on the network (which does not
depend on the reward). However, the contribution of the drive/reinforcement pathway
alone (indexed 2) is likely to produce adaptation if the learning coefficient is changed
according to

ΔL 2 ( t , t + 1 )   =  y ( t ) { λ x 2 ( t + 1 )   -  µ [ 1 − x 2 ( t + 1 )  ] }
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where λ and µ are parameters. It predicts that the coefficient would increase by λ for
correct movements and decrease by µ for incorrect movements. A steady increase occurs
when the neuron frequently contributes to the movement in the correct direction.

2. The multiplicative contribution provides the most efficient adaptation, since the
multiplication coefficient can register the probability of occurrence of the reward
conditionally to a specific context according to

ΔQ 1 2 ( t , t + 1 )   =  x 1 ( t )  y ( t ) { λ x 2 ( t + 1 )  - µ [ 1 − x 2 ( t + 1 )  ] } ( 4 . 8 )

where λ and µ are parameters. Equation 4.8 states that the multiplicative coefficient would
increase by λ if the context pathway has contributed to a rewarded movement and would
decrease by µ if it has contributed to a non-rewarded movement. Before learning, all
contexts can equally contribute to the production of a movement. After learning, only
those which have been repeatedly involved in correct movements can still contribute to the
network response. Acquisition of the task occurs with repetitive pairing of some randomly
selected context pathways and the drive/reinforcement pathway. Since each direction of
movement is related to a specific context input (Fig. 4.2B), multiplicative coefficients can
store precise conditional relations between the context and the reward. Equation 4.8 is a
form of adaptive gating derived from Equation 2.5.

Behavior of the model - Simulations, results and predictions

Figure 4.3 depicts results obtained by computer simulations. We have chosen N = 16, and
an the intended angular sector (60°, 115°). All learning coefficients were initially at 0.5.
The training consisted of 30 blocks of 10 trials, where a trial corresponds to the activation
of the network, the measure of direction of the resulting movement and the delivery of a
reward for a correct movement. For each trial, we noted whether it was correct or not and
we recorded the activity and the variation in learning coefficients in each neuron. The
performance rate was computed using the percentage of correct responses in successive
blocks of 10 trials (trials with no movement were not taken into account). For each neuron,
individual trial activity and variation in the learning coefficients were average by block of
10 trials. Figure 4.3 illustrates the results for the case of multiplicative contribution of the
two input pathways. The monotonic increase in the performance (open circles) rate
reflects progressive acquisition of the correct behavior (Fig. 4.3A). Variations in activity
and learning coefficient in two neurons are displayed in Fig. 4.3B and 4.3C:
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- A neuron whose preferred direction is in the intended angular sector (Fig. 4.3B) displays
a learning-dependent increase in activity (crosses) correlated with the increase in the
learning coefficient (solid circles).

- No development of activity is observed in a neuron whose preferred direction is not
directed toward the correct sector (Fig. 4.3C).

The model emphasizes the following characteristics of the acquisition of a goal-directed
behavior:

- The observed behavior of the network can be quite similar at early and late phases of
training. The network can produce the correct response at the beginning of the training.
The difference between early and late training period is not a matter of ability to succeed in
a given trial, but rather of ability to reach a good performance criterion. This interpretation
is consistent with the surprising experimental observations that show that the development
of performance seems to precede the development of activity (Watanabe 1990; Mitz et al.
1991). Sasaki and Gemba (1982) observed that some activity became differentiated earlier
than the performance. It was true for sensory processes, but not for activity related to the
production of the response (early and late precentral potentials) which appeared only when
the monkey starts to perform correctly (Sasaki and Gemba 1982).

- Increasing activity in network occurs in parallel with the acquisition of the task
(Fig. 4.3B). The model suggests that the changes in neuronal activity are likely to be
described by changes in conditional probability encoded in learning coefficients of the
network (Fig. 4.3B). This interpretation provides a simple way to relate distributed
information processing in a neuronal network and execution of a global action. Changes
observed in motor areas of the cortex during learning are likely to be explained in this way
(see References).
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Figure 4.3. Acquisition of a goal-directed behavior. Quantitative variations in the level of
performance (A), in normalized neuronal activity and in normalized learning coefficients (B
and C) for the neuronal network described in Fig. 4.2A. B and C  are the results for two
neurons, whose preferred direction is indicated by the thick arrow at the right of the graph.
A block = 10 trials. The parameters are the following: λ  = 0.5, µ  = 0.15, γ  =  8.0 ,
φ  = 0.5, L1(0)  = L2(0)  = Q12(0)  = 0.5.
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Discussion

This model shows that a goal-directed behavior can be stored in a set of neurons using a
mechanism based on operant conditioning. However, acquisition is not likely to occur
when considering only unconditional contribution of input pathways. Successful learning
is observed when conditional interactions between incoming signals are stored. In this
case, a memory is constructed which contains a statistical approximation of conditional
probabilities related to the production of the behavior (for instance, movement followed by
a reward).

It is important to note that Equations 4.4 and 4.8 do not give a specific role to the
reward. Any signal following a neuron’s activation can be used as a reward. This
observation stresses that conditioning can operantly occur on any reafferent signal
matching the intended effect of an action. Similar “self-consistency” constraints have
been used in the model described in the previous section (see also Burnod et al. 1992): the
desired hand trajectory was operantly learned as the sensory effect (visual trajectory) of a
motor command. This property is interesting regard to the ability of humans to learn with
the expected effect of their action rather than with an absolute reward (Chiarenza et al.
1990).

4 GENERAL DISCUSSION

In the previous chapter, processing was driven by incoming visual information in a retinal
reference frame. The main constraint was to capture the diversity of input activity and to
form invariant internal representations. On the other hand, network models of the present
chapter are characterized by the constraint on their output organization. These models are
based on the broad directional tuning properties of motor cortex neurons and on the
property of the population vector to predict the direction of the movement. In both cases,
computational solutions are based on principles of cortical computation exposed in
chapter 2. This observation is important since it means that vision problems and motor
performance problems may be solved using similar neural computation on adequate neural
architectures.

Both models are trained using natural sensory-motor correspondences. In one case,
these correspondences are related to consistency in visuo-motor transformations and may
be found during spontaneous movement under visual control in critical periods of infancy
(Hay 1984). The other case makes use of a conditioning protocol, which defines arbitrary
correspondences. Similar adaptive mechanisms are used in both models, based on a neural
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analog of operant conditioning (Equations 4.4 and 4.8). The fact that the same rule of
plasticity may be used during development and conditioning is an interesting property,
which recalls results in the visual cortex (Singer 1987).

A novelty provided by these models is the training protocol. Generally, neural networks
are trained following the logic of classical conditioning: learning can occur even when the
output of the network is incorrect, the output being unconditionally given by the teacher.
On the other, the present networks learn the consequences of their action on the
environment (visual reafference or reinforcement). Practically, the mechanism of adaptive
gating allows the excitability of neurons which have been involved in the production of the
intended response to be modified in such a way as to increase their involvement in future
responses. In the same way, neurons involved in the production of incorrect responses
may be depressed. After modification, the correct response is more surely and more
frequently evoked, reflecting the conditioning process. As a correlate, neurons involved in
the response undergo learning-dependent increase in activity.
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CHAPTER 5

Modeling Prefrontal Functions

Contents
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Activities after learning
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Modeling others tasks
Rule-coding units - Higher-level modeling
A rule for prefrontal units
Reinforcement
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A rule for sensory-motor units
Prefrontal vs. sensory-motor processing
Procedural vs. declarative: different memory systems

Summary

We investigate and compare the computational properties of neuronal circuits in the network linking the
prefrontal cortex with sensory, motor and limbic structures, in order to address the issue of the role of the
prefrontal cortex in the temporal organization of behavior. The main characteristics of prefrontal neuronal
activities, both during acquisition and execution of a task by behaving monkey, can be explained as the
product of two factors: (i) a learning rule based on the control of sustained activities, which is proposed as
the main property of prefrontal neuronal circuits; (ii) and a specific stage-by-stage conditioning program.
A simulated neural network illustrates the abilities of the model: (i) to learn, with a natural stage-by-stage
training protocol, the paradigmatic task (delayed response) used for testing the prefrontal neurons in
primates (ii) to display the same categories of neuronal activities and to predict how they change during
the acquisition of the task. Consistently with experimental data, two main types of activity (1 and 2)
contribute to the adaptive properties of the network. Type 1 units display transient activity time-locked to
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events of the task and their profile keeps constant in the successive training stages. In Type 2 units,
sustained activity undergoes non monotonic changes and decreases with changes in reward contingency
that occur during transition between stages.

1 INTRODUCTION

In the present chapter, we address issues concerning the involvement of the prefrontal
cortex and connected sensory and motor structures in the acquisition and the execution of
sequential behaviors by the means of a computational model. After reviewing recent data
on the prefrontal cortex, we describe a set of neurobiological and psychological data which
emphasize the properties of prefrontal circuits and those of circuits in connected sensory
and motor cortices (inferotemporal cortex, posterior parietal cortex, frontal motor areas).
This characterization is taken as the basis to define modeling constraints (indexed 1 and 2,
for sensory-motor circuits and prefrontal circuits, respectively). The constraints concern
representation of information, connectivity and neural processing in these cortical
structures. They are expressed following the principles of chapter 2, and are used to the
construction of a neuronal network, which allows to explore and simulate the functions of
these brain structures.

The properties of the model are illustrated by computer simulations which show the
behavior of the neuronal network when it is trained to execute a typical sequential behavior
(delayed response task). This task has been chosen because it has been well documented
in non-human primates by a number of neurophysiological and neuropsychological
studies and because it appears to strongly challenge prefrontal functions for both learning
and execution of the task (Jacobsen 1935). Results concern both the execution of the task
and the learning session (modulation of activity). The model suggests that involvement of
the prefrontal cortex in the temporal organization of behavior can be related to the ability
of prefrontal circuits to learn the control of a pattern of sustained activity, and allows
precise predictions on learning-dependent changes in neuronal activity in the prefrontal
cortex. We discuss these points in relation to experimental observations and current
theories of prefrontal functions.

Although we address a restricted range of prefrontal functions from a restricted point a
view (a specific behavioral task), we suggest that the model effectively captures a class of
intrinsic properties of prefrontal circuits, which would help to define involvement of the
prefrontal cortex in more complex or more “cognitive” behaviors.
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To our knowledge, no models have provided computational accounts of the adaptive
properties of prefrontal circuits related to the acquisition of behavioral tasks. The aim of
this model is to describe a way to store and retrieve sensory-motor sequences in a
neuronal network, which is consistent with anatomical and physiological properties of the
prefrontal cortex and connected sensory and motor structures. The model will allow to
address issues on the contribution of the prefrontal cortex to temporal organization of
behavior. It will also provide a basis to compare the participation of several anatomical
structures to the acquisition and execution of complex behaviors.

2 PREFRONTAL CORTEX

The goal of this section is to present some recent experimental results and theoretical
issues concerning the organization and the role of the prefrontal cortex. Since there is a
great amount of data, no exhaustive review is provided. For complete reviews, the reader is
referred to the more recent synthesis works (Goldman-Rakic 1987; Fuster 1988).

Anatomical organization

The prefrontal cortex (PFC, or frontal agranular cortex, frontal association cortex) is
defined as the part of the cerebral cortex which receives projections from the mediodorsal
nucleus of the thalamus. In the monkey, it is limited by the arcuate sulcus in the
dorsolateral surface and by the anterior extremity of the cingulate sulcus in the medial
surface.

The PFC has been described as a region of cross-modal integration (Jones 1969;
Barbas and Mesulam 1985; for a review, see Fuster 1988). It receives projections from
higher-order, modality-specific sensory cortices and from polysensory cortex in the
superior temporal sulcus. Since the prefrontal cortex cannot be considered as a uniform
entity and is connected to a great number of cortical and subcortical structures, we will
focus on some functionally important interactions.

Connections to the posterior parietal cortex. Parcellation of the prefrontal cortex by
parieto-prefrontal projections can be described in the following way (Cavada and
Goldman-Rakic 1989; Neal et al. 1990; Tanila et al. 1993): (i) Area 7a, which is involved
in visual and visuomotor functions is connected to the fundus of the principal sulcus and
the superior convexity of area 46; (ii) Somatosensory area 7b projects to the inferior bank
of the principal sulcus; (iii) Area 7m has both somatosensory and visual functions and is
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connected to superior bank of the principal sulcus; (iv) Oculomotor area 7ip is connected
to the caudal part of the principal sulcus. Schwartz and Goldman-Rakic (1984) have
shown that parieto-prefrontal projections terminate in a feedforward pattern (i.e. in layers
I, IV, and VI) while reciprocal connections are feedback projections (layers I and VI). The
role of these parieto-prefrontal connections may be to provide the prefrontal cortex with
visual and visuospatial information. Goldman-Rakic (1988) has argued that the parieto-
prefrontal pathway is an important pathway for the guidance of hand and eye movements.

Connections to the inferotemporal cortex. Inferotemporal projections have been shown to
terminate in the inferior parts of the prefrontal cortex, including the inferior bank of the
principal sulcus, the cortex inferior to the principal sulcus, and the orbital surface (Barbas
and Mesulam 1981; Barbas and Mesulam 1985; Ungerleider et al. 1989). Ungerleider et
al. (1989) have noted that all inferotemporal fibers projecting to the prefrontal cortex
course via the uncinate fascicle. Functionally, integrated information concerning properties
of visual stimuli are thus likely to be provided to PFC circuits.

Connections to cortical motor structures. The prefrontal cortex can influence the motor
cortex through projections from the ventral bank of the principal sulcus to the inferior area
6 (Matelli et al. 1986), which is itself strongly connected to M1 (Muakkassa and Strick
1979). On the other hand, superior area 6 where most recordings have been made
(Caminiti et al. 1991; Mitz et al. 1991) is only indirectly linked with prefrontal and motor
cortices (Barbas and Pandya 1987).

Connections to basal ganglia. Indirect influence on motor structures is provided by
cortico-subcortical projections. Alexander et al. (1986) have proposed a functional
description of interactions between frontal lobe areas and basal ganglia structures in terms
of loops. Each loop connects a cortical area to itself through striatum, pallidum or
substantia nigra, and thalamus back to the cortex. Such an organization appears as a
substrat for parallel processing of cortical information through segregated pathways.

Other connections. The prefrontal cortex receives important projections from the
hypothalamus, the amygdala and several brain stem structures, directly or indirectly
through the thalamus (review in Fuster 1988). These structures have been shown to be
involved in the control of behavior (McGinty and Szymusiak 1988) and should inform the
PFC about processes of arousal, attention, feeding, reward.

Columnar organization. Cortico-prefrontal connections have been shown to terminate in
vertically oriented columns (Goldman and Nauta 1977a; Goldman-Rakic and Schwartz
1982). Columns were labelled across all cortical layers and labelled columns alternate with
free columns on the cortical surface. This finding is surprising since columnar
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organization is generally associated with the topographical mapping of a peripheral
receptor such as in visual and somatosensory cortex.

Regional distribution of function. A strong correspondence between afference distribution
and functional properties of dorsolateral prefrontal neurons has been recently
demonstrated (Bruce 1988; Tanila et al. 1993). Visual, auditory and somatosensory
responses are distributed in respect to the parcellation of the dorsolateral surface by
associative cortical afferents.

Visual responses are broadly distributed in the prefrontal cortex, but a topographical
organization can be recognized: foveal visual field is represented below the principal
sulcus whereas the peripheral visual field is represented above (Suzuki and Azuma 1983).
This organization reflects the underlying anatomical relationships since (i) the
dorsomedial part of the periprincipal area is strongly connected to the posterior parietal
cortex which is specialized for spatial processing; (ii) the ventrolateral part is the recipient
of IT inputs, specialized for foveal form/pattern processing. Oculomotor (eye position-,
fixation-, and saccade-related) responses are found in both banks and caudal part of the
principal sulcus, and in the dorsal convexity. These regions are known to be connected to
parietal areas 7a and 7ip.

The preferential distribution of auditory responses in the cortex superior to the
principal sulcus (Azuma and Suzuki 1984; Vaadia et al. 1986) is consistent the projections
from the auditory association cortex (Pandya et al. 1969) and the polysensory cortex of
the superior temporal sulcus. However, neurons are unselective for particular sounds.

Somatosensory responses (passive stimulation of skin and mouth, compression of
muscle, passive movements of joints) are found mainly in the region ventral to the
principal sulcus, which is connected to somatosensory and motor areas (Preuss and
Goldman-Rakic 1989). However, no somatotopy is observed (Tanila et al. 1993).

These results are consistent with anatomical pathways converging to the prefrontal
cortex. Such a correspondence between anatomical and physiological properties suggest
that prefrontal neuronal activity can be explained in part by the characteristics of afferent
information to the frontal lobe. However, one should not forget the difficulty to reconcile
anatomico-physiological and lesion-induced functional parcellation (Rosenkilde 1979).

Neurophysiological studies

Most of the single unit recordings in the prefrontal cortex have focused on the role of this
cortex in temporal integration of sensory and motor events. The pioneering studies have
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investigated the area of the principal sulcus in monkeys performing delayed-response
tasks (Fuster and Alexander 1971; Fuster 1973; Kubota et al. 1974; Niki 1974c) and
delayed-alternation task (Kubota and Niki 1971; Niki 1974a; Niki 1974b). The main
result of these studies was that neuron firing is related to more than one event of the task.
Since, a wide variety of paradigms have been used [delayed-matching to sample
(Rosenkilde et al. 1981; Fuster et al. 1982; Fuster et al. 1985; Quintana et al. 1988; Yajeya
et al. 1988; Quintana et al. 1989; di Pellegrino and Wise 1991), go/no-go tasks (Komatsu
1982; Thorpe et al. 1983; Watanabe 1986; Bakay Pragay et al. 1987; Niki et al. 1990),
delayed conditional position discrimination (Niki and Watanabe 1976; Quintana et al.
1988; Yajeya et al. 1988; Quintana et al. 1989), reaction time procedures (Sakai 1974;
Sawaguchi 1987), visual tracking task (Kubota and Funahashi 1982), oculomotor tasks
(Joseph and Barone 1987; Barone and Joseph 1989; Funahashi et al. 1989, 1990, 1991)].

Classical results on delayed response tasks. Fuster (1973) has proposed a descriptive
classification of patterns of activity. This classification reflects the temporal relationships
between task event occurrences and neuronal activity. Two other aspects are of importance
for understanding neuronal discharge: the relation to the characteristics of events (color,
form, position of cues, kinematic and dynamic parameters of responses) and the relation to
behavioral patterns (anticipation, expectation, preparation, memory). Following this
classification, cue-related (Fuster 1973; Niki 1974c; Kubota et al. 1980; Fuster et al. 1982;
Watanabe 1986a, 1990), delay-related (Fuster 1973; Niki and Watanabe 1976a,b; Fuster
et al. 1982; Kojima and Goldman-Rakic 1982; Watanabe 1986a), response-related
(Kubota and Niki 1971; Kubota et al. 1974; Niki 1974a,b,c; Niki and Watanabe 1979;
Kubota and Funahashi 1982; Ono et al. 1984; Watanabe 1986b; Quintana et al. 1988; see
also Watanabe 1986b for activity during no-go response), and reward-related (Niki et al.
1972; Rosenkilde et al. 1981; Fuster et al. 1982; Inoue et al. 1985) activities have been
characterized in the PFC (see review in Fuster 1988). Color selectivity has also been also
found (Fuster et al. 1982; Kubota et al. 1980; di Pellegrino and Wise 1991; Quintana and
Fuster 1992).

Involvement in delayed oculomotor responses. The involvement of prefrontal neurons in
memory guided responses has been shown to extend to oculomotor behaviors. Joseph and
Barone (1987) have first proposed that prefrontal neurons should be studied during
oculomotor behaviors, in which eye movements are programmed. They have shown that
the dorsolateral prefrontal cortex is active during oculomotor delayed responses (Joseph
and Barone 1987), and that some neurons may be involved in spatial short-term memory.
Using an 8-choice spatial oculomotor delayed-response task, Funahashi et al. (1989, 1990,
1991) have demonstrated that: (i) Prefrontal neurons have memory fields, i.e. they display
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a selective delayed activity for the position of the instructive stimulus in the visual space
(Funahashi et al. 1990). This result extends the classical results obtained with two-choice
paradigms; (ii) Prefrontal neurons display directionally specific phasic visual responses to
cues, in register with the memory field. The visual input to the PFC participates to the
directional selectivity of memory fields, but delay-related activity is not a simple
continuation of cue-related activity (Funahashi et al. 1989); (iii) Prefrontal neurons exhibit
directionally pre- and post-saccadic activity. Post-saccadic activity is context-dependent
and is thus not likely to be related to a corollary discharge (Funahashi et al. 1991). These
results are of importance since they emphasize that similar mechanisms seem to underlie
the expression of different types of memory-guided behavior (manual and oculomotor).

Information code in prefrontal neurons. In the prefrontal cortex, some neurons respond
to complex visual stimuli (Pigarev et al. 1979), other to a simple spot of light (Mikami et
al. 1982; Suzuki and Azuma 1983); furthermore, neurons have been found to be
insensitive to changes in the physical characteristics of a visual stimulus: color (Kojima
1980), size, intensity, position (Suzuki and Azuma 1977). Moreover, some prefrontal
neurons exhibit differential responses to relevant vs. irrelevant stimuli (Yajeya et al. 1988).
It means that operations performed by prefrontal circuits seem to reflect more the
integration of visual information in the behavior than a specific visual operation (like
filtering, for example). When neurons are studied in two tasks involving similar stimuli
(DMS and DR in Fuster et al. 1982; DMS and DCPD in Quintana et al. 1988) very few
neurons give similar response to the same stimulus in the two tasks.

These results have lead to the conclusion that some prefrontal neurons code the
meaning of a stimulus independent of its physical properties. The meaning may be
spatial (Watanabe 1981), non-spatial (Watanabe 1986a). This meaning reflects either: (i)
an association with a behavioral response (which response is instructed by the stimulus?).
It determines the “behavioral significance”of the stimulus; or (ii) an association with the
predictive value of the stimulus concerning the reinforcement (will it be followed by a
reward?). It is the “associative significance” of the stimulus. Neural correlates of
“behavioral significance” have been reported by Watanabe (Watanabe 1981; Watanabe
1986a).

Thorpe et al. (1983) first reported units in the orbitofrontal cortex related to the
appetitive or aversive nature of a visual stimulus. Watanabe (1990) found strong neuronal
correlate of associative significance. In this study, monkeys were involved simultaneously
in two tasks: a direct task and the corresponding reversal task. Some neurons (Type M)
responded differentially to the same first stimulus (thus no local context could help to
determine the response) if the monkey was currently executing a block of direct or
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reversal trials (Watanabe 1990). Watanabe (1990) also found more complex units (type
MP) which were neither solely related to the physical properties of the stimulus nor solely
to its meaning.

Post-trial activities. Studies of prefrontal neurons have generally reported “intra-trial”
activities (i.e. related to cue, delay, movement, ...). “Inter-trial” activities, occurring before
the instruction or after the behavioral responses, are also of interest since they should
reflect more general aspects related to the control of the behavior. Different types of post-
trial activity have been observed: (1) Juice-related activity. Such a response is observed in
some neurons whenever juice was delivered, irrespective of whether it was given as reward
or not (free reward; Inoue et al. 1985; Kubota and Komatsu 1985; Niki et al. 1972; Niki
and Watanabe 1979; Rosenkilde et al. 1981; Thorpe et al. 1983). Since activity disappears
with aversive food, it should be related to sensory properties of the reward; (2)
Reinforcement-related activity. A reinforcement-related unit responds only when the
reward is given for the correct response and does not respond to free reward (Inoue et al.
1985; Thorpe et al. 1983). It corresponds to reinforcing properties of the reward per se;
(3) Error-omission-related activity. In this case, neuronal activity is observed during
erroneous trials. Interestingly, the same activity is observed during correct trials when the
reinforcement is omitted (Niki and Watanabe 1979; Rosenkilde et al. 1981; Komatsu
1982); (4) Reinforcement-error-related activity. The response is observed after both
correct and erroneous responses and show differential activity after correct and erroneous
trials (Kubota and Komatsu 1985; Niki and Watanabe 1979; Rosenkilde et al. 1981;
Thorpe et al. 1983). This activity may be involved in coding the consequence of the
response; (5) End-of-trial-related Activity. Activity changes whenever the trial ended,
irrespective of whether it was correct or not, and irrespective of whether the reward was
given or not (Kubota and Komatsu 1985; Rosenkilde et al. 1981).

These patterns should very likely be involved in behavioral control since they closely
reflect important behavioral state (error, omission, termination) of the monkey.

Multimodal neurons. Polysensory units have been found in the prefrontal cortex
(Benevento et al. 1977; Wolberg and Sela 1980; Bruce and Goldberg 1985). These units
are similar to units found in the cortex of the superior temporal sulcus (Benevento et al.
1977; Desimone and Gross 1979; Bruce et al. 1981; Baylis et al. 1987; Hikosaka et al.
1988). Benevento et al. (1977) reported more than half bimodal units in the lateral
orbitofrontal cortex. Thorpe et al. (1983) confirmed these results in the awake monkey
(neurons selective for the same food in visual and gustatory modalities). Vaadia et al.
(1986) found in pre- and postarcuate areas with a similar tuning for auditory and visual
localization. Using visual and auditory association tasks, Watanabe (Watanabe 1992) has
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shown that prefrontal neurons are likely to code for the associative significance of a
stimulus. Some prefrontal and premotor neurons display cue-differential activity which
was specific for rewarded trials in both visual and auditory modalities. It means that
neurons respond to stimuli of different modalities, but which have the same associative
significance. On the other, no neurons were found related to the physical properties of the
stimulus whatever their modality. These units are found both: (i) in the region the lower
arcuate sulcus (area 45) and in the inferior convexity which are known to receive visual
and auditory association inputs (Chavis and Pandya 1976); (ii) in the region of the
principal sulcus and in the premotor cortex where no direct visual and auditory inputs have
been reported. The existence of multimodal units in the prefrontal cortex may be related to
the cross-modal aspect of prefrontal functions.

Learning-dependent changes in neuronal activities. Several forms of change have been
studied: (1) New learning experiments: the subject is required to adapt its behavior to
unknown new conditions. This learning scheme may be a learning-set paradigm, when the
task is defined by a rule (Harlow 1949); (2) Reversal experiments: the subject is first
trained to perform a conditional task (for instance, a GO/NO-GO discrimination task).
After a given performance level is reached, the discrimination is reversed (the GO signal
becomes a NO-GO signal) without warning the subject.

Niki et al. (1990) have described variations of neuronal activity in prefrontal and
premotor cortex during learning of new discriminations (new visual stimuli) and reversal
learning (see below). Monkeys were trained on a GO/NO-GO discrimination task with
several pairs of stimuli. Long-lasting alterations of activity were found when new stimuli
were used: activity increased for one stimulus whereas it did not change for the other
stimulus. These changes were evenly found in prefrontal and premotor tested areas. Niki
et al. (1990) observed that such learning-dependent changes occurred in neurons whose
activity was related to the forthcoming movement.

Neural correlates of reversal learning have been described in several neurophysiological
studies. Thorpe et al. (1983) trained monkeys to perform a visual GO/NO-GO
discrimination task and reversal. Three types of learning-dependent changes in neuronal
activity were observed in the orbitofrontal cortex (Thorpe et al. 1983): (1) Some neurons
reverse their response to visual stimuli when the monkey reversed his behavioral response,
reflecting the significance of the stimuli (rewarded or not rewarded); (2) Some neurons
kept responding in the same way, indicating a relation with physical properties of the
stimuli; (3) Some neurons stopped responding in the reversal condition. Since the reversal
task involves the same stimuli as the direct task, this modulation reflects a complex
interaction of physical properties and meaning of the stimuli.
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During reversal learning, Niki et al. (1990) observed two characteristic patterns of
variation: (1) Neurons which showed opposite discharge patterns for correct and incorrect
trials (Type 1) keep the same level of activity when the behavioral responses are reversed;
(2) Neurons which showed the same discharge patterns for correct and incorrect trials
(Type 2) reversed their activity with the reversal. Type 1 reflects a dependence on the
impending response whereas Type 2 is related to stimulus-response association.
Consistent results were obtained by Watanabe (1990). Indeed, Watanabe (1990) observed
that changing the “associative” significance of a visual cue (i.e., is it predictive of a
reward?) elicits learning-dependent decrease of neuronal activity in the small number of
units examined in prefrontal and premotor cortices.

Distribution. A majority of neurophysiological studies have reported a general lack of
topographical organization in prefrontal cortical areas. Furthermore, authors frequently
stressed that no clear regional differences in the distribution of cells types can be
observed. We have previously stressed that activity in prefrontal neurons is likely to be
defined by the underlying anatomical organization. However, such a proposal appears
correct for passive, but not for active neuronal responses. A possible reason of this
discrepancy may be related to the strong influence of behavioral context on prefrontal
neuronal activity.

Laminar distribution of task-related neurons has not been frequently reported. Sakai
and Hamada (1981) have shown that neurons displaying sustained activity have their soma
in layers III and VI while transient neurons are found in supragranular layers. Sawaguchi
et al. (1989a) have shown that neuronal activity related to motor performance is distributed
preferentially in the infragranular layers (V and VI) whereas activity related to visual
reception is distributed predominantly in superficial and middle layers (II-IV). These
results are in keeping with anatomical organization since: (i) Barbas and Mesulam (1981)
have shown that projections from the inferotemporal cortex to the PFC terminate in lower
layer III and layer IV; (ii) Deep layers of the PFC projects to the thalamus, caudate
nucleus, and superior colliculus, and are thus likely to participate to initiation or
preparation of a motor command.

Pharmacological tests

The relationship between anatomical locus and expression of delayed response behavior
has been studied with injections of pharmacological products. Sawaguchi et al. (1989b)
have shown that injections of bicuculline (antagonist of GABA) at different locus in the
periprincipal region during a spatial delayed response task lead to different patterns of
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error: (i) Injection in the dorso-caudal region. An increased frequency of directional error
is observed. The deficit is the same for both direction of response; (ii) Injection in the
bottom region of the middle part of the principal sulcus. Selective directional errors are
observed, probably related to a deficit in motor performance; (iii) Injection in the dorsal
region of the caudal principal sulcus. The deficit is characterized by omission errors, i.e. a
failure to respond during the go period; (iv) Injection in the dorsal bank of central caudal
principal sulcus. Prolonged intertrial intervals are observed. This study shows that the
processes involved in the correct execution of a DR tasks (detection of the spatial cue,
memory, detection of the go-signal, response) are likely to be disturb independently.

The action of several neuromodulators have been tested. Sawaguchi et al. (1990a,b)
have show that application of dopamine augments the activity of prefrontal neurons
involved in temporal integration of visual cues and motor performance based on short-
term memory (Cue, Delay, Go), whereas noradrenaline modulates activity of PFC neurons
that may be related to visual reception and behavioral states (Precue, non differential
Delay).

Local injections of selective antagonists of D1 dopamine receptors in PFC induced
error and increased latency in the performance of a memory-guided oculomotor task
(Sawaguchi and Goldman-Rakic 1991). The deficit was dose-dependent and sensitive to
the duration of the delay. No effect was observed on the performance of a control task
(visually-guided oculomotor task) stressing the specific role of dopamine receptor in
mnemonic processes.

Aou et al. (1983a) have shown that reward-related activity in the prefrontal cortex is
likely to be regulated by catecholamines (noradrenaline, dopamine). In contrast to
catecholamines, acetylcholine non specifically influences neuronal activity, whether related
to stimulus, bar press or reward (Aou et al. 1983b).

Metabolic studies

Recent studies with PET have shown a parcellation of the human prefrontal cortex similar
to that observed in non-human primates (Petrides et al. 1993a). Normal subjects were
tested in three tasks involving a series of cards with the same eight designs at various
positions: (1) a control task requiring to point to a given prespecified design on each card
presented; (2) a self-ordered task requiring to point to a different design on each card
without repetition; (3) a conditional task requiring to point to a design on each card
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according to a previously learned association rule. A significant increase in activation was
observed in the right mid-dorsolateral frontal cortex (areas 46 and 9) during the
performance of the self-ordered task whereas a more posterior region of the prefrontal
cortex (area 8) was active during the conditional task. These results are consistent with
lesions effects in monkeys. Lesion of the periarcuate region (area 8 and rostral area 6)
strongly impairs the performance of visual conditional tasks (Halsband and Passingham
1982; Petrides 1982), but has no effects on working memory tasks (Petrides 1991).

Working memory tasks activate the prefrontal cortex, unilaterally when it involves
stimuli (Jonides et al. 1993; Petrides et al. 1993a) or bilaterally with verbal material
(Petrides et al. 1993b).

Theoretical views

Goldman-Rakic (1987) has proposed that the prefrontal cortex is necessary for
expression of behaviors guided by representation or internalized models and not when the
behavior is guided by external stimuli. The mechanism of the prefrontal cortex is related to
a distributed system of interconnected neural networks. Specific functions would thus
come from dynamics of the system and interactions between independent networks, rather
than from a strictly hierarchical processing based on the convergence through association
regions. In a such a system, the “working memory” appears as a relevant concept which
characterizes the specificity of prefrontal functions (Goldman-Rakic 1988).

A theory of a supra-ordinate prefrontal function has been proposed by Fuster (1988) to
correlate a variety of anatomical, physiological and neurophysiological data. This supra-
ordinate function is the integration of temporally separate events into a purposive
behavioral structure (temporal contingencies). It necessitates at least two temporally
symmetrical functions: (i) a provisional or short-term memory which permits referring to
any event in a behavioral sequence to preceding events and to the original scheme of
action; (ii) a prospective function which is an anticipation of events and the preparation for
them (anticipatory set or preparation). The complementary function, proposed by Fuster,
is the control of interference.

Shallice (1988) has proposed that the central function of the frontal lobe is a
supervisory attention (SAS, Supervisory Attentional System) which allows to compete
with distractions. It can be seen as a general and hierarchically structured planning
program. Damasio (Damasio et al. 1990) has argued that the competence of the PFC is
related social behavior. Grafman (1989) has introduced a model of frontal-lobe knowledge
representation. In this model, managerial knowledge units (MKUs) are large-scale
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conceptual units, similar to those described for handling information in the framework of
Artificial Intelligence (script; Schank 1982). MKUs contain an overlearned sequence of
events that is retrieved automatically. When activated, MKUs manage the behavior by
executing or responding to a series of event under attentional control.

Modeling studies

Dehaene and Changeux (1989) have proposed a model of prefrontal circuits for the
acquisition of elementary rules of behavior. The network model has two levels of
organization (Dehaene and Changeux 1989): (1) Level 1 is a one-to-one input/output
network allowing correspondences between sensory inputs (object position, color) and
motor output (orientation toward the object). Synapses at level 1 are modified according to
the Hebbian/Anti-Hebbian rule; (2) Level 2 is made of a memory layer, with one-to-one
afferent and efferent connections with sensory and motor layers, respectively, and a rule-
coding layer, which modulates modality-specific (object position, color) afferent
connections to memory units. Input-to-memory synapses undergo Hebbian-like activity-
dependent changes, but are influenced by rule-to-memory modulation.

The behavior of the network with Level 1 only is strongly biased toward always
choosing the same response, whatever the correctness of the choice (in DR task). Due to
the anti-Hebbian component of the learning rule, the behavior reverses in a few trials and
develops a bias toward the other response The network performs at chance on DR and
DMS tasks. Activation of rule-coding units (Level 1+2) allows the selective extraction of
sensory features (position, color). Selective memorization is thus obtained by input-to-
memory connections and sustained activity due to excitatory self-connections. Active
memory units gate input-output relations for the choice. Learning consists in a search for
the correct pattern of activation of the rule-coding layer (through frequent random
modifications). The performance of the network is compared to the performance of human
babies and monkeys. With Level 1, the network performs in the same way as 7 1/2-9-
month-old babies and 1 1/2-2 1/2-month-old monkeys or prefrontal monkeys. On the
other hand Level 1+2 network is comparable to 12-month-old babies and 4-month-old
monkeys.

An interesting feature of this model is the use of a learning rule which allows to learn
sequences of events (triad synaptic; Dehaene et al. 1987). However, an important
limitation is related to the use of rule-coding units, which appear not very realistic at the
neuronal level.
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Dehaene and Changeux (1991) continued their modeling of prefrontal functions with
focus on the Wisconsin Card Sorting Test. Both theoretical analysis and neural modeling
are provided. An analysis in terms of rule-selecting machines allows to characterize the
way to succeed in WCST: (i) the ability to change the current rule rapidly when a negative
reward occurs; (ii) the ability to memorize previously tested rules and to avoid testing them
twice; (iii) the ability to reject some rules a priori by reasoning on the possible outcomes
of using one rule or the other. The network model has quite the same architecture as in the
model for the DR task, excepted that: (i) memory units do not directly activate output
units, but activate “intention” units, each coding for the choice of a reference card; (ii)
memory-to-intention connections are modulated by rule-coding units specifying the
sorting rule (color, form, number); (iii) the network is supervised by an “error” cluster
which becomes active when a negative reward is obtained and then transform the rule-
coding units into a “generator of diversity”. Negative reward leads to a short-term
depression of the connections of the currently active rule-coding unit.

This model extends the previous one (Dehaene and Changeux 1989) to a more
complex task. It is interesting to note that quite similar local mechanisms are used in both
models, but with different architectures. It argues for the fact that complex tasks do not
require more complex mechanisms than simple ones, but only more complex interactions,
in particular between internally generated signals.

Cohen and Servan-Schreiber (1992; see also Servan-Schreiber et al. 1990) have
developed a series of models, which address issues on the prefrontal functions in relation
to internal representation of contextual information and the role of the dopaminergic
system. Models of three psychological tests (Stroop task, continuous performance test,
lexical disambiguation) have been constructed using back-propagation-based neuronal
networks and rule-coding units. The effect of dopamine on neurons was modeled by an
action on the excitability function (modification of the relation between depolarization and
firing frequency) and results in specific disturbing effects resembling schizophrenic
performance. On the basis of these models, Cohen and Servan-Schreiber (1992) have
argued that schizophrenic behavioral deficits are likely to arise from a disturbance of the
dopaminergic neuromodulatory effect in the prefrontal cortex.

Of related interest are models concerning the generation of sustained activity as
observed in prefrontal neurons during delay tasks. Dehaene and Changeux (1989, 1991)
have proposed a solution based on neuronal circuits with recurrent excitatory connections
forming reverberant circuits. Units in a fully recurrent perceptron learn to produce
sustained activities of the type recorded in cortical neurons (Zipser 1991).
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General neural network models have been developed to address problems where
processing is critically linked to time. The simpler approach is to turn temporal sequences
into spatial patterns through delay-lines and to train the network with a standard
backpropagation algorithm (time-delay neural networks, Waibel 1989). Another approach
is provided by recurrent networks (Williams and Zipser 1989; Elman 1990). These back-
propagation-based networks can encode and retrieve on-line complex temporal sequences.
In order to have an on-line recognition, recurrent networks have been proposed, where
outputs are fed-back to the input layers: partially recurrent networks, with context units
(Elman 1990) or fully recurrent networks (Williams and Zipser 1989). However, these
networks have difficulties with variable delays between successive inputs, since they are
fed at clock times dependent on the internal dynamic of the network. Dynamic associative
memories have also been proposed (Amit 1988) for sequence retrieval. But their storage
abilities are related to a fixed delay and long sequences cannot be learned. Greater
flexibility is possible in guided propagation networks where units learn to predict the next
events from previous ones and from a dynamic context (Béroule 1988). In the model
introduced by Ans (1990) for learning of temporal sequences, recall of a sequence can be
evoked by the occurrence of a contextual item, and its reproduction can be driven
according to a varying rhythm.

3 DESCRIPTION OF THE MODEL

In this section, we first summarize a set of anatomical, physiological, and psychological
data on the prefrontal cortex and connected sensory and motor structures, in the form of 3
assertions. Each assertion reflects a major constraint to build a plausible model and
concerns (C0) training protocols for the acquisition of goal-directed behaviors;
(C1) sensory and motor structures connected to the prefrontal cortex; (C2) the
prefrontal cortex itself. Then, we give an interpretation of these constraints in the
framework of cortical modeling (chapter 2), in order to build a neural network model.

Modeling constraints

The three constraints are the following:

(C0) The training protocols used for the acquisition of sensory-motor sequences are
progressive stage-by stage procedures. Learning does not occur in a single stage, but
with a series of successive stages approaching the final performance.
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When animals are trained to perform complex sensory-motor sequences, their behavior is
progressively shaped by successive changes in reward contingencies. Once a given
behavior is established (as measured by the performance rate), changing the task rule is
responsible for the development of a new behavior, since the reward becomes contingent
to a new goal. Thus at each stage, a new behavior is built on the basis of previous abilities.

(C1) The prefrontal cortex receives integrated information from major sensory, motor
and limbic structures. Information in these structures connected to the prefrontal cortex
can be represented by a position code, along primary or secondary indices or
behavioral sensory or motor parameters within specific modalities, in direct relation to
sensory inputs or motor outputs. Processing in these structures should allow the
modulation of sensory inputs or motor outputs by behavioral conditions.

(C2) Connectivity of prefrontal circuits allow large interactions between sensory, motor,
and internal signals such as drive and reinforcement. The basic processing property of
prefrontal circuits is the control of a sustained activation as a basis of time integration.
The active character of prefrontal functions is related to a drive which determines the
ability to form new behavioral structures. The prefrontal cortex is sensitive to
reinforcement contingencies.

Representation of the external world

The constraint C1 stresses that sensory and motor variables can be organized in maps,
which reflect variations of the value of a parameter (form features, direction of movement)
across one or more dimensions of the biological substratum (Knudsen et al. 1987). As a
result units in sensory and motor structures (SM units) can be grouped in a one-
dimensional map along sensory or motor parameters. Information is represented by a
position code.

It has been frequently suggested that the same anatomical pathway is used for an
intended action and the effective realization of the action. For instance, a desired trajectory
can be represented in a body reference frame by the same group of neurons that code the
motor command. This property allows to give a simple role to SM units. The input of a
SM unit corresponds to the intended effect of the action resulting from the unit activation.
If the unit is related to the production of an arm movement, its input is the target of the
movement as defined by the inverse relation between the target and the movement. If the
unit is tuned for a sensory pattern, the unit’s output can be considered as an action which
centered the pattern on the receptor (for instance an ocular movement).
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In this model, we will not consider the detail of such sensory-motor transformations
(Burnod et al. 1992; Otto et al. 1992; chapters 3 and 4), but rather the way to integrate
them in a goal-directed behavior.

Network architecture

SM units are directly connected to the input and output pathways (I and O). On the other
hand, units in the prefrontal cortex (PF units) do not code a priori for specific patterns
(constraint C2). PF units have no direct relations with the external world, but interact with
it through SM units. In this sense, a set of PF units can be viewed, in the words of PDP, as
a hidden layer. The constraint C2 also stresses that PF units are connected to two specific
pathways: (i) a drive pathway D which is made active at the beginning of each behavior of
the network; (ii) a reinforcement pathway R, which is activated when a correct behavior is
produced by the network.

We can give the following formal description of a network of SM and PF units: (i)
Each SM unit is connected to a unit in the input pathway I and to a unit in the output
pathway O; (ii) Each PF unit is connected to the drive pathway D and the reinforcement
pathway R; (iii) Each PF unit projects to a subset of SM units; (iv) Each SM unit projects
to a subset of PF units.

This architecture allows general interactions between sensory and motor events.
Sensory events can activate a subset of SM units through the input pathway I, which
activate a subset of PF units. Activated PF units can in turn activate a subset of SM units,
producing for instance a motor event through the output pathway O. The range of possible
behaviors depends on: (i) The information available to SM units through input and output
pathways I and O; (ii) The ability of PF units to relate sensory and motor activations. The
function of such network is defined by the dynamics of processing units and the
adjustable connection coefficients between processing units. This is the object of the next
paragraph.

Rules for neural processing

In this paragraph, we describe the processing rules of SM and PF units, respectively.
These rules should not be chosen arbitrarily, but should be designed in close relation to
constraints C1 and C2. For a sake of simplicity, equations are written in relation to the
implementation of the network and we have omitted the terms related to the stability and
the convergence. A complete description is given in Appendix.
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Rule for SM units. Each SM unit combines information from an input pathway I and some
PF pathways and provides it to the output pathway O. The constraint C1 stresses that
activity of SM units is related to sensory or motor parameters (through I or O), but can
also be modulated by behavioral conditions (through PF). To allow such modulation, we
assume that SM units perform multiplicative combinations between inputs of different
origins. A unit with to two afferent pathways xI  and xPF  is controlled by the following

equation

y ( t )  =  F ( x I ( t )  x P F ( t )  ) ( 5 . 1 )

where y the output signal and F a binary stochastic function (see Appendix). Note that t is
a quantized time which describes the course of processing. We assume that the interaction
between the two pathways is not modifiable (no learning coefficient). Equation 5.1 is a
simplified form of gating (Equation 2.2).

Rule for PF units. The constraint C2 gives the characteristics of PF units. These units
differ from SM units for the following reasons: (i) They receives inputs from the drive
pathway D and from some SM units; (ii) They display sustained activations; (iii) They are
sensitive to a reinforcement signal. Figure 5.1A shows a unit with two input pathways x1 
and x2 , and a reinforcement pathway r, where pathways 1 and 2 can correspond either to

D or to SM. Activation is described by Equation 5.2:



A ( t )  =  M A X [ L 1 ( t ) x 1 ( t ) ,  L 2 ( t ) x 2 ( t ) ]

A ’ ( t )  =  M A X [ x 1 ( t ) ,   x 2 ( t ) ]  

and

y ( t )  =  


g [ A ( t ) ]   i f   y ( t - 1 ) = 0

e l s e  


g [ A ’ ( t ) ]   i f  A ’ ( t ) ≠ 0  
e l s e   g [ η y ( t - 1 ) ]

 ( 5 . 2 )

where g is the function defined by

g ( z )  =  


1  w i t h   p r o b   z
0  w i t h   p r o b   1   -   z  

where x1 , x2  are the input signals, L1 , L2  the learning coefficients, y the output signal

and η a parameter. Equation 5.2 is a similar to Equation 2.3, but it is written for two input
pathways. It expresses that the unit is likely to become active (y(t) = 1) for an incoming
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activation (A), to stay active for a while (with a probability ηy(t - 1)) and then to return to
rest (y(t) = 0) for a new activation (A’). Transitions between rest and sustained states
depend on the learning coefficients which are modified according to Equation 5.3, derived
from Equation 2.6 (adaptive timing):





L 1 ( t = 0 )  =  L 0

ΔL 1 ( t , t + 1 )  =   e 1 ( t ) [ -α x 2 ( t ) y ( t - 1 ) + β x– 2 ( t ) y– ( t ) r ( t ) ]

L 2 ( t = 0 )  =  L 0

ΔL 2 ( t , t + 1 )  =   e 2 ( t ) [ -α x 1 ( t ) y ( t - 1 ) + β x– 1 ( t ) y– ( t ) r ( t ) ]

 ( 5 . 3 )

where α and β are parameters and L0  the initial value of learning coefficients, x-1 , x-2  and

e1 , e2  are non conditional and conditional input traces, respectively, and y–  the output

trace (Sutton and Barto 1981; see Appendix). A trace allows to keep a non-zero value for
some period of time after the occurrence of a signal (see Fig. 5.1B; Sutton and Barto
1981). Figure 5.1B illustrates the behavior of the Equations 5.2 and 5.3. Equation 5.3
predicts that the learning coefficient L1  would successively (Fig. 5.1B): (1) decrease by α

when the sustained activation of the unit by the pathway 1 is terminated by activation of
the pathway 2 (e1(t) x2(t) y(t - 1)); (2) increase by β when a reinforcement signal occurs

(e1(t)x-2(t)y-(t) r(t)). The index I = α/β characterizes the comparative influence of

reinforced and non-reinforced behaviors. Before learning, coefficients are assumed to have
a low value. According to Equation 5.2, the unit has a low probability of becoming
activated (sustained activity). Repetitive presentations of a reinforced sequence lead to an
increasing learning coefficient. Thus, after learning, the unit becomes surely activated
when the first event of the sequence is presented, predicting the occurrence of a
reinforcement. In this formulation, we have assumed that only the transition to the active
state (sustained activity) is controlled by a learning coefficient. Equations 5.2 and 5.3
define the rule R2, which models operation and adaptation in prefrontal circuits.

This process is quite different from Hebbian learning since, in this case, Hebbian
conditions alone (pre- and postsynaptic activation) are ineffective in modulating the
learning coefficient. While the Hebbian rule is sensitive to temporal coincidence, the
present rule allows to store relations between non simultaneous events (through the
sustained activity and the traces). This rule defines the ability of PF units to mediate of
cross-temporal contingencies.
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Figure 5 .1 . Activation and learning rules for prefrontal units. Illustration of the
properties of Equations 5.2 and 5.3 (rule R2). A . The unit has two weighted input
pathways x1 (L1)  and x2 (L2) , a reinforcement pathway r, and an output pathway y. B.
Qualitative variations of the learning coefficient L1  when input, output and reinforcement
pathways are activated as shown in the tracings (thick lines). The input and output traces
(see Text) are shown on the same tracing that inputs and output respectively, with thin
lines. Note the conditions which elicit change in the learning coefficient: decrease with the
end of the sustained activity and increase with the reinforcement.

Training protocol - Example of the delayed-response task

Using the constraints C1 and C2, we have described a neuronal network and its dynamics
which allows: (i) the production of behaviors (Equations 5.1 and 5.2); (ii) the storage of
information (Equation 5.3). The main characteristic of neural network models is the ability
to learn with examples by modifying the values of connections coefficients between
processing units of the network (Rumelhart and McClelland 1986). Which examples are
given to the network, in what order they are given are questions which must be answered
using the constraint C0.

The constraint C0 emphasizes that stage-by-stage training protocols are used for the
acquisition of goal-directed behaviors. In the following, we will take the example of the
delayed-response task for illustration (see Fig. 2.5). Animals learn a delayed response
task by a protocol, which may be illustrated by at least three stages. 1) Initially, they would
learn to reach one of the two levers (movement) whenever they wish to and receive a drop
of liquid (reinforcement). Through learning, the lever becomes associated with primary
liquid reward and constitutes a conditioned incentive stimulus (drive) which, on the basis
of the thirst drive of the fluid-deprived animal, creates an internal motivational state
eliciting the movement (Toates 1986). 2) In the next stage, the animal is only allowed to
reach toward a lever after a trigger light (go signal) has come up. This light now
constitutes the incentive stimulus and determines the time of reaching. 3) In the final stage,
the instruction light (instruction stimulus) comes up before the trigger light and
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determines which lever needs to be touched after the trigger light. Thus, there is the initial
acquisition of the task contingency for stage 1, and there are two changes in reward
contingency when advancing to stages 2 and 3. Within each task, the task contingency
remains constant, but performance increases according to the respective learning
requirements. Although this three-stage protocol is greatly simplified in comparison to
real experimental training, it provides a functional description of major behavioral changes
which occur during the training of the monkey.

The successive learning stages can be described by a tree, as shown in Fig. 5.2. The top
of the tree is the drive and the leaves are the successive events of the sequence. The rule to
traverse the tree is to start at the top (drive) and to take the left branches before the right
one. Embedded boxes represent the sub-sequences built at each training stage. For each
box, there is a specific training set, involving the drive, the reinforcement and the events
proper to the box. The training set is repeatedly presented until a given performance rate
(reinforcement rate) is reached. Then the box is included in a bigger one corresponding to
the following training stage.

Such a training protocol is quite different from the protocols classically used for neural
networks. Generally, networks are trained using pairs of associated patterns (input/output
associations). The logic is that of classical conditioning: learning can occur even when the
output of the network is incorrect, the output being unconditionally given by the teacher.
Protocols used to train monkeys are more suitably described in the framework of
reinforcement procedures (Hinton 1987). In these procedures, the network is supervised
by a scalar signal corresponding to correct or incorrect behavior (for instance, 1 or 0,
respectively). In this case, the network must be able to produce sometimes the correct
behavior before any training (logic of operant conditioning).
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Figure 5 .2 . Tree representation of a sequence made of the successive following events:
drive, instruction stimulus, go signal, movement, reinforcement. The black circles are the
nodes of the tree, the white circles the leaves. The tree is first traversed from the right to the
left (leftward arrow) until a leaf is found. Different subsequences corresponding to the
successive training stages (1, 2, 3) are embedded in the tree when different terminations
(symbol //) are used (embedded boxes; 1. drive, movement, reinforcement; 2. drive, go
signal, movement, reinforcement; 3. drive, instruction stimulus, go signal, movement,
reinforcement).

4 BEHAVIOR OF THE MODEL - SIMULATIONS, RESULTS AND
PREDICTIONS

In this section, we present a quantitative evaluation of our model. We have performed
computer simulations of a neural network designed as explained in the previous section.
The network was trained to execute a delayed response task using a stage-by-stage
protocol. The results concern: (i) The global behavior of the network (as measured by the
performance rate); (ii) The behavior of units in the network (measured by units output
activation) both during the training and once the training is completed. While the behavior
of the network can be compared with the behavior of the monkey, unit activations can be
compared with available data on neuronal activity in the cortex of behaving monkeys.

Computer simulations - Methods

Network architecture and representation of events. We have used a network architecture
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corresponding to the general description of the previous section. The network is shown in
Fig. 5.3:

- The set of SM units is made of 8 units. Each unit (circle in Fig. 5.3) allows the
representation of an event through its afference from the input pathway I and its efference
to the output pathway O. Events may be redundantly represented.

- The set of PF units is made of 32 units, shared into 8 classes (squares in Fig. 5.3).

- Each class of PF units is reciprocally connected to one SM unit and receives non
reciprocal projections from two other SM units (the connection between a class and a unit
corresponds to connections to each unit of the class).

The events corresponding to a delayed response task trial are represented in input or
output pathways of the network (dashed boxes I and O; Fig. 5.3). The notations for the
task events are the following: (i) l-left and l-right: positions of left and right levers; (ii)
m-left and m-right: movements toward the levers; (iii) gs: go signal; (iv) i-left and i-right:
instruction stimuli. For a sake of clarity, events (and thus processing units) have been
grouped according to their order of appearance in the training protocol.

We have made the following assumptions: (i) A redundant representation is used when
the same event occurs in different situations (go signal); (ii) All the units in a given PF
class have the same relationships with SM units; (iii) There are no interfering events
excepted during the first training stage, where movements (m-left, m-right, m-3, m-4)
toward four levers (l-left, l-right, l-3, l-4) are possible (but only two are corrects). These
assumptions are discussed at the end of the section.

Training protocol. The training protocol was as shown in Fig. 5.4. It was made of three
stages (1, 1’+2, 2’+3) where stages 1, 2 and 3 correspond to those described in the
previous section and stages 1’ and 2’ are intermediary stages which allow the transition
between successive behaviors. Note that each trial began with the delivery of a drive signal
d and ended with a reinforcement signal r when the behavior is correct. A delay of length
δ (measured in relation to the quantized time step used in Equations 5.1, 5.2, and 5.3) was
introduced between the instruction stimulus and the go signal in the stage 3. The training
at each stage was performed until a correct and stable level of performance was reached.
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Figure 5 .3 . Architecture of the network for the acquisition of a delayed response task,
used for computer simulations. Circles correspond to processing units, squares to classes of
processing units (each class in made of 4 units). Thin arrows are for one-to-one connections
(between pathway I and SM units, between SM units and pathway O). Thick arrows are for
one-to-many and many-to-one connections. Arrows between SM  units and PF classes
indicates that each unit SMij  is reciprocally connected to each unit of the class PFij , and
projects non reciprocally to each unit of the class PFk j  with k = i - 1 and k  =   i  +  1 .
Arrows between D and PF classes indicates projections from D to all units in all PF classes
(idem for R).

Data collection. The results were collected as follows:

- At each training stage (1, 1’+2, 2’+3), we examined the network during the execution of
a trial. We noted whether the trial was correct or not and recorded the neuronal activities
during the trial (units’ output).

- For each stage, individual trial data were collected by block of correct or erroneous trials
to compute cumulative histograms of activity.

- Individual trial data were collected by block of trials to compute the performance rate
during the acquisition of the task.

- Cumulative histograms were collected to compute the variation of block activity during
the acquisition of the task.

Details concerning simulations are given in Appendix.
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Figure 5 .4 . Stage-by-stage training protocol for the acquisition of the delayed response
task, used in computer simulations. At each stage, input pathways of the network depicted
in Fig. 5.3 are activated in a given temporal order as shown by the tracings (thin lines).
The expected behavior is shown with thick lines. The stages are executed in the following
order (left to right and top to bottom): 1, 1’, 2, 2’, and 3.

General behavior of the network

The network was trained in successive stages. At each stage, the network was presented
with a number of trials, until the required behavior is reached (see Fig. 5.4). The
performance rate of the network, as obtained by computer simulations, is shown in
Fig. 5.5: the rate increases during the acquisition of a particular behavior and decreases
when changing behavior. After completing the training, the network is able to produce the
correct behavior when presented with a set of events corresponding to a DR task trial. The
global behavior of the network thus reflects qualitatively the behavior of a monkey during
similar training.

Note that the variations of the performance as depicted in Fig. 5.5 depend on the rate of
changes of learning coefficients (Equation 5.3). Thus only qualitative comparisons with
experimental results are possible.
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Figure 5 .5 . Performance rate of the network as obtained by computer simulations.
Vertical dashed lines delimit training stages (1, 1’+2, 2’+3). Each horizontal division
corresponds to a block of 8 successive trials. The corresponding ordinate value is the
proportion of reinforced trials in the block. Parameter values are given in Appendix.

Activities after learning

Figures 5.6 to 5.11 illustrate activities of units in the network (Fig. 5.3) during the
successive stages of training. Patterns of activity can be classified in several categories,
according to the temporal relationships between task events and peaks of activity:
anticipatory, stimulus-related, delay-related, preparation of movement, movement-related.
Several patterns are observed in SM and PF units.

SM units. SM units display transient activities time-locked to the onset of events (Figs. 5.6,
5.7, 5.8). Unit SM11 (Fig. 5.6A)  is active just before the movement, and is differentially
active for left vs right movements. Similar results are observed in units SM12 , which is
preferentially related to rightward trials. Units in Fig. 5.7 (SM21 , SM22 ) are active

following the occurrence of the go signal. Figure 5.8 shows SM units related to the
instruction stimuli. These types of activity have been observed experimentally. Transient
activities have been found in the inferotemporal cortex, related to instruction stimuli or go
signal (Mikami and Kubota 1980; Fuster et al. 1985), in motor and premotor areas, related
to instruction stimuli, go signal, or movements (Alexander and Crutcher 1990; di
Pellegrino and Wise 1991).

PF units. Within each PF class, all the units display similar patterns of activity (not
shown). PF units of different classes provide different patterns of activity, according to
their relation to SM units (Figs. 5.9, 5.10, 5.11). The most interesting one is the
differential delay activity, that is a sustained activity between the onset of the instruction
stimulus and the onset of the go signal specific for right vs left trials (classes PF21  and
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PF22 ; Fig. 5.10A and 5.10B, stage 3). Other patterns are found such as differential
anticipatory activity before the movement (classes PF11  and PF12 ; Fig. 5.9A and 5.9B,
stage 3) and before the instruction (classes PF31  and PF32 ; Fig. 5.11A and 5.11B, stage

3).

All these patterns have been described in the prefrontal cortex during the delayed
response task (Fuster 1973; Niki and Watanabe 1976; Komatsu 1982; see also for
oculomotor paradigms, Funahashi et al. 1990). These results appear thus consistent with
experimental data. Further results concern learning-dependent changes of activity in the
processing units. Since there are few studies on neuronal activities during learning, these
results can merely be considered as predictions of the model.

Modulation of activity during learning

The model predicts the changes of neuronal activities in the course of learning. Unit
outputs are modulated according to the dynamics of processing (Equations 5.1 and 5.2),
and activity-dependent variations of learning coefficients (Equation 5.3). Changes concern
not only the level of activity, but also the temporal pattern and the relation to external
events.

General considerations on learning-dependent changes of neuronal discharges. Since
processing units are progressively involved during the course of learning, the number of
task-related units increase as the learning proceeds. Moreover activities in task-related
units are lower during the early phase of learning, reflecting the initial low value of
learning weights. These findings are consistent with those of Kubota and Komatsu (1985)
who studied evolution of learning related activity during a go/no-go discrimination task.

SM units. Figures 5.6, 5.7 and 5.8 show the evolution of the pattern of activity for 6 SM
units. The following characteristics are observed: (i) Units display transient activity (1 time
step of the simulation) time-locked to sensory or motor events (movement in Fig. 5.6, go
signal in Fig. 5.7, and instruction stimulus in Fig. 5.8); (ii) Units become active when a
given sensory or motor event is introduced (at stage 1 in Fig. 5.6, at stage 2 in Fig. 5.7,
and at stage 3 in Fig. 5.8); (iii) Once a unit becomes active, it keeps the same pattern of
activity and the same relation with task events in the following training stages.
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Figure 5.6. Evolution of output activity of 2 SM units (top to bottom; A, B) during the
training stages (left to right; 1, 2, 3). Units SM11 (A)  and S M12 (B)  display a transient
activity (1 time step) before the leftward and rightward movements, respectively, in the 3
training stages. Each histogram shows the mean activity of the unit in 15 successive
reinforced (LEFT or RIGHT) trials, from just before the drive to just after the movement.
The horizontal axis is the time axis. Horizontal divisions (thin vertical lines) correspond to
the time step of the simulation (1 division = 1 iteration). Task events are indicated with
thick vertical lines. The reinforcement event is not shown. The mean normalized activity
(percentage of trials during which the unit is active) is displayed on the vertical axis.
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Figure 5.7. Same as Fig. 5.6 for units S M21 (A)  and SM22 (B) . Both units are active
with the go signal (gs) at stage 2, and are preferentially for LEFT or RIGHT trials at stage
3.
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Figure 5.8. Same as Fig. 5.6 for units S M31 (A)  and SM32 (B) . Units become active
at stage 3 and display differential activity for left and right instruction stimuli.
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Figure 5.9. Evolution of output activity of 2 PF units (top to bottom; A , B) during the
training stages (left to right; 1, 2, 3). Units PF11 (A)  and PF12 (B)  are sustainedly active
(>1 time step) before LEFT and RIGHT movements, respectively, in the 3 training stages.
Note that activity always ends with the movement. Histograms are the same as in
Fig. 5.6. The symbol (*) indicates that sustained activity continues after the movement,
but is not shown on the histogram.
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Figure 5 .10 . Same as Fig. 5.9 for units PF21 (A)  and PF22 (B) . These units are
sustainedly active in the 3 training stages: between the drive and the movement at stage 1,
between the drive and the go signal at stage 2, and during the delay between the instruction
stimulus and the go signal at stage 3. Activities are different for LEFT and RIGHT trials.
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Figure 5.11. Same as Fig. 5.9 for units PF31 (A)  and PF32 (B) . At stage 2 and 3,
these units are sustainedly active in anticipation of task events, differentially for LEFT and
RIGHT trials. Activity always starts with the drive, but stops with the go signal at stage 2
and with the instruction stimulus at stage 3.

Figure 5.6 illustrates the changes of activity in units SM11  and SM12  related to the

movement toward the left and right levers, respectively. An activity is seen before the onset
of the movement in the three training stages. These units keep the same temporal pattern
of activity and the same relations with external events in the stages of learning. Units SM21 
and SM22 (Fig. 5.7A and 5.7B)  become active when the go signal is introduced in the

second training stage. Note that units are non differentially activated by the go signal at
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stage 2 and respond preferentially to the go signal in left vs right trials at stage 3. Activities
related to the instruction stimuli are shown in Fig. 5.8.

Units similar to SM11  and SM12  have been found experimentally. In fact, Okano and

Tanji (1987), and Romo and Schultz (1987) have observed that, in some units, similar
activity precedes self-initiated and visually-triggered arm movements in the motor,
premotor, and supplementary cortex.

Premovement activity has been frequently observed in the frontal lobe: in the motor
cortex (Caminiti et al. 1991), the premotor cortex (Weinrich and Wise 1982; Caminiti et
al. 1991), the supplementary motor area (Tanji et al. 1980) and the prefrontal cortex
(Kubota et al. 1980; Watanabe 1981). By construction of the model, motor elements,
which show premovement activity, reflect properties of motor and premotor cortical
neurons (Caminiti et al. 1991; Burnod et al. 1992). These element are tuned for a
preferred direction in space. In both studies (Caminiti et al. 1991; Mitz et al. 1991),
recording have been made in the dorsorostral part of the premotor cortex, a region which
has reciprocal connections to the prefrontal cortex (Barbas and Pandya 1987). These units
are thus likely to belong the same population, to receive prefrontal modulation and to
participate to learning of arm reaching movements in a delayed response task.

PF units. Changes in PF units are shown in Figs. 5.9, 5.10 and 5.11. The following
characteristics are observed: (i) Units display sustained activities (> 2 time steps of the
simulation); (ii) Units become differentially active for left vs right trials when a particular
sensory or motor event is introduced (movement in Fig. 5.9 and 5.10, go signal in
Fig. 5.11); (iii) A great heterogeneity of activity is found.

Units in Fig. 5.9 have quite the same behavior as units shown in Fig. 5.6. They are
active before the movement in the 3 training stages and are selective for right vs left trials
(compare 5.9A and 5.9B). Figure 5.10 shows the evolution of activity in delay related
units. Note that these units change their time of activation with learning (Fig. 5.10A, left
trials; Fig. 5.10B, right trials). In the first stage, they start their activity with the drive and
stop it with the movement. At stage 2, activity starts with the drive, but ends with go signal.
During the last stage, activity starts with the instruction stimulus and ends with the go
signal. Units in Fig. 5.11 always start their activity with the drive, but change the time of
return to rest (with the go signal at stage 2, and with the instruction stimulus at stage 3).

The role of PF and SM units in the acquisition and execution of the task is illustrated in
Fig. 5.12. Each histogram in Fig. 5.12 is the superposition of three histograms (3 units) at
a given training stage (taken from Figs. 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11). Figure 5.12A is
for PF units. It shows: (i) that, at each training stage, each unit is active between two
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successive task events; (ii) that this relation changes from stage to stage; (iii) that units
become progressively specialized for different successions of events. At stage 3, each unit
is related to a specific succession of events (drive/instruction stimulus in PF31 , instruction
stimulus/go signal in PF21 , go signal/movement in PF11 ). Note the changing role of unit
PF21  in the course of learning. For a sake of comparison, the same results are shown for

SM units in Fig. 5.12B.

A
Step 1

B

Step 3Step 2

unit SM11
unit SM 21
unit SM 31

unit PF 11
unit PF 21
unit PF 31

Figure 5.12. Superposition of activity histograms for some PF units (A) and some S M
units (B), during the training stages (left to right; 1, 2, 3). A . Activity of units
PF11 (light shaded pattern) , PF21 (dark shaded pattern) , and PF31 (plain pattern)  during
left trials is superposed. Note the progressive differentiation of activity in the successive
stages. B. Same as A with units SM11 , S M21 , and S M31 . Activities in SM  units are
correlated with end of activity in PF units.

Changes in level of activity in PF classes are shown in Fig. 5.13. Modulations are
correlated with the changes of reinforcement contingency, depending on variations of the
reinforcement rate. When changing from stage 1 to stage 2, two behaviors are alternatively
performed by the network, in a way similar to that observed in monkeys: the previous
correct behavior (self-initiated movements) and the new correct behavior (stimulus-
triggered movements). Mean activity during reinforced trials in class PF11  increased for

leftward self-initiated movements during the first stage (open circles; Fig. 5.13A). During
the transition between stage 1 and stage 2, activity first decreased and increased again
(crosses; Fig. 5.13A) with the increase of the performance rate (see Fig. 5.5). The same
phenomenon is observed between stage 2 and stage 3 (closed circles; Fig. 5.13A).
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Variations of activity in class PF21  are shown in Fig. 5.13B. These variations are quite

similar to those observed in Fig. 5.13A, with monotonic (increase) changes at each stage
and non-monotonic changes (decrease and increase) at the transition between two stages.
Figure 5.13C illustrates the variations in class PF31  units. In this case, variations start at

stage 2, but still follow the same principle.

During reversal learning in a go/no go discrimination task, Niki et al. (1990) found
some neurons that reverse their activity with the change in reward contingency (Type 2)
and some that keep the same activity (Type 1). The SM units of this model resembles the
Type 1 units since both are related to the impending behavioral response and do not
change their activity with change in reward contingency. Type 2 units (Niki et al. 1990)
reverse their activity with the change in reward contingency as do PF units in the network.
Although few units were studied, it is interesting to note that Type 2 units were not likely
to be found in premotor cortex while the prefrontal cortex contained both types of units in
similar proportions (Niki et al. 1990). It supports our hypothesis that some units (PF
units) are specific to the prefrontal cortex. Modifications of activity in PF units can also be
compared with those found by Thorpe et al. (1983). Neurons in the orbitofrontal cortex
decrease or increase their activity in relation to the learning of the associative significance
of a visual stimulus. The results are also consistent with observations of Watanabe (1990)
who found decreasing activity when changing the significance of a stimulus without
changing the required behavioral response. Modulations of activity in PF units may thus
be related to the change in the associative significance of the current behavior (will it lead
to a reward?) (Thorpe et al. 1983; Watanabe 1990).

Non-monotonic changes found in prefrontal units subserve both the development of
new behaviors and the transition between two behaviors on the basis of changes in reward
contingency. Decreasing activity related to unrewarded behavioral actions is responsible
for the suppression of these actions. Subsequent increases in neuronal activity reflect the
construction of a new rewarded behavior (for example, the integration of new
environmental cues). This view is consistent with the proposals of Fuster (1988). Indeed,
Fuster (1988) suggested that newness and complexity are the main challenges to
prefrontal functions. The properties of prefrontal units in the model reflect both the ability
to take into account changing environmental demands and the ability to integrate a set of
sensory, motor and more complex events in a coherent goal-directed behavior.
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Figure 5 .13 . Variation of the level of activity in PF classes (A, B , C , D) during the
training period. Graphs A , B and C  are constructed from the activity during reinforced
LEFT trials of all the unit in a class (4 units per class). Trial activity is computed in the
following way: (i) For each unit, the unit trial activity is 1 if the unit has been made active
with a probability different from 0.5 during the trial, 0 else; (ii) Trial class activity is the
average unit trial activity of all the units; (iii) Trial activity is obtained as the five-point
left moving averages of trial class activities and normalized. Each horizontal division
corresponds to a trial. Vertical dashed lines indicate the transitions between training stages.
Note the combination of increasing and decreasing activity (A, B , C): activity decreases at
the transition between two stages and increases after the transition. In D, decreasing activity
related to incorrect movement during the first training stage is shown.
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Internal representation of sensory-motor sequences

These results illustrate a process which allows to store and retrieve sequences of sensory
and motor events in a neuronal substrat. The DR task is composed of two sequences of 3
events. According to the model, the task can be stored using 6 classes of PF units and 6
SM units. Each SM unit is dedicated to the representation of an event and each PF class to
the representation of the succession of two events. In the following, we address issues
concerning the generality of this process.

There are no a priori representations of sequences in the network. The representation of
sequences is an important issue since it would be quite different if sequences are selected
among pre-existing sequences or if sequences are constructed in relation to external
constraints. In the present model, the network stores sequences specified by a training set
and a training protocol. The nature of sequences which can be stored in the network is
defined by the information available in input and output pathways (Which stimuli will be
involved? Which actions will be elicited?), and the connectivity between processing units.
In this sense, sequences do not exist a priori in the network, but are stored by changing the
efficiency of transmission between processing units (learning coefficients).

Interferences can be suppressed provided they are actually made active. In the network
of Fig. 5.4, we have assumed that interferences occurred only during the first training
stage. The suppression of the interfering events is learnt by the network, as shown by the
decreasing activity in PF units related to these events (PF13 ; Fig. 5.13D). The network is

thus able to suppress irrelevant events provided these events are actually introduced in the
training protocol. In the same way, interferences could have been introduced and
suppressed in the following training stages (using for instance several go signals).

Generality of network architecture. The network of Fig. 5.4 is constructed according to
general principles of interaction between the prefrontal cortex and connected sensory and
motor structures. Interaction is defined by connections between PF and SM units. Both
reciprocal and non-reciprocal connections are used. Their role is related to processing
rules. At the level of a PF unit, reciprocal connections correspond to a strong selectivity to
a specific sensory or motor event. Two interconnected PF and SM units display strongly
related activities. Compare Fig. 5.6A and 5.9A for left trials: activity ends with movement
to the left in units SM11  and PF11 . On the other hand, non-reciprocal connections define

a non specific selectivity to other events and are responsible for eliciting sustained
activities in PF units. Since PF units are adaptive devices which learn the control of their
input pathways and their sustained activation, the ability of the network to learn a task does
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not depend on its particular and unique set of connections between PF and SM units.
Several networks with different patterns of interconnections can learn the same task and
reach the same level of performance. The differences between these networks will be
found at the level of single unit activity. However, the variations of activity corresponding
to the stage-by-stage acquisition of the task will follow the principle shown in Fig. 5.13
(that is a combination of monotonic and non-monotonic variations related to the training
stages).

Redundant representations in SM units are necessary to allow the acquisition of
conditional sequences. We have assumed that a redundant representation in SM units is
used when the same event occurs in different situations. A SM unit combines two types of
information (one concerns the external world, through pathways I and O; the other is
related to the internal state of the network, through PF inputs) to produce a new
information which is distributed to PF units. If the unit is involved in two behaviors, it may
be required to carry a differential information when one or the other is executed. For
instance, the unit SM21  related to the go signal (Fig. 5.4) should be active only after one

of the two instruction stimuli. Unless, the conditional information given by the instruction
is lost at the time to execute the movement.

On the other hand, the same SM unit is likely to be used in different behaviors if it does
not carry critical conditional information. For instance, the unit
SM21 (which relates i-left to m-left)  can be used when a new stimulus (i1-left) is

introduced before the go signal to instruct the same final response (m-left). In the same
way, SM units related to movements (SM11 , SM12 ) can be involved in several behaviors

when the same movement is executed in different contexts.

Redundant representations in PF units are necessary to allow the formation of new
behaviors. There are two forms of redundancy in PF units: (i) PF units are grouped into
classes corresponding to uniform input/output relations with SM units (all PF units in a
class are connected to the same SM units); (ii) some PF classes are connected to
redundant SM representations.

The first case corresponds to a complete redundancy since all units of a given class
behave in a similar fashion at any time. This form of redundancy is used to compensate
the variability due to the stochastic behavior of processing units (Equations 5.1 and 5.2).

In the second case, the redundancy is related to the ability to construct new behaviors.
Consider units responding in anticipation of the go signal in the second training stage
(PF21 , PF22 ; Fig. 5.7B). These units become differentially responsive to the instruction

stimuli during the third stage. Note that the differentiation is dependent on the connections
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of the units with SM units. The repertory of possible new behaviors is defined by the
number of redundant representations and by the sensory-motor functioning range of
corresponding neurons (in the model, relations with SM units).

Sensitivity to parameters

The ability of the network depends on the value of the parameters of the model. In the
following, we describe the effects of the variation of some parameters on the behavior of
the network:

- Decay rate of sustained activity (η). It defines the mean duration of the sustained activity.
A strong decay rate will mainly impairs the stage 3 of the training protocol, when a delay
is introduced between the instruction stimulus and the go signal. However, the real effect
is dependent on the redundancy of PF units.

- Learning rule parameters (α and β). The ratio I = α/β defines the respective importance
of non reinforced and reinforced behaviors, respectively. If I is low, learning coefficients
change mainly in relation to correct behaviors. In this case, incorrect behaviors slowly
disappear. On the other hand, if I is high, incorrect behavior rapidly extinguish.

- Trace parameters (see Appendix). They define the amplitude and the duration of
activation of variables used in the learning rule. If traces are too short, the behavior of the
network will stay at or near random since units will not benefit from the reinforcement.

5 DISCUSSION

We began by discussing the respective constraints for a model of prefrontal and
connected sensory-motor structures. We addressed these constraints at several levels of
brain organization, and in close relation to available biological knowledge. We then
described two processing modes, which characterize two types of processing units (SM
and PF), within the framework of cortical modeling (chapter 2). Quantitative evaluations
were presented: the model appeared to be consistent with available experimental data and
made predictions about neural correlates of learning. The model thus provides insights
into several fundamental issues regarding the prefrontal functions. These issues as well as
the limitations of the model are discussed in this section.
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The delayed response task and prefrontal functions

This work has focused on the functional properties of prefrontal circuits which enable to
learn a delayed response task. Since Jacobsen (1935) the delayed response task has been
widely used to test cognitive aspects of prefrontal functions. Although there are still strong
discrepancies on the critical parameters which actually tap the prefrontal cortex during
delayed tasks (Rosenkilde 1979), lesion studies have emphasized the importance of the
temporal factor. Monkeys with bilateral prefrontal lesions are severely impaired when long
intratrial delays are used (Fuster 1988). As a general rule, a frontal monkey would fail to
execute a behavior determined by some recent events. Convincing evidence for the
involvement of PFC in DR task arise also from electrophysiological studies. Recordings
of single-cell activity have shown that neuronal discharges are strongly correlated with
task events and delays (Fuster 1973; see review in Fuster 1988). Thus the DR task
appears to be well-suited and attractive to access to prefrontal functions. As a
consequence, a model of the DR task offers a direct way to assess computational
processes in regard to available data on the prefrontal cortex.

Modeling others tasks

A number of tasks have been used to study the prefrontal cortical areas in behaving
monkeys. The most classical are the delayed response task (DR), the delayed alternation
task (DA), the delayed matching to sample (DMS), and GO/NO-GO response tasks. Do
all these tasks tap similar prefrontal functions? Several remarks can help to provide a
response:

- Electrophysiological properties of prefrontal neurons are relatively constant through the
protocols used, in the sense that the same set of stereotyped activities are found (Komatsu
1982). This result is probably related to the fact that a set of common elementary
processes underlie the execution of each task: expectation of environmental stimuli, short-
term memorization, preparation of response, reward integration. This response is not
completely satisfactory since it does not take into account behavioral aspects related to
these mechanisms. For instance, delayed response and delayed alternation tasks are
somewhat different since one is controlled by external cues whereas the other depends on
internal cues. However, similar activities are observed in both tasks (Kubota and Niki
1971; Niki and Watanabe 1976). The model predicts that in both cases, a single function
may be used. This function could be a general ability to determine “behavioral
significance” (which response?) and “associative significance” (will it lead to a reward?)
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of a situation. In this form, the function is independent of particular modalities: it works
evenly with visual or auditory signals, with internal or external signals. Neuronal activities
reflecting behavioral significance have been frequently observed, for example differential
delay activity (Niki and Watanabe 1976) or differential activity on GO and NO-GO trials
(Komatsu 1982). Watanabe (1990) found strong neuronal correlate of associative
significance. In this study, monkeys were involved simultaneously in two tasks: a direct
task and the corresponding reversal task. Some neurons responded differentially to the
same first stimulus (thus no local context could help to determine the response) if the
monkey was currently executing a block of direct or reversal trials (Watanabe 1990).

- Lesions studies provide a parcellation of the prefrontal cortex related to the behavioral
tasks (Rosenkilde 1979). A prediction of the model is that anatomical specializations are
related to the same set of mechanisms expressed on different architectural substrats
(different patterns of cortico-cortical and subcortical connections). We can thus reliably
assume that “more” complex tasks would rely on more integrated signals or
combinations of signals rather than on more complex functional mechanisms. Such
signals have been found experimentally in several studies (Rosenkilde et al. 1981;
Watanabe 1989, 1990). For example, Watanabe (1989) described post-trial neuronal
responses related to the correct execution of a trial, independent of external assessment
(reward). In the same way that the model is able to capture temporal relationships between
sensory and motor signals, it can capture relationships between more “abstract” signals.

Rule-coding units - Higher-level modeling

This model relies on the fact that the task requirements (memorization, behavioral
responses) are acquired by a set of processing units through sensorimotor experiences.
Although the model exhibits correct behavior in the task, it does not predict a relation
between the two component programs of the task (left and right). This relation has been
observed experimentally: when the monkey fails to execute the correct behavior (for
example, it goes left after the right instruction stimulus), activity before the response
allows to predict the failure (Niki and Watanabe 1976). Computationally, it may be
explained by the fact that two signals may be combined when the instruction stimulus is
given: the first corresponds to the stimulus itself and the second to the prediction of the
reward in the current situation. Since there are two ways to obtained the reward, failure to
predict one way leads to the prediction of the other. A proposal, related to what have been
said in the previous paragraph, is that temporal relationships between some complex
signals [for example, post-trial signals reflecting error, reinforcement, omission of
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reinforcement, observed by Rosenkilde et al. (1981) and Watanabe (1989)] are likely to
express prediction of the reward. Alternatively, some models propose a direct
representation of task requirements by providing “rule-coding” units (Dehaene and
Changeux 1989, 1991). Dehaene and Changeux (1989) showed that the rule which guides
the correct behavior of a network can be selected by learning. After learning, the activity of
rule-coding units thus reflects the effective rule which leads to the reward. Incorrect rule
selection leads to failure of the behavior. Cohen and Servan-Schreiber (1992) used similar
units to learn psychological tasks in a recurrent neural network. This approach clearly
simplifies computational processes since the network is directly supervised by high-level
representations of modality or programs.

Although rule-coding units are attractive for modeling of “cognitive” tasks, rules such
as “choose color”, “choose position” (Dehaene and Changeux 1989, 1991; Cohen and
Servan-Schreiber 1992) appear to be not very realistic at the neuronal level. More likely,
activity of rule-coding units would express relationships such as “choose this program
because it is surely rewarded” (see, Watanabe 1989, 1990). Although it is not a direct
concern, the present model proposes a way to construct such rule-coding units by
learning.

A rule for prefrontal units

The main hypothesis of the model is that the involvement of the prefrontal cortex in the
mediation of cross-temporal contingencies (Fuster 1988) is subserved by patterns of
sustained activity. This hypothesis has two aspects. The first concerns the effective
importance of sustained activation in the execution of behavior. The second aspect is
somewhat new, since it postulates that learning at the level of prefrontal neurons is related
to sustained activation of these neurons.

Mechanisms of sustained activation. Sustained activations may come from different
mechanisms at different levels of brain organization:

- Local recurrent circuits of excitatory and inhibitory neurons are likely to produce a
sustained activity (recurrent excitatory pathways) and to stop it (inhibitory pathways)
(Dehaene and Changeux 1991; Zipser 1991).

- Neuronal pathways including one or more structures can lead to the same results,
provided there exist point-to-point loops. Reciprocal connections between the dorsolateral
prefrontal cortex (DLC) and the mediodorsal nucleus (MD) of the thalamus have been
proposed as a possible pathway (Fuster 1988). It has been shown that cooling of a large
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portion of DLC results in a diminution of the firing frequency (during the delay) of
neurons in the parvocellular portion of the nucleus MD (Fuster and Alexander 1973). An
alternative pathway is the cortico-striato-pallido-thalamo-cortical loop (Alexander et al.
1986). Sustained activations during delays occur throughout major parts of cortico-basal
ganglia loops, such as the supplementary motor area (Tanji et al. 1980), postolateral
putamen (Alexander and Crutcher 1990), pallidum (Nambu et al. 1990) and pars reticulata
of substantia nigra (Hikosaka and Wurtz 1983; Schultz 1986). Although these activations
begin slightly earlier in the supplementary motor area, as compared to the striatum, the
large overlap suggests their largely simultaneous occurrence (Romo and Schultz 1987).
Thus delay-related activations could be built up through successive reverberations in loops
linking the cortex and the basal ganglia.

- An hypothesis, which is not incompatible with the previous ones, is that the sustained
activity is due to properties of neuron membrane channels. At the level of individual
neurons, the development of activations lasting over several seconds may be facilitated by
the action of slow Na+  and K+  channels. In the spinal cord, specific ionic channels can
generate a bistable state of activity as demonstrated in motoneurons, with a state ON
resulting in long lasting activities (Hounsgaard et al. 1984). In the striatum, spiny neurons
giving rise to prolonged excitatory post-synaptic potentials, slowly depolarizing ramps and
slowly inactivating K+  conductances (Calabresi et al. 1987; Kawaguchi et al. 1989;
Pennartz et al. 1991; Surmeier et al. 1991). In this respect, an important candidate current
to control a bistable mechanism and learning of sequences could be the IKs  potassium

current which has been shown to exist in prefrontal neurons (Hammond and Crépel
1992): (i) it slowly inactivates, giving more sensitivity to sequential stimulation; (ii) it
inactivates for repetitive, sequential stimulations. Inactivation of this current could result in
steady firing. Such channel properties could give very strong and robust regulatory
properties to the temporal processing in prefrontal circuits (see chapter 6).

Learning to control sustained activation. Adaptive changes related to the sustained
activation are described by Equation 5.3. According to this equation, learning coefficients
of a PF unit are modulated in relation to the state of activity. The learning mechanism
implies both activity-dependent decreases (LTD) and increases (LTP) of synaptic efficacy.
Colocalization of LTP and LTD has been demonstrated in the prefrontal cortex of the rat
(Hirsch and Crépel 1991). Artola et al. (1990) have observed that induction of LTP and
LTD in the visual cortex depends on different voltage-dependent thresholds. Stimulations
occurring at different levels of post-synaptic depolarization are likely to have different
actions (LTP or LTD). A prediction of the model is that combined LTP and LTD
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processes should modify the temporal integration of inputs, due to specific membrane
properties, such as IKs  current (see chapter 6).

Reinforcement

Modulations of learning coefficients also depend on an absolute reinforcement signal
related to the execution of a correct behavior. We have assumed that such a signal could
be provided to each PF unit through a specialized pathway. This hypothesis can be related
to the following facts:

- Neurons responding to the reward have been found to be widely distributed in the
prefrontal cortex (Fuster 1988), although more common in the rostral part (rostral
dorsolateral PFC, orbitofrontal cortex). This difference may reflect the density of fiber
connections from limbic structures (amygdala, hypothalamus). These neurons are likely to
relay information concerning reinforcement all over the prefrontal areas.

- Aou et al. (1983a) have shown that reward-related activity in the prefrontal cortex is
likely to be regulated by catecholamines (noradrenaline, dopamine). The diffuse effect of
modulators can be a way to provide a large-scale unconditional influence related to the
reinforcing value of external events.

Sustained activities

Sustained activity and short-term (working) memory. Some authors have proposed that
sustained activities observed in the prefrontal cortex of behaving monkeys are neural
correlates of short-term memory (Fuster 1973, 1988; Goldman-Rakic 1988). Although
effective involvement of the prefrontal cortex in a generic short-term mnemonic process is
still matter of debate (Passingham 1985), long-lasting activities have been shown to reflect
short-term memorization of instruction cues, expectation of forthcoming signals and
preparation of a behavioral reaction (Fuster 1973; Niki and Watanabe 1976). Sustained
activities in the prefrontal cortex have three important characteristics: (i) They are found
during the delay interposed between a cue and a response, whatever the modalities used;
(ii) The duration of the activity is linked to the duration of the delay. Increasing the delay
length leads to an increased duration of the activity (Kojima and Goldman-Rakic 1982;
Batuev et al. 1985); (iii) Recording in untrained animals, Fuster (1973) found less delay
related activities than in trained monkeys in similar behavioral conditions. Furthermore,
there appears to be a relationship between the level of performance and the amount of
delay activation (Fuster 1973; Watanabe 1986).
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Mediation of cross-temporal contingencies. An alternative interpretation is to consider
sustained activities as a mean to mediate of cross-temporal contingencies. Quintana and
Fuster (1992) trained a monkey to perform 3 tasks: (1) a delayed matching to sample
(Red-Green); (2) a delayed conditional position discrimination with Red-Left and Green-
Right combinations; (3) a delayed conditional position discrimination with Yellow-Right
and Blue-Left combinations. In this way, yellow and blue unconditionally predict the
direction of the response whereas red and green predict a response with a probability of
75%. Results show that, during the mediation of cross-temporal contingency, sensory-
coupled neurons tend to decrease their discharge with intratrial time while motor-coupled
neurons accelerate their response. Furthermore they demonstrate that anticipatory activity
can be related to the predictability of the forthcoming response.

The present model assumes that the control of sustained activation in a unit is related to
a subset of learning coefficients. The value of these coefficients defines the probability of
the unit to become sustainedly active. This mechanism is consistent with the characteristics
of sustained activity in the prefrontal cortex.

A rule for sensory-motor units

Neural modeling generally uses a threshold summing device (formal neuron; McCulloch
and Pitts 1943) as a simple, but correct approximation of real neurons. Weight
coefficients reflect the tuning properties of the neuron, found, for example, in the
orientation-selective cells in the primary visual cortex (Hubel and Wiesel 1968). The
tuning curve can be adjust through learning by a Hebbian rule. The ability to perform
multiplicative combinations (Equation 5.1) reflect the behavior of neurons combining two
sources of information and performing non-linear interactions between them. It has been
observed in the posterior parietal cortex where interaction of eye position and retinal
position was found to be multiplicative (Andersen et al. 1987). Similar interactions
between arm position and visual trajectory can explain quantitative patterns of activity
observed in premotor and motor areas during 3D arm reaching movements (Caminiti et al.
1991; Burnod et al. 1992; chapter 4). Recently, Eskandar et al. (1992) have shown that
the operation performed by inferotemporal neurons in a sequential matching task is likely
to be described by a product between two sources of information (vision and memory).

From a computational point of view, additive and multiplicative contributions can
subserve different functions. In the first case, a thresholded-convolution operation is
performed. It corresponds to the filtering properties of the neuron. The second case
(multiplicative) appears at a higher level of processing since it measures interactions
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between input signals. This rule is useful when inputs come from independent sources
(different modalities). Biologically, the multiplicative rule may be related to the voltage
properties of NMDA receptors (Nowak et al. 1984; Collingridge and Bliss 1987).

Prefrontal vs. sensory-motor processing

One way to compare the two types of processing is to ask what kind of code is used in the
different regions. Georgopoulos et al. (1982) have shown that neurons in the motor cortex
are active preferentially for a given direction of arm movement (with a broad tuning around
the preferred direction) and that the direction of an instructed forthcoming movement is
predicted by a population code. Similarly, graded neuronal responses have been observed
for saccade representations in the superior colliculus (Lee et al. 1988), for faces
representations in the inferotemporal cortex (Young and Yamane 1992). On the other
hand, no simple code has been found in prefrontal neurons. The types of neuronal activity
described in the prefrontal cortex are diffusely distributed and intermixed. Why such a
redundant representation? Due to neuronal variability, no individual neuron can perform as
well as a monkey during a given task (for instance, be active every time the monkey
performs a given action). However, the average response of a few cells may reduce the
variability of responses and provide a reliable prediction of the behavior. The present
model allows to propose a different (but not incompatible) view. According to the model,
two PF units which show similar responses at a given training stage are likely to become
differentiated at the following stage when the behavior becomes dependent on new
conditions. In this case, the redundant representation is related to the ability to form new
behaviors.

It is important to note that the two processing modes are not necessarily specific to
some given anatomical regions. Both can coexist in the same region. What defines the
expression of the rule is the type of signals locally available, for example in relation to
local primary and secondary indices, or reinforcement signals.

Procedural vs. declarative: different memory systems

There remain aspects that cannot be taken into account by the model. Learning a delayed
response task provide rather inflexible representations, since it can be expressed only
within the restricted environment defined by the training protocol (a set of lights and
levers, and a fixed ordered succession of events). Learning occurs with the repetition of
sensorimotor associations in order to access to a given performance rate. At the opposite,
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several tasks such as delayed non matching to sample, Konorski task, rely for some
aspects on elementary processes previously described, but also involve flexible
representations not provided by the model. Recently, two memory systems have been
described (Mishkin and Appenzeler 1987): one subserves fixed inflexible representations
(procedural learning) while the other is involved in flexible representations (declarative
learning) (Eichenbaum et al. 1992). Different anatomical substrats appear to mediate these
aspects: the cortico-striatal system and the medial temporal lobe (Saint-Cyr et al. 1988).
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Part III
Synthesis
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CHAPTER 6

Learning Rules and Biological Substrate
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Summary

In this chapter, we first present recent results on neuronal processing and synaptic plasticity. Then we
discuss the biological and computational properties of a number of synaptic plasticity rules used in neural
models. A tentative theory relating synaptic plasticity rules, cortical areas, and cortical functions is
presented, which is a synthesis of the results of this work.

1 INTRODUCTION

It is now well admitted that long-lasting modifications of synaptic transmission should
contribute to adaptive properties of vertebrate neuronal networks. However, the problem of
the relation between modifications at the level of a single neuron and the behavior of
neuronal networks and of entire organisms has withstood experimental tests, and there is
no unambiguous demonstration of it at this time (see Eichenbaum and Otto 1993).

A convenient approach to address this problem is to build a computational model. The
synaptic plasticity is described by a “learning rule” (Hebb 1949), which governs the
modification of a large scale neural network. The resulting behavior of the network allows



129

the contribution and the form of the learning rule to be questioned. In this way, several
studies have demonstrated that large scale networks of neural elements using simple
plasticity rule exhibit powerful forms of learning (Linsker 1986; Pearson et al. 1987;
Kohonen 1988).

The form of the synaptic plasticity rule has been recognized as a fundamental issue.
The focus of experimental and theoretical studies has been mainly the Hebbian paradigm
(Hebb 1949; Brown et al. 1990), and thus the relation between simultaneity of synaptic
events and plasticity. However, Sutton and Barto (1981) have stressed that computational
capabilities provided by a plasticity rule based on temporal contiguity should not extend
beyond spatial correlations. As a consequence, a network of Hebbian adaptive elements is
not likely to learn problems including temporal dependencies. This remark does not mean
that the principle of temporal contiguity is inappropriate to address issues on synaptic
plasticity and activity-dependent adaptation of neural networks. In fact, Bienenstock et al.
(1982) have shown in a model, that Hebbian modifications combined with a time-varying
threshold between increase and decrease produce a temporal competition rather than a
spatial one. This theoretical prediction has received support from recent experimental
studies. These studies have shown that the direction of synaptic modification (increase or
decrease) can be controlled in the temporal domain (see Long-lasting changes in
synaptic efficacy, below).

The main consequence of these observations is that Hebbian conditions are important
to drive synaptic plasticity, but may be modulated by time-varying variables. We have
illustrated this idea in the previous chapters 3, 4, and 5. We have shown that learning
rules including temporal modulation of Hebbian conditions (rule R1, chapters 3 and 4;
rule R2, chapter 5) provide efficient solutions to problems of visual integration, motor
performance, and temporal organization of behavior. On the basis of these models, the
goal of this chapter is provided a theory, which tries to relate synaptic plasticity rules,
cortical regions, and cortical functions. To introduce the basis of this theory, the first
section presents recent results on mechanisms of synaptic plasticity and membrane
channels properties. In the second section, we describe a number of synaptic plasticity
rules used in computational models. Starting from Hebbian rules, we illustrate the
progressive introduction of more complex conditions of plasticity. Rules have been
assigned in one of 3 categories, which characterize their preferred temporal pattern of
synaptic activation. Possible biological implementations of the rules are discussed in
relation to observations of the first section. A tentative theory is then proposed in the third
section, which provides a framework for assessing the contribution of cortical structures to
brain functions.
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2 NEURONAL PROCESSING AND SYNAPTIC PLASTICITY

Two fundamental issues in neural modeling methods are operation modes (activation
rules) and adaptation modes (learning rules) of neurons. Activation rules indicate how
neurons respond to the synaptic flow of information. Learning rules describe long-lasting
activity-dependent modifications of synaptic transmission. The goal of the section is not to
provide an exhaustive description of these phenomena, but rather to discuss a set of
mechanisms, which are likely to subserve the different forms of activation and learning
rules encountered in modeling studies.

We first address issues on the integrative properties of neurons. In particular, nonlinear
and temporal. membrane channels. Then, we present recent results concerning conditions
of induction of classical forms of plasticity (long-term potentiation and long-term
depression).

Neuronal processing

Classical theories on synaptic mechanisms involve linear summation of excitatory
postsynaptic potential (Eccles 1964). However, in most neurons, classical sodium and
potassium currents responsible for the generation of action potentials interact with a great
variety of ionic channels sensitive to voltage, transmitters, modulators, and generate a rich
repertory of membrane responsiveness (Llinás 1988) and membrane behavior (Connors
and Gutnik 1990).

For instance, it has been proposed that the voltage sensitivity of a particular class of
excitatory amino acids receptors (NMDA receptor; Nowak et al. 1984) may result in
nonlinear neuronal processing. Fox et al. (1990) have shown that NMDA receptors
provide a multiplicative gain control mechanism in cat visual cortex. Similarly, Matsumura
et al. (1992) have shown that suppression of GABAergic inhibition may enhance neuronal
activity by revealing subthreshold excitatory inputs. This effect is similar to an AND

function.

Another important property is the temporal dimension of neuronal processing.
Integration of synaptic inputs over a long time, exceeding the time span of classical
temporal summation, has been demonstrated in hippocampus (Storm 1988) and the
prefrontal cortex (Hammond and Crépel 1992). This membrane behavior is due to a
slowly inactivating potassium current (ID in the hippocampus, IKs in the prefrontal cortex).
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Prolonged near-threshold depolarizing stimuli activate these currents, which initially
inhibits spike firing since it overwhelms inward currents. Delayed firing is then observed
which can last for several seconds (Storm 1988). Inactivation allows sodium-mediated
inward currents to be unmasked and thus the discharge of the neuron. Since these currents
are partly inactivated a steady-state potential, hyperpolarizing or depolarizing the neuron
changes the availability of the channel and allow the firing mode of the neuron to be
controlled (Hammond and Crépel 1992). Repetitive long depolarizing pulses induce a
progressive reduction of the delayed activation and can favor spontaneous plateau
depolarization lasting for several seconds.

Long-lasting changes in synaptic efficacy

LTP and LTD. Current knowledge on long-term potentiation (LTP) encompasses a broad
range of findings. The reader is thus referred to the literature for a complete review
(Madison et al. 1991; Ben-Ari et al. 1992; Tsumoto 1992; Colley and Routtenberg 1993).
We will just emphasize a few important points. LTP is a long-lasting enhancement of the
synaptic transmission following brief repetitive stimulation of afferent pathways, which
can last for a few weeks. It has been first demonstrated in the hippocampus (Bliss and
Lomo 1973), and after in various areas of the neocortex. Different forms of LTP have
been observed (Fig. 6.1A), such as homosynaptic LTP, and associative LTP.

Unlike LTP, long-term depression (LTD) has not been studied systematically in the
brain (Tsumoto 1992; Malenka 1993). Figure 6.1B illustrate the different forms of LTD
observed in the neocortex and in the hippocampus: homosynaptic LTD, heterosynaptic
LTD, associative LTD.

Threshold for depression and potentiation. On theoretical basis, Bienenstock et al. (1982)
have proposed that the direction of synaptic modification should depend on the level of
postsynaptic activity (Fig. 6.2A). Recent experimental evidences have supported this
proposal (Fig. 6.2B; Artola et al. 1990), but have also described other possible
“threshold” variables: postsynaptic potential, intracellular calcium, stimulation frequency.

Artola et al. (1990) have reported that activation of cortical neurons above a critical
threshold of postsynaptic activity leads to long-term depression in the stimulated pathway.
Above the threshold, a long-term potentiation is observed.
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homosynaptic LTP

homosynaptic LTD

associative LTP

heterosynaptic LTD

associative LTD

A

B

Figure 6.1. Different forms of long-term potentiation (A), and long-term depression (B),
taken from Tsumoto (1992). Changes in synaptic efficacy are indicated by the size of the

circles: depressed (•), normal (•), and potentiated (•).

As illustrated in Fig. 6.2B, two thresholds for synaptic modifications exist, depending on
the postsynaptic potential. The first threshold is not dependent on NMDA receptors
(Artola et al. 1990), while the second corresponds probably to the threshold of NMDA
conductances. A corresponding view is provided by the results of Hirsch and Crépel in the
prefrontal cortex (Hirsch and Crépel 1991). They have shown that mechanisms leading to
LTP and LTD may be localized in the same cell and that blockade of LTP by NMDA
antagonist unmasks LTD. Lisman (1989) has proposed that Ca2+/calmodulin-dependent
protein kinase II within postsynaptic density can store a graded synaptic weight. The
quantitative level of the activity-dependent rise in intracellular concentration of
postsynaptic calcium (Ca2+) determines whether increase or decrease. Wexler and Stanton
(1993) have proposed that Ca2+ may be a switch for plasticity while second messengers
(diacylglycerol, cAMP) modulate thresholds for LTD, STP, LTP (see below).
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Figure 6 .2 . A . The relation between postsynaptic activity (c) and variation in synaptic
efficacy (φ) proposed by Bienenstock et al. (1982). B . Experimental curve based on the
results of Artola et al. (1990). The threshold θm  is related to the threshold of NMDA
receptors. Note that the size of LTP and LTD has not been defined quantitatively.

Dudek and Bear (1992) have shown that different levels of stimulation frequency lead to
LTD (1-3 Hz), no change (10 Hz), or LTP (50 Hz), in the hippocampus. These results are
in part confirmed by Mulkey and Malenka (1992). They have observed that repetitive low
frequency stimulations (1 Hz) systematically induces LTD. If one assumes that
postsynaptic activity is more or less monotonically related to stimulation frequency, these
observations fit well the theoretical prediction of Bienenstock et al. (see Fig. 6.2A).

Which of these variables actually define the threshold is not known. However, since
there are evidences that they may not independent variables (see below), the threshold is
probably not influenced or controlled by a unique factor.

Controlling the threshold. In the previous paragraph, we have shown that the direction of
synaptic modification is likely to be a function of some variables in accordance with
theoretical predictions (Bienenstock et al. 1982). Another prediction concerns the way to
control the threshold variable: Bienenstock et al. have proposed that the threshold is
related to the recent history of postsynaptic activity (precisely the mean activity on a past
period). This control by previous activity allows the threshold to be adaptively displaced
so that it eventually separates one input from others. Different implementations are
possible.

Chen and Huang (1991) have shown that protein kinase C (PKC) activation modifies
the Mg2+ block of NMDA channels and may thus indirectly modulate LTP induction
since the level of NMDA receptor activation determines the threshold for LTP induction.
Such a control has been confirmed by Aniksztejn et al. (1992) who have shown that STP
can be transform in a NMDA-dependent and PKC-sensitive LTP when applying
metabotropic glutamate (Qp) receptor agonist. Glutamate is thus likely to modulate LTP
induction (see review in Ben-Ari et al. 1992).
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Wexler and Stanton (1993) have shown that the amplitude of LTD following low-
frequency stimulation (LFS; 1 Hz) is dependent on the previous induction of
homosynaptic LTP (and also STP only). This LFS-induced LTD requires the activation of
both NMDA and metabotropic receptors. Previously inducing LTP thus increases the
likelihood of eliciting LTD with low-frequency stimulation. These results demonstrate the
importance of recent history in the direction of synaptic plasticity.

Conclusion

It is frequently claimed that activity-dependent changes in synaptic efficacy are critical for
the development of appropriate neural circuits and for many forms of neural plasticity,
including learning and memory. Until now studies have mainly focused on very simple
conditions of plasticity (temporal contiguity). It is now demonstrated that Hebbian-like
synaptic modifications do exist in the brain. However, it should be noted that mechanisms
described in this section, including membrane channel properties, are likely to underlie
more complex forms of plasticity such as those described in the following section (rule
R1, rule R2). In particular, the influence of temporal sequences of synaptic events on
plasticity could be profitably studied experimentally.

3 CELLULAR PLASTICITY AND FORMAL LEARNING RULES

Relations between local synaptic changes and learning-dependent adaptations of large
scale neural networks have not been successfully assessed experimentally. Fortunately, the
emergence of simple neural models exhibiting nontrivial features of information
processing in the brain (Rosenblatt 1958; Marr 1969; Kohonen 1988) has encouraged
theoretical studies, which allow the relationship between single neuron properties and
population behavior to be questioned. However, the actual relevance of theoretical
developments depends not only upon the correct explication of the neuron/population
relation, but also upon the nature of underlying biological assumptions.

Most theoretical developments on synaptic plasticity rules have concerned the Hebbian
rule in its multiple forms (Brown et al. 1990), and there are now experimental evidences
that this rule (in one of its form) governs long-term potentiation of synaptic transmission
in many brain regions (Brown et al. 1988). Starting from the Hebbian paradigm, we
discuss in this section the biological implementation of different learning rules. Rules have
been assigned in one of 3 categories, which characterize their preferred temporal pattern of
synaptic activation.
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For a sake of comparison, all the rules are described using the same notations.
Furthermore, rules are presented in a simplified form to allow a direct comparison on
qualitative criteria. Basically, we can formally describe a learning rule in the following
way. Consider a neuron-like element with n weighted input pathways {xi(wi) }, 1≤i≤n and

an output y. For a sake of simplicity, the synaptic modification is described for pathway 1.
When needed, other pathways are used, with indices 2 and 3. The synaptic weight w1 

changes according to

w 1 ( t + 1 )   =  w 1 ( t )   +  ρ 1 ( t )  

where ρ1  is the quantity defining the time and direction of change. This quantity ρ1 
should depend on past and/or present values of {xi }, y, {wi }, and ρ1 . Input and output
are in [0,1]. The weight w1  has the initial value w1(0)  at time t = 0. An important issue in

the study of learning rules is the mathematical behavior (convergence, stability) of the
equation defining synaptic variations. This is not the concern of the present work. Thus,
equations are generally written in order to illustrate the qualitative variation in learning
weights, with no reference to corresponding mathematical constraints.

Hebbian rules

Changes in synaptic efficacy are generally described in the framework of classical
conditioning. Classical conditioning concepts are based on the principle of temporal
contiguity as does the Hebbian rule (Hebb 1949): requirements for efficacy changes are
related to the simultaneity of pre- and postsynaptic activity. In a simple form, the
modification term for the Hebbian rule is

ρ
H e b b
1 ( t )   =  λ [ σ x 1 ( t )   -  w 1 ( t )  ] y ( t )

where λ is a parameter determining the rate of change and σ the maximal value of w1 . In

this form, the rule provides a decay term corresponding to associative heterosynaptic
depression. Figure 6.3 illustrates this Hebbian paradigm.
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Figure 6.3. Hebbian rule. The learning coefficient w1  increases for coincident pre- and
postsynaptic activities (left), and decreases for postsynaptic activity alone (right).

An interesting form of Hebbian learning has been proposed by Bienenstock et al. (1982)
and used for modeling the development of orientation selectivity in the visual cortex. The
formulation of the modification term (BCM) is the following (Fig. 6.4):

ρ
B C M
1 ( t )   =  λ [ φ ( y ( t ) ) x 1 ( t )   -  εw 1 ( t )  ]

where λ and ε are positive parameters, and φ the function defined by

φ ( y ( t ) )  =  


< 0   i f   y ( t ) < θm ( t )

> 0   y > θm ( t )  

where θm  is a time-varying threshold such as

θm   =  m e a n t  ( y ( t ) )  

This rule provides a form of temporal integration since the decision threshold of the
neuron depends on the recent history of postsynaptic activity (mean over recent time) of
the neuron.

y
x 1 w1

x 1
y
w1

Figure 6.4. Rule BCM (Bienenstock et al. 1982). The learning coefficient w1  increases
for coincident pre- and postsynaptic activities, when postsynaptic activity is above a
threshold (left). When postsynaptic activity is below the threshold, the coefficient decreases
(right).

Existence of the threshold θm  is consistent with the findings of Artola et al. (1990;

Fig. 6.2 in the previous section). Time-varying threshold is a fundamental feature of this
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rule (Bienenstock et al. 1982) and also a strong prediction, which may have physiological
support, as illustrated in the previous section.

Hebbian rules implement a correlation principle, which allows adaptive tuning of
learning weights. Adaptation may result from a spatial competition between synapses
(Stent 1973): some synapses increase their efficacy while some other decrease it. It may
also result from a temporal competition between incoming patterns (Bienenstock et al.
1982). Since theoretical and biological basis of Hebbian learning have been extensively
discussed in the literature (see Brown et al. 1990), we will not discuss further this point.

Error-correcting rules

The correlation principle underlying Hebbian rules may not be sufficient to solve
problems involving temporal constraints. For instance, Sutton and Barto (1981) have
developed a cellular analog of classical conditioning and they have shown that a Hebbian
rule was sufficient to explain stimulus substitution, but not to explain more complex
properties related to temporal properties of classical conditioning (effect of interstimulus
interval length). Sutton and Barto (1981) have stressed that a more successful analog
should involve a “prediction” rule, similar the error-correcting rule of Widrow and Hoff
(1960).

Hebbian modifications are related to pre- and postsynaptic activity. More powerful
learning rules have been proposed, which take into account these two terms, but also a
training signal6 (Widrow and Hoff 1960). The Delta rule designed by Widrow and Hoff
allows the weights to be adjusted in proportion to the difference between a desired and
computed value. The modification term is

ρ
Δ
1 ( t )   =  χ ( t ) [ z ( t )  -  y ( t ) ] x 1 ( t )  

where z is the desired output. Practically, the use of this rule for biological modeling is
limited by the fact that there are generally no direct quantitative representations of error or
desired value at the neuronal level. An exception is the cerebellum (CBM), which has been
successfully modeled using this rule (Marr 1969), since an error signal is provided by the
inferior olivary (Ito 1984; Kawato and Gomi 1992). In this case, the rule can be written

ρ
C B M
1 ( t )   =  -  λ x 1 ( t - 1 )  y ( t - 1 ) x 2 ( t )  

                                                
6Also termed “teaching signal” or “error signal”.
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where x1  can interpreted as the parallel fiber (context) signal and x2  as the climbing fiber

(error) signal (Fig. 6.5). Synaptic transmission decreases on afferences which were active
before the occurrence of an error. Biological support of this rule has been demonstrated in
the cerebellum in the form of heterosynaptic long-term depression (Ito 1989).

y

x 1
x 2

w1

y
x 1

x 2

w1

Purkinje
climbing 

fiber

parallel fiber

Figure 6 .5 . CBM rule. The learning coefficient w1  decreases for coincident pre- and
postsynaptic activities followed by stimulation of another pathway 2 (left). No
modification is observed when pre- and postsynaptic activities are not followed by
stimulation of pathway 2 (right).

The CBM rule makes use of a teaching signal, defined by its afferent pathway (climbing
fiber), and which corresponds to an error. In a more general way, the teaching signal may
be related to any input/output loop, as proposed in chapters 3 and 4 (rule R1, Equations
3.3, 4.4, and 4.7; see also Burnod et al. 1992; Otto et al. 1992; Guigon and Burnod 1993).
Basically, the modification term (Fig. 6.6) is

ρ
R 1
1 ( t )   =  - µ x 2 ( t )  y ( t )  +  ( λ - µ ) x 2 ( t - 1 )  y ( t - 1 ) x 1 ( t )  

where λ and µ are parameters, which define the sensitivity of the neuron to error-
correction learning (index I = µ/λ). The rule is defined by a heterosynaptic depression
(-x2(t) y(t)) followed by a homosynaptic potentiation (x2(t-1) y(t-1)x1(t) ). Both

phenomena have been experimentally observed (see previous section) and may be the
basis of the rule R1. The successive expression of the two modifications may be related to
a control of the threshold between LTP and LTD (see Fig. 6.2), for instance through
increase in intracellular calcium concentration following the first activation.
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Figure 6.6. Rule R1. The learning coefficient w1  successively decreases for coincident
pre- and postsynaptic activities in pathway 2, and increases for a stimulation of pathway 1
(left). A decrease is observed when pre- and postsynaptic activities are not followed by
stimulation of pathway 1 (right).

Formally, error-correcting rules are more efficient than Hebbian rules (Widrow and Hoff
1960; Sutton and Barto 1981). However, these rules should not be seen as competitive. As
illustrated in previous chapters, they may subserve different adaptations. Hebbian rules
allow adaptive tuning, i.e. learning-dependent adjustment of receptive fields. The rule R1 is
useful to learn the combination of two independent flows of information, which are related
by a self-consistency relation (adaptive gating). The contribution of these rules has been
illustrated for the acquisition of sensory-motor transformations (visual recognition,
chapter 3; visually-guided reaching, chapter 4) and simple contingent responses
(context/reinforcement behavior, chapter 4).

Learning temporal sequences

When delays of arbitrary length are introduced between synaptic events, both adaptive
tuning and adaptive gating mechanisms are not able to capture the temporal relationships
between the successive events. A mechanism for integration of non-coincident inputs is
thus necessary to solve problems including delays.

An original learning rule has been proposed by Dehaene et al. (1987). In a simplified
form, the formulation is the following

ρ
T r i a d
1 ( t )   =  -  λ x– 2 ( t )  x 2 ( t )  x 1 ( t )   +  µ x– 2 ( t )  x 2 ( t )  y ( t ) x 1 ( t )  

where x2  is a modulatory input for pathway 1 (Fig. 6.7). Prolonged activation of the

modulatory input (~0.1s) gates both Hebbian (x-2(t) x2(t) y(t)x1(t) ) and anti-Hebbian

(-x-2(t) x2(t) x1(t) ) modifications on pathway 1. In this way, the neuron can detect temporal

sequences of events not restricted to Hebbian conditions.
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Figure 6.7. Synaptic triad (Dehaene et al. 1987). The learning coefficient w1  increases
for coincident pre- and postsynaptic activities in pathway 1 following prolonged activation
of the modulatory input 2. A decrease is observed when the modulatory input is followed
by presynaptic activity (right).

Synaptic triad can be implement with allosteric receptors (Dehaene et al. 1987). Using this
rule, Dehaene and Changeux (1989, 1991) have constructed models of the delayed
response task and Wisconsin Card Sorting test (see chapter 5).

In the chapter 2, we have proposed a mode of operation and adaptation in cortical
columns based on the control of sustained activities (Equation 2.6, rule R2). The
modification term is

ρ
R 2
1 ( t )   =  e 1 ( t )  [ - µ x 2 ( t )  y ( t ) + ( λ - µ ) x– 2 ( t ) y– ( t )  x 3 ( t )  ]

where x1  and x2  are two successive synaptic inputs separated by a delay, and x3  a

reinforcement signal. As illustrated in Fig. 6.8, this rule predicts that the learning
coefficient w1  would successively: (i) decrease by µ when the sustained activation of the

unit by the pathway 1 is terminated by activation of the pathway 2; (ii) increase by λ when
a reinforcement signal occurs. In this way, repetitive presentations of a reinforced
sequence (x1 , x2 , and x3  ) lead to an increasing learning coefficient. Thus, the unit

becomes surely activated when the first event of the sequence is presented, predicting the
occurrence of a reinforcement. As shown in chapter 5, the rule R2 allows a neural
network to learn sequences of sensory-motor events including delays.

The rule combines activity-dependent decrease and increase in synaptic transmission,
which may be related to the colocalization of LTD and LTP in prefrontal neurons (Hirsch
and Crépel 1991). Whether the neuron expresses LTP or LTD depends on recent history
of postsynaptic activity (sustained activity). Interaction between membrane channels
responsible for sustained activity (in particular, the slowly inactivating potassium current
IKs ) and LTP/LTD expression should allow activity-dependent modification of the

integration of temporally non simultaneous synaptic inputs.
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Figure 6.8. Rule R2. The learning coefficient w1  successively decreases for coincident
pre- and end of sustained postsynaptic activities in pathway 2, and increases for a
stimulation of pathway 3 (left). A decrease is observed when no stimulation of pathway 3
occurs (right).

Conclusion

Figures 6.3 to 6.8 allow the comparison between learning rules used in neural modeling.
Learning rules have been generally compared in the spatial dimension (Brown et al. 1990).
The most interesting aspect of the present comparison concerns the temporal dimension.
Stimulation paradigms involve not only temporal contiguity between synaptic events, but
also interactions between non simultaneous events. At each time, conditions of plasticity
seem to follow Hebbian or anti-Hebbian rules, but when considered over an appropriate
temporal span, a global logic can be seen corresponding to a preferred mode of
stimulation. Accordingly, these rules do not deny the role of Hebbian plasticity, but
emphasize that temporal modulations of Hebbian conditions should result in powerful
adaptive properties.

4 CORTICAL AREA, CORTICAL FUNCTION, AND LEARNING
RULE

In this section, we make a tentative proposal on the relation between a cortical area, a
cortical function and a learning rule (Table 6.1). This proposal relies on the data and
models of chapters 3, 4, and 5, and data on behavioral plasticity, when available. We
propose that the function of a cortical area can be described by (i) a specific input/output
connectivity and (ii) an operation/adaptation mode. On this basis, an important
characteristic is the actual reinforcement signal in the cortical area, i.e. the signal, which
drives the synaptic plasticity (ρ1  in the previous section).
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Table 6.1. Relation between anatomical substratum and function
Organization Rule Network operation

Visual cortex topographic maps vectorial code
adaptive tuning
gating

autoorganization
perceptual grouping

Inferotemporal
cortex

topographic and non
topographic maps

population code
tuning
adaptive gating

visual discrimination
visual recognition

Parietal/premotor/
motor cortex

topologic maps
continuous parameters

population code
adaptive tuning
adaptive gating

coordinates transformation
context/reinforcement behavior

Prefrontal cortex non topographic maps adaptive timing temporal sequences

Visual cortex

At early stages of visual processing, maps are primarily organized according to retinotopic
indices. The development of functional properties such as orientation, ocular dominance,
disparity, occurs during a critical period of postnatal life. Frégnac et al. (1988) have shown
that this development may result from activity-dependent modulations of synaptic
transmission following a Hebbian rule (adaptive tuning). Furthermore, the postsynaptic
activation reflecting retinal and non retinal inputs must reach a given level to allow synaptic
modification (Singer et al. 1982). It has been proposed that extraretinal signals can have a
gating effect for synaptic plasticity (Trotter et al. 1987). However, the exact nature of this
gating effect has not been firmly established.

The resulting organization takes the form of interdigitated secondary indices
corresponding to the parallel and redundant mapping of information and operations. In the
normally reared adult visual cortex, plasticity may be prevented by the predominance of
inhibitory intracortical networks. In this case, the same tuning and gating effects observed
in the developing brain may result in perceptual grouping as demonstrated by the model of
chapter 3.

Inferotemporal cortex

As shown by the model of invariant recognition exposed in chapter 3, the inferotemporal
cortex can be seen as the interface between retinotopic representations derived from retinal
inputs (feedforward), and non-retinotopic object-related representations (feedback).
Transformations in the feedforward direction are defined by the pre-established tuning
properties of neurons at early stages of processing. At higher stages, learning occurs
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through adaptive gating between feedforward and feedback flows of information. The
global transformation results in the storage of learned objects in a semi-distributed
fashion, as large collection of coarse retinotopic representations (see Fig. 3.4).

The reinforcement signal is defined by the coincident activation of two independent
sources of information (visual and semantic) in two different reference frames (see also
Rolls 1990). The distribution of this signal is defined by the pattern of feedback
projections carrying semantic information. The logic of this transformation is such that
two stimuli (of different categories) should activate different output pathways
(discrimination). It is interesting to not that simple principles such as retinotopy, lateral
inhibition and Hebbian changes may not be sufficient for invariant recognition (Frohn et
al. 1987). Frohn et al. have stressed that a subsystem with nonretinotopical organization
should be necessary to gain invariance properties.

Parietal/premotor/motor cortex

In cortical networks involved in the control of reaching movements, an important
parameter is the direction of the movement, which is represented in populations of neurons
in a distributed fashion. Control of the direction of movement can be obtained by
combining visual information related to a target and kinesthetic information related to the
position of the arm (Burnod et al. 1992; chapter 4). We have stressed that a powerful
way to learn the appropriate transformations is to correlate the sensory signals produced
by spontaneous movements. In this way, input/output relationships are tuned to allow a
consistent correspondence between vision and movement. After learning, a visual target
activates the visual map and triggers a movement associated by learning with the visual
image of the arm at the place of the target. This movement-dependent matching between
sensory maps has been called “self-consistency” (Kuperstein 1988).

The model of coordinate transformation exposed in chapter 4 shows that input/output
relationships can be appropriately modified during the learning period using adaptive
gating (rule R1, Equation 4.4). The adaptive gating rule (Fig. 6.6) allows the combination
of two flows of information to be learned using self-consistency as reinforcement.
Neurons which have been involved in the production of an intended response (reaching a
target) increase their excitability since they are reinforced by the consequences of their
activation (reafferent visual input corresponding to the hand on the target), conditionally to
the initial position of the arm. In this way, neurons learn to predict the effects of their
action.
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Prefrontal cortex

In chapter 5, we have emphasized that the role of the prefrontal cortex is critically related
to the production of goal-directed behaviors. This assertion is related to the following
facts: (1) Anatomical constraints in the prefrontal cortex are not in terms of mapping of
sensory or motor parameters, but in terms of non-topographically organized
representations and multiples interactions between different modalities; (2) Operations
performed by prefrontal neurons reflect integration of sensory and motor information in
the behavior rather a modality-specific transformation related to intrinsic (physical)
properties of events. The mechanism of temporal integration is probably related to
sustained activities (see discussion in chapter 5). Unlike visual and motor areas (see
above), the operating mode cannot be described by vectorial or population schemes. It
means that the “preferred events” of neurons (those, which are efficient to drive the
neurons) in PFC are not defined only by place, modality, or any reconstructed property
mapped in cortical circuits, but also by the particular significance in the behavior, related to
temporal and reinforcement contingencies. For instance, prefrontal neurons would
respond differentially to the same visual stimulus in two behavioral conditions.

Thus, although prefrontal neurons appear to be involved in simple sensory and motor
functions, their activity results mainly from behavioral constraints induced by a training
protocol. Self-consistency relationships are not defined by a sensory-motor loop, but by
an arbitrary program, indicating the rule to obtain a reinforcement. In this case, the
reinforcement signal is an absolute signal defining the correctness of the behavior.

Once a given behavior is established following a given rule, changing the task rule is
responsible for the development of a new behavior, since the reward becomes contingent
to new goal. Prefrontal neurons seem to contribute to the construction of the new behavior,
as observed during performance of reversal learning (Watanabe 1990). The model of
chapter 5 illustrates the behavior of a neural network driven by an arbitrary training
protocol. Learning occurs through adaptive timing (rule R2, Equation 5.3, Fig. 6.8) and
neuronal activities change following variations of the performance rate of the network
(Fig. 5.13).

The rule R2 defining the adaptive timing can be seen as a neural analog of plasticity in
the prefrontal cortex. This rule reflects the ability to “link” successive synaptic events to a
reinforcing event. It says that simple associative conditions should not be sufficient to
drive synaptic plasticity, unlike in the visual cortex (Frégnac et al. 1988). This observation
is consistent with some experimental evidences showing that associative protocols may not
efficient to elicit LTP in the prefrontal cortex.
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It is interesting to note that internal signals correlated with the reinforcement have been
observed experimentally (Watanabe 1989). These signals may provide a basis to the
acquisition of programs requiring planning. When one or more actions must be executed
before reaching a goal (reinforcement), internal evaluations, related to the resolution of
(non reinforced) subgoals, are necessary to guide appropriate actions. Using internal
evaluation signals as a reinforcement provide a general mean to learn complex behaviors.
In this sense, adaptive timing may contribute to acquisition of higher level behavioral
structures such as language.

5 DISCUSSION

Starting from the Hebbian rule, we have shown that progressively more powerful rules can
be constructed, corresponding to different controls of the relation between LTP and LTD.
Unlike the Hebbian rule, most of these rules have not been directly demonstrated
experimentally. However, the fact that the Hebbian paradigm is not sufficient to solve
problems including temporal dependencies points to existence of non-Hebbian forms of
plasticity. These rules rely on experimental evidences related to different forms of
plasticity (Fig. 6.1) and to the LTP/LTD curve (Fig. 6.2).

On the basis of these rules, we have made a proposal on the relation between a cortical
area, a cortical function, and a learning rule (Table 6.1). According to this proposal, a
particular form of anatomical organization (including input/output connectivity and
representation of information in afferent and efferent structures), and a particular mode of
operation/adaptation should result in a particular function. From a qualitative point of view,
this observation is a trivial consequence of the diversity of neural organizations and
processes. However, since we have provided a quantitative analysis through computational
models (chapters 3, 4, and 5), nontrivial relations can be drawn, which reflect the regional
specialization of the cortical surface.

In particular, we have shown that information processing mechanisms underlying
visual integration, motor performance, and temporal organization of behavior, can be
consistently described by a restricted number of factors (Table 6.1). However, it is
important to note that regional variations should be considered as gradients rather than a
precise parcellation delineated by functionally identified cortical areas.
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Conclusion

Modeling has been a growing field in recent years. Many models have been designed at
various level of representations, in order to confirm or strengthen experimental results.
These attempts relied on the correct assumption that modeling is likely to provide a
descriptive and predictive representation of transformations in the brain, and can help to
understand the relation between different levels of brain organization. Starting from a
qualitative description including various anatomical, physiological, and psychological data,
a quantitative description can be obtained by translating computational principles into
mathematical equations, and then into a computer model.

However, the great majority of neural models have been aimed at explaining a specific
set of data (Zipser and Andersen 1988; Lehky and Sejnowski 1988; Lockery et al. 1989).
Moreover, most of these models are based on the back-propagation algorithm, which is
quite successful for publication, but far less as far as explicative and predictive abilities are
concerned (Crick 1989; Reeke and Sporns 1993).

On the other hand, original modeling approaches have been shown to be possible and
fruitful (Kawato and Gomi 1992; Edelman 1993; Gluck and Granger 1993; Reeke and
Sporns 1993). In this regard, the present document has described, summarized, and we
hope, synthesized a systematic work of description and modelization of cortical functions
based on carefully selected principles. This work has been undertaken for several years in
the laboratory and has provided encouraging results. It has benefited from influential
developments within cognitive science in recent years such as connectionism (Feldman
and Ballard 1982; Ballard 1986), animal learning models (Sutton and Barto 1981),
reinforcement models (Barto et al. 1983), PDP models (Rumelhart and McClelland 1986),
guided propagation (Béroule 1988; Blanchet 1992).

An important issue addressed in this work is related to the need of neurobiological
constraints for computational theories. In continuity with previous works (Ballard 1986;
Burnod 1988; Alexandre 1990; Guyot 1990), we have identified a framework based on the
architectural and processing characteristics of the cerebral cortex. Modeling principles
have been constructed from the modular organization of the cortex and concern
representation of information, connectivity, neural processing and neural plasticity in
cortical areas. We have argued that columnar processing can be approximated by a
combination of convolution (receptive field filtering: tuning) and polynomial (interlaminar
interactions: gating and timing) operations. These operations depend upon a set of
columnar registration coefficients defining the long-lasting adaptive properties of cortical
circuits (adaptive tuning, adaptive gating, and adaptive timing). Note that no explicit
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algorithm for neural computation is provided. Accordingly, emergent properties are
uniquely defined by local operation and adaptation mechanisms and not by finding
minima of an “energy” (Hopfield 1982) or “error” function (Rumelhart et al. 1986).

Within this framework, we have described models of visual integration (chapter 3),
motor performance (chapter 4), and temporal organization of the behavior (chapter 5).
On the basis of these models, the major claim of this work is that the computational
properties of different cortical areas can be consistently described both by a set of
common principles and by regional variations along two dimensions: (1) the organization
of the anatomical substrat in terms of afferent and efferent pathways, and (2) the
properties of local neuronal circuits.

Common principles are related to organization and operation in terms of multicellular
circuits (cortical columns), which are more likely to approximate cortical processing than a
single prototypic neuron. Generally, modeled neurons are considered as threshold
automata and the goal of neuronal algorithms is to characterize the relationship between
incoming activity and threshold by modifying synaptic weights. Such a tuning defines a
linear separation in the input space and is thus sensitive to any further modification of
synaptic weights. On the other hand, multicellular circuits implement two levels of
processing (filtering, integration), which allow the specific operation performed by a
cortical circuit to be dissociated from the nature of data on which it acts.

Regional variations of anatomy have been described in relation to the nature and
organization of afferent and efferent flows of information. Characteristics have been
derived in terms of feedforward, feedback, or lateral information flows, of primary and
secondary indices, of topographic or non-topographic mapping. We have defined the
regional variations of columnar properties by a set of operation and adaptation modes
(tuning, gating, and timing). Two original operation and adaptation rules (R1 and R2) have
been designed, based on the idea that linear properties of neuronal processing and
Hebbian forms of plasticity should not be sufficient to solve problems involving temporal
dependencies. The novelty of these rules is the activity-dependent on-line priming of long-
lasting changes in synaptic strength (chapter 6). In the framework of current interest in
LTP and LTD, it corresponds to the ability to control the LTD/LTP curve threshold.
Another novelty (rule R2) is that the synaptic control is not related to the level of firing
frequency, but to the mode of discharge (phasic vs tonic). Bienenstock et al. (1982) have
proposed that learning should depend on the recent history of neuronal activity. Here we
extend the concept to the activation of the neuron which depends on an internal state
(sustained activity). This proposal is in keeping with recent results on the control of
neuronal excitability by temporal sequences of synaptic events (Hammond and Crépel
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1992). It may be predicted that there exists a coupling between temporal sequences of
synaptic events and plasticity. More precisely, specific sequences should allow variations
of synaptic efficacy, which do not encode steady state statistics (Levy et al. 1990), but
rather predictions of forthcoming events.

Combination of organizational and operational variations have been shown to result in
specific functional properties, as shown by models of chapters 3, 4, and 5 (see also Table
6.1). On this basis, we have proposed a theory, which relate cortical areas, cortical
functions, and computational properties. This theory allows specific predictions to be
made on the form of plasticity, which should be found in different cortical areas. In
particular, we have emphasized that the Hebbian paradigm should not be by itself efficient
to drive synaptic plasticity in certain cortical regions.

Among the models, the model of prefrontal functions (chapter 5) constitutes the main
contribution of the present work. To our knowledge, no models have provided
computational accounts of the adaptive properties of prefrontal circuits related to the
acquisition of behavioral tasks. The model Darwin III of Reeke et al. (1990) is able to
perform several sensory-motor transformations (visual tracking, recognition, reaching) and
simple contingent responses, such as object-reward associations. However it cannot adapt
its behavior to complex changes in its environment. Models of Dehaene and Changeux
(1989, 1991) have addressed issues on prefrontal functions (delayed-response task,
Wisconsin Card Sorting Test). However, they have not addressed the problem of
successive adaptations to external contingencies.

Outcomes of the model in terms of neuronal activity are consistent with experimental
data. More interestingly, results become precise predictions as far as learning-dependent
variation of activity are concerned. Such predictions are of importance in relation to the
interpretation of patterns of neuronal activity in the frontal lobe. In fact, the only
consideration of classical descriptive parameters of neuronal activity (latency, phasic/tonic,
relation to internal or external events) is not sufficient to assess the message carried out by
the activity. In this respect, two solutions have been proposed: (i) Using tasks which
involve complex sensory-motor contingencies (Watanabe 1986a,b; Joseph and Barone
1987; Barone and Joseph 1989; Watanabe 1990, 1992; di Pellegrino and Wise 1993). In
this way, it is possible to dissociate the phenomena that are likely to drive the neurons; (ii)
Studying variations of activity throughout acquisition or on-line modification of behavioral
tasks (Niki et al. 1990). The history of neuronal activity, and in particular correlations
between variations of activity and behavioral change, is informative on the specialization
and the role of the neuron. In relation to the latter method, the model makes predictions on
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the relation between patterns of neuronal activity and learning-dependent changes in
activity.

It is important to note that the present work does not provide a general theory of brain
functions. The modeling framework provides only a guideline and not an a priori
guarantee of success. It says that one should ask about neurobiological data and it says
how to ask about it. In particular, it stresses that every aspect either physiological,
psychological or theoretical should be expressed in neural terms.

Expected outcomes of this work concern two different aspects. On the one hand, a new
modeling framework is proposed and should facilitate the development of models. We
hope that it will trigger further modeling developments, which go in the sense of
explication rather than simple imitation. On the other hand, predictions of the models
should provide new insights in the computation performed by the cerebral cortex, in
particular for problems which have withstood experimental tests.
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Appendix: Model of the delayed-response task

FORMAL DESCRIPTION OF THE MODEL

Notations. N is the set of integer number, {0,1} the set of 0 and 1, R the set of real
numbers, R+  the set of non-negative real numbers, R+ *  the set of strictly non-negative
real numbers, and [0,1] the closed real interval.

n ∈ N is the number of input pathways

t ∈ N is an increasing variable describing the time step of the simulations
For each i, 1≤i≤n, xi(t)  ∈ {0,1} is the input signal in the pathway i.

For each i, 1≤i≤n, wi(t)  ∈ [0,1] is the learning coefficient of the pathway i.

y(t) ∈ {0,1} is the output signal

r(t) ∈ {0,1} is the reinforcement signal

Traces. The non conditional input trace x–i  is defined by

x– i ( t + 1 )   =  κ x– i ( t )   +  x i ( t )  

where κ ∈ [0,1].

The conditional input trace ei  is defined by

e i ( t + 1 )   =  ω e i ( t )   +  x i ( t )  y ( t )

where ω ∈ [0,1].

The output trace y–  is defined by

y– ( t + 1 )   =  χ 1 y– ( t )   +  χ 2  y ( t ) [ y ( t )  -  y ( t + 1 ) ]

where χ1  and χ2  ∈ [0,1].

Stochastic function. The function F is defined by
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F ( u )  =  


1  w i t h   p r o b   f ( u )
0  w i t h   p r o b   1 - f ( u )  

where f is the function

f ( u )  =  


0   0 ≤ u ≤ λ
1  µ ≤ u ≤ 1
u   e l s e

 

where λ ∈ [0,1], µ ∈ [λ,1], θ ∈ R+  and φ ∈ R+ .

Rule R2. Unit is activated according to



A ( t )  =  M A X i =1 . . n   { w i ( t ) x i ( t ) }

A ' ( t )  =  M A X i =1 . . n   { x i ( t ) }  

and

y ( t )  =  


g [ A ( t ) ]   i f   y ( t - 1 ) = 0

e l s e  


g [ A ’ ( t ) ]   i f  A ’ ( t ) ≠ 0  
e l s e   g [ η y ( t - 1 ) ]

 

where

- MAX is the function which selects the maximum value between a set of variables

- η ∈ [0,1]

- g is the function defined by

g ( z )  =  


1  w i t h   p r o b   z
0  w i t h   p r o b   1   -   z  

Learning coefficients are modified according to
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



w i ( t = 0 )  =  w 0

Δ
-
i ( t )  =  K -

i ( t ) x j ( t ) y ( t - 1 )

Δ
+
i ( t )  =  K +

i ( t ) x– j ( t ) y– ( t ) r ( t )

Δw i ( t , t + 1 )  =   e i ( t ) { ∑
j =1 , j ≠ i

n
  [ -α Δ -

i ( t ) + β Δ
+
i ( t ) ] }

 

where
- w0  ∈ [0,1]

- α ∈ R+  and β ∈ R+ 

- K+
i   and K-

i  are functions which ensure the convergence and the stability of the
variations:



K +

i ( t )  =   γ r ( t )   -  w i ( t )

K -
i ( t )  =  w i ( t )

 

DESCRIPTION OF THE SIMULATIONS

Training steps. The number of trials during each step was the following:

- Step 1: 15 blocks of 8 trials

- Steps (1’+2): 15 blocks of 8 trials

- Steps (2’+3): 17 blocks of 8 trials

Parameters. For the simulations, the following parameter values were used: δ = 8 (delay
length); θ = 0.3; φ = 8.0; λ = 0.25; µ = 1.0 (stochastic function); κ = 0.995; ω = 0.995;
χ1  = 0.97; χ2  = 0.9 (traces); η = 0.985; α = 0.1; β = 0.35; γ = 1.0; w0  = 0.5 (Rule R2).
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Abbreviations

ACh, acetylcholine; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate; APV,
2-amino-5-phosphonovaleric acid; BCM, Bienenstock, Cooper and Murno; BP,
Bereischaftpotential ; CBM, cerebellum; CNS, central nervous system; CR, conditioned
response; CS, conditioned stimulus; DA, dopamine; EPSP, excitatory postsynaptic
potential; GPe, external segment of the globus pallidus; GPi, internal segment of the
globus pallidus; IPL, inferior parietal lobule; IPSP, inhibitory postsynaptic potential; IT,
inferotemporal cortex; LTD, long-term depression; LTP, long-term potentiation; MCP,
motor cortex potential; MRBMs, movement related brain macropotentials; MST, middle
superior temporal area; MT, middle temporal area; NA, noradrenaline; NMDA, N-methyl-
D-aspartate; PDP, parallel distributed processing; PFC, prefrontal cortex; PKC, protein
kinase C; PO, parieto-occipital area; SNc, substantia nigra pars compacta; SNr, substantia
nigra pars reticulata; SPP, skilled performance positivity; STN, subthalamic nucleus; STP,
short-term potentiation; TTX, tetrodotoxin; UCS, unconditioned stimulus; UCR,
unconditioned response; V1, primary visual area; WH, Widrow-Hoff



154

References

Ahissar E, Vaadia E, Ahissar M, Bergman H, Arieli A, Abeles M (1992) Dependence of cortical plasticity

on correlated activity of single neurons and on behavioral context. Science 257:1412-1415.

Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in

visual area MT of the macaque. J Neurophysiol 51:16-31.

Albus J (1971) A theory of cerebellar function. Math Biosci 10:25-61.

Alexander GE, Crutcher MD (1990) Preparation for movement: neural representations of intended

direction in three motor areas of the monkey. J Neurophysiol 64:133-150.

Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits

linking basal ganglia and cortex. Ann Rev Neurosci 9:357-381.

Alexandre F (1990) Une modélisation fonctionnelle du cortex: la colonne corticale - Aspects visuels et

moteurs. Thèse Université Nancy I.

Alexandre F, Guyot F, Haton JP, Burnod Y (1991) The cortical column, a new processing unit for

multilayered networks. Neural Netw 4:15-25.

Alonso JM, Cudeiro J, Perez R, Gonzales F, Acuna C (1993) Influence of layer V of area 18 of the cat

visual cortex on responses of cells in layer V of area 17 to stimuli of high velocity. Exp Brain Res

93:363-366.

Amari SI (1980) Topographic organization of nerve fields. Bull Math Biol 42:339-364.

Amit DJ (1988) Modeling Brain Function. Cambridge: Cambridge University Press.

Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons.

Science 230:456-458.

Andersen RA, Essick GK, Siegel RM (1987) Neurons of area 7 activated by both visual stimuli and

oculomotor behavior. Exp Brain Res 67:316-322.

Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the

light-sensitive neurons of the posterior parietal cortex. J Neurosci 3:532-548.

Aniksztejn L, Otani S, Ben-Ari Y (1992) Quisqualate metabotropic receptors modulate NMDA currents

and facilitate induction of long-term potentiation through protein kinase C. Eur J Neurosci 4:300-305.

Ans B (1990) Modèle neuromimétique du stockage et du rappel de séquences temporelles. C R Acad Sci

Paris 311:7-12.

Anton JL (1992) Modélisation des bases neurales du regroupement perceptif: discrimination de textures.

Rapport DEA Sciences Cognitives, EHESS-Université Paris 6.

Aou S, Omura Y, Nishino H, Inokuchi A, Mizuno Y (1983a) Influence of catecholamines on reward-

related neuronal activity in the monkey orbitofrontal cortex. Brain Res 267:165-170.



155

Aou S, Omura Y, Nishino H, Ono T, Yamabe K, Sikdar SK, Noda T, Inoue M (1983b) Functional

heterogeneity of single neuronal activity in the monkey dorsolateral prefrontal cortex. Brain Res

260:121-124.

Arikuni T, Watanabe K, Kubota K (1988) Connections of area 8 with area 6 in the brain of the macaque

monkey. J Comp Neurol 277:21-40.

Artola A, Bröcher S, Singer W (1990) Different voltage-dependent thresholds for inducing long-term

depression and long-term potentiation in slices of rat visual cortex. Nature 347:69-72.

Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature

330:649-652.

Asanuma H, Waters RS, Yumiya H (1982) Physiological properties of neurons projecting from area 3a to

area 4 of feline cerebral cortex. J Neurophysiol 48:1048-1057.

Azuma M, Suzuki H (1984) Properties and distribution of auditory neurons in the dorsolateral prefrontal

cortex of the alert monkey. Brain Res 298:343-346.

Bakay Pragay E, Mirsky AF, Nakamura RK (1987) Attention-related unit activity in the frontal

association cortex during a go/no-go visual discrimination task. Exp Neurol 96:481-500.

Ballard DH (1986) Cortical connections and parallel processing. Behav Brain Sci 9:67-120.

Baranyi A, Féher O (1981) Synaptic facilitation requires paired activation of convergent pathways in the

neocortex. Nature 290:413-415.

Barbas H, Mesulam MM (1981) Organization of afferent input to subdivisions of area 8 in the rhesus

monkey. J Comp Neurol 200:407-431.

Barbas H, Mesulam MM (1985) Cortical afferent input of the principalis region of the rhesus monkey.

Neuroscience 15:619-637.

Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6)

in the rhesus monkey. J Comp Neurol 256:211-228.

Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology. Perception

1:371-394.

Barlow HB (1989) Unsupervised learning. Neural Comp 1:295-311.

Barone P, Joseph JP (1989) Prefrontal cortex and spatial sequencing in macaque monkey. Exp Brain Res

78:447-464.

Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive elements that can solve difficult

learning control problems. IEEE Trans Syst Man Cyber SMC-13:834-846.

Batuev AS, Shaefer VI, Orlov AA (1985) Comparative characteristics of unit activity in the prefrontal and

parietal areas during delayed performance in monkeys. Behav Brain Res 16:57-70.

Baylis GC, Rolls ET, Leonard CM (1987) Functional subdivisions of the temporal lobe neocortex. J

Neurosci 7:330-342.

Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an

important link for LTP induction. Trends Neurosci 15:333-339.



156

Benevento LA, Fallon J, Davis BJ, Rezak M (1977) Auditory-visual interaction in single cells in the

cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp

neurol 57:849-872.

Béroule D (1988) The never-ending learning. In: Neural Computers (Eckmiller R, von der Malsburg C,

eds), pp 219-230. Heidelberg: Springer-Verlag.

Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity:

orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32-48.

Bienenstock E, von der Malsburg C (1987) A neural network for invariant pattern recognition. Europhys

Lett 4:121-126.

Blanchet P (1993) Une architecture connexionniste pour l'apprentissage par l'expérience et la

représentation des connaissance. Thèse Université Paris XI, Notes et documents LIMSI 93-19.

Blasdel GG, Lund JS, Fitzpatrick D (1985) Intrinsic connections of macaque striate cortex: axonal

projections of cells outside lamina 4C. J Neurosci 5:3350-3369.

Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the

anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331-356.

Born RT, Tootell RBH (1992) Segregation of global and local motion processing in primate middle

temporal visual area. Nature 357:497-499.

Brown TH, Chapman PF, Kairiss EW, Keenan CL (1988) Long-term synaptic potentiation. Science

242:724-728.

Brown TH, Kairiss EW, Keenan CL (1990) Hebbian synapses: biophysical mechanisms and algorithms.

Ann Rev Neurosci 13:475-511.

Bruce CJ (1988) Single neuron activity in the monkey's prefrontal cortex. In: Neurobiology of Neocortex

(Rakic P, Singer W, eds), pp 293-329. New York: Wiley.

Bruce CJ, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior

temporal sulcus of the macaque. J Neurophysiol 46:369-384.

Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J

Neurophysiol 53:603-635.

Buonomano DV, Baxter DA, Byrne JH (1990) Small networks of empirically derived adaptive elements

simulate some higher-order features of classical conditioning. Neural Netw 3:507-523.

Burnod Y (1988) An adaptive neural network: the cerebral cortex. Paris: Masson.

Burnod Y, Grandguillaume P, Otto I, Ferraina S, Johnson PB, Caminiti R (1992) Visuo-motor

transformations underlying arm movements toward visual targets: a neural network model of cerebral

cortical operations. J Neurosci 12:1435-1453.

Burnod Y, Guigon E, Delord B, Klaassen A (1993) A model of interactions between synaptic and channel

properties which generates an efficient learning rule for the control of the working memory in the

frontal cortex. Conférence Jacques Monod, Lalonde.



157

Burnod Y, Guigon E, Otto I, Grandguillaume P, Bouthkil L, Dorizzi B, Marchal P (1991) Models of

interctions between cortical areas for sensory-motor programs. Proc SPIE, November, Boston, USA.

Burnod Y, Maton B, Calvet J (1982) Short-term changes in cell activity of area 4 and 5 during operant

conditioning. Exp Neurol 78:227-240.

Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G (1987) Intracellular studies on the dopamine-

induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement.

Neuroscience 20:757-771.

Caminiti R, Johnson PB, Burnod Y (1992) Control of arm Movement in Space: Neurophysiological and

Computational Approaches. Heidelberg: Springer-Verlag.

Caminiti R, Johnson PB, Galli C, Ferraina S, Burnod Y (1991) Making arm movements within different

parts of space: the premotor and motor cortical representation of a coordinate system for reaching to

visual targets. J Neurosci 11:1182-1197.

Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey. II. Evidence for

segregated cortico-cortical networks linking sensory and limbic areas with the frontal lobe. J Comp

Neurol 287:422-445.

Chavis DA, Pandya DN (1976) Further observations on corticofrontal connections in the rhesus monkey.

Brain Res 117:369-386.

Chen L, Huang LYM (1991) Sustained potentiation of NMDA receptor-mediated glutamate responses

through activation of protein kinase C by a gamma opioid. Neuron 7:319-326.

Chiarenza GA, Papakostopoulos D, Giordana F, Guareschi-Cazzullo A (1983) Movement-related brain

macropotentials during skilled performances. A developmental study. Electroenceph Clin

Neurophysiol 56:373-383.

Chiarenza GA, Vasile G, Villa M (1990) Goal or near miss! Movement potential differences between

adults and children in skilled performance. Int J Psychophysiol 10:105-115.

Churchland PS, Sejnowski TJ (1988) Perspectives in cognitive neuroscience. Science 242:741-745.

Cohen JD, Servan-Schreiber D (1992) Context, cortex, and dopamine: a connectionist approach to

behavior and biology in schizophrenia. Psychol Rev 99:45-77.

Colley PA, Routtenberg A (1993) Long-term potentiation as synaptic dialogue. Brain Res Rev 18:115-

122.

Collingridge GL, Bliss TVP (1987) NMDA receptors-their role in long-term potentiation. Trends

Neurosci 10:288-293.

Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci

13:99-104.

Crick F (1989) The recent excitement about neural networks. Nature 337:129-132.

Damasio AR, Tranel D, Damasio H (1990) Individuals with sociopathic behavior caused by frontal

damage fail to respond autonomically to social stimuli. Behav Brain Res 41:81-94.



158

De Yoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends

Neurosci 11:219-226.

Dean P (1976) Effects of inferotemporal lesions on the behavior of monkeys. Psychol Bull 83:41-71.

Dehaene S, Changeux JP (1989) A simple model of prefrontal cortex function in delayed-response tasks. J

Cogn Neurosci 1:244-261.

Dehaene S, Changeux JP (1991) The Wisconsin Card Sorting Test: theoretical analysis and modeling in a

neuronal network. Cerebral Cortex 1:62-79.

Dehaene S, Changeux JP, Nadal JP (1987) Neural networks that learn temporal sequences by selection.

Proc Natl Acad Sci USA 84:2727-2731.

Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque. Brain Res 178:366-

380.

di Pellegrino G, Wise SP (1991) A neurophysiological comparison of three distinct regions of the

primate frontal lobe. Brain 114:951-978.

di Pellegrino G, Wise SP (1993) Visuospatial versus visuomotor activity in the premotor and prefrontal

cortex of a primate. J Neurosci 13:1227-1243.

Dorizzi B, Guigon E, Burnod Y (1992) A neural network model of frontal cortical circuits for learning

conditional sequences. Proc IJCNN, Baltimore, USA.

Douglas RJ, Martin KAC (1991) Opening the grey box. Trends Neurosci 14:286-293.

Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of the hippocampus and

effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89:4363-4367.

Durbin R, Rumelhart DE (1989) Product units: a computationally powerful and biologically plausible

extension to backpropagation networks. Neural Comp 1:133-142.

Eccles JC (1964) The physiology of synapses. Berlin: Springer-Verlag.

Eccles JC (1981) The modular operation of the cerebral cortex considered as the material basis for mental

events. Neuroscience 6:1839-1856.

Edelman GM (1993) Neural Darwinism: selection and reentrant signaling in higher brain function.

Neuron 10:115-125.

Eichenbaum H, Otto T (1993) LTP and memory: can we enhance the connection? Trends Neurosci

16:163-164.

Eichenbaum H, Otto T, Cohen NJ (1992) The hippocampus-What does it do? Behav Neural Biol 57:2-36.

Elman JL (1990) Finding structure in time. Cognitive Science 14:179-211.

Eskandar EN, Richmond BJ, Optican LM (1992) Role of inferior temporal neurons in visual memory. II.

Multiplying temporal waveforms related to vision and memory. J Neurophysiol 68:1296-1306.

Feldman JA (1985) Four frames suffice: a provisionary model of vision and space. Behav Brain Sci

3:265-289.

Feldman JA, Ballard DH (1982) Connectionist models and their properties. Cognitive Science 6:205-254.



159

Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Cerebral Cortex, Vol 1 (Peters

A, Jones EG, eds), pp 123-200. New York: Plenum Press.

Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex. Afferent and

efferent connections of lamina 4C. J Neurosci 5:3329-3349.

Fox M, Daw N, Sato H (1990) The effect of varying stimulus intensity on NMDA-receptor activity in

cat visual cortex. J Neurophysiol 64:1413-1428.

Frégnac Y, Shulz D, Thorpe S, Bienenstock E (1988) A cellular analogue of visual cortical plasticity.

Nature 333:367-370.

Frohn H, Geiger H, Singer W (1987) A self-organizing neural network sharing features of the mammilian

visual system. Biol Cybern 55:333-343.

Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey

inferotemporal cortex. Nature 360:343-346.

Fukushima K (1988) Neocognitron: a hierarchical network capable of visual pattern recognition. Neural

Netw 1:119-130.

Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey's

dorsolateral prefrontal cortex. J Neurophysiol 61:331-349.

Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons

revealed by oculomotor paradigms. J Neurophysiol 63:815-831.

Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements

in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 65:1464-1483.

Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal

correlates of transient memory. J Neurophysiol 36:61-78.

Fuster JM (1988) The Prefrontal Cortex (2nd ed). New York: Raven.

Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652-654.

Fuster JM, Alexander GE (1973) Firing changes in cells of the nucleus medialis dorsalis associated with

delayed response behavior. Brain Res 61:79-91.

Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the

monkey in cognitive tasks. Exp Neurol 77:679-694.

Fuster JM, Bauer RH, Jervey JP (1985) Functional interactions between inferotemporal and prefrontal

cortex in a cognitive task. Brain Res 330:299-307.

Gazeres N (1993) Changement de référentiel dans le colliculus supérieur - Auto-organisation, distribution

et généralisation. Rapport DEA Sciences Cognitives, EHESS-Université Paris 6.

Gemba H, Sasaki K (1984) Studies on cortical field potentials recorded during learning processes of

visually initiated hand movements in monkeys. Exp Brain Res 55:26-32.

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of

two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 1:1527-1537.



160

Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction.

Science 233: 1416-1419.

Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat's visual cortex. J Comp

Neurol 163:81-106.

Gluck MA, Granger R (1993) Computational models of the neural bases of learning and memory. Ann

Rev Neurosci 16:667-706.

Glünder H (1987) Invariant description of pictorial patterns via generalized auto-correlation functions. In:

ASST '87, 6. Aachener Symposium für Signaltheorie (Meyer-Ebrecht D, ed), pp 84-87. Heidelberg:

Springer-Verlag.

Goldman PS, Nauta WJH (1977a) Columnar distribution of cortico-cortical fibers in the frontal

association, limbic and motor cortex of the developing rhesus monkey. Brain Res 122:393-414.

Goldman PS, Nauta WJH (1977b) An intricately patterned prefronto-caudate projection in the rhesus

monkey. J Comp Neurol 171:369-386.

Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by

representational memory. In: The nervous system, higher functions of the brain. Handbook of

Physiology, vol 5, ch 9 (Plum F, ed), pp 373-417. Bethesda: Am Physiol Soc.

Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association

cortex. Ann Rev Neurosci 11:137-156.

Goldman-Rakic PS, Schwartz ML (1982) Interdigitation of controlateral and ipsilateral columnar

projections to frontal association cortex in primates. Science 216:755-757.

Grafman J (1989) Plans, actions, and mental sets: managerial knowledge units in the frontal lobes. In:

Integrating Theory and Practice in Clinical Neuropsychology, pp 93-138. Hillsdale: Lawrence

Erlbaum.

Gray CM, Koning P, Engel AK, Singer W (1989) Oscillatory responses of cat visual cortex exhibit inter-

columnar synchronization which reflects global stimulus properties. Nature 338:334-337.

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual

cortex. Proc Natl Acad Sci USA 86:1698-1702.

Guigon E, Burnod Y (1993) Modeling the acquisition of goal-directed behaviors. Submitted for

publication.

Guigon E, Dorizzi B, Burnod Y, Schultz W (1993) Neural correlates of learning in the prefrontal cortex of

the monkey: a predictive model. To appear in Cerebral Cortex.

Guigon E, Mondon X, Dorizzi B, Burnod Y, Hirsch J (1991) Learning of sensori-motor sequences by

prefrontal cortical circuits: a model. Soc Neurosci Abstr 17:307.

Guyot F (1990) Une modélisation fonctionnelle du cortex: la colonne corticale - Aspects visuels et

auditifs. Thèse Université Nancy I.

Halsband U, Passingham R (1982) The role of premotor and parietal cortex in the direction of action.

Brain Res 240:368-372.



161

Hammond C, Crépel F (1992) Evidence for a slowly inactivating K+ current in prefrontal cortical cells.

Eur J Neurosci 4:1087-1092.

Harlow HF (1949) The formation of learning sets. Psychol Rev 56:51-65.

Hay L (1984) The development of movement control. In: The psychology of human movement. New

York: Academic Press.

Hebb DO (1949) The organization of behaviour. New York: Wiley.

Hertz JA, Palmer RG, Krogh AS (1991) Introduction to the theory of neural computation. Reading:

Addison-Wesley.

Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars

reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49:1268-1284.

Hinton GE (1987) Connectionist learning procedures. Technical Report CMU-CS-87-115.

Hinton GE, Shallice T (1991) Lesioning an attractor network: investigations of acquired dyslexia.

Psychol Rev 98:74-95.

Hirsch JC, Crépel F (1991) Blockade of NMDA receptors unmasks a long-term depression in synaptic

efficacity in rat prefrontal neurons in vitro. Exp Brain Res 85:621-624.

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational

abilities. Proc Natl Acad Sci USA 79:2554-2558.

Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of

two-state neurons. Proc Natl Acad Sci USA 81:3088-3092.

Hounsgaard J, Hultborn H, Jespersen B, Kiehn O (1984) Intrinsic membrane properties causing a bistable

behavior of α-motoneurones. Exp Brain Res 55:391-394.

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the

cat's visual cortex. J Physiol (Lond) 160:106-154.

Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two non-striate visual areas

(18 and 19) of the cat. J Neurophysiol 28:229- 289.

Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J

Physiol (Lond) 195:215-243.

Hubel DH Wiesel TN (1969) Anatomical demonstration of columns in the monkey striate cortex. Nature

221:747-750.

Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculocortical fibers in the macaque

monkey. J Comp Neurol 146:421-450.

Hubel DH, Wiesel TN (1974a) Sequence regularity and geometry of orientation columns in the monkey

striate cortex. J Comp Neurol 158:267-274.

Hubel DH, Wiesel TN (1974b) Uniformity of monkey striate cortex: a parallel relationship between field

size, scatter, and magnification factor. J Comp Neurol 158:295-306.

Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond

B 198:1-59.



162

Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain

Res 206:287-303.

Inoue M, Oomura Y, Aou S, Nishino H, Sikdar S (1985) Reward related neuronal activity in monkey

dorsolateral prefrontal cortex during feeding behavior. Brain Res 326:307-312.

Iriki A, Pavlides C, Keller A, Asanuma H (1989) Long-term potentiation in the motor cortex. Science

245:1385-1387.

Ito M (1984) The cerebellum and neural control. New York: Raven Press.

Ito M (1989) Long-term depression. Ann Rev Neurosci 12:85-102.

Jacobsen CF (1935) Functions of frontal association areas in primates. Arch Neurol Psychiatry 33:558-

569.

Johnson PB (1992) Toward an understanding of the cerebral cortex and reaching movements: A review of

recent approaches. In: Control of arm Movement in Space. Neurophysiological and Computational

Approaches (Caminiti R, Johnson PB, Burnod Y, eds), pp 199-261. Heidelberg: Springer-Verlag.

Jones EG (1969) Interrelationship of parieto-temporal and frontal cortex in the rhesus monkey. Brain Res

13:412-415.

Jones EG (1975) Lamination and differential distribution of thalamic afferent within the sensory-motor

cortex of the squirrel monkey. J Comp Neurol 160:167-204.

Jones EG (1981) Anatomy of cerebral cortex: columnar input-output organization. In: The organization of

the cerebral cortex (Schmitt F et al, eds), pp 199-235. Cambridge: MIT Press.

Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory

in humans as revealed by PET. Nature 363:623-625.

Joseph JP, Barone P (1987) Prefrontal unit activity during a delayed oculomotor task in the monkey. Exp

Brain Res 67:460-468.

Kalaska JF, Cohen DAD, Prud'homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes

movement kinematics, not movement dynamics. Exp Brain Res 80: 351-364.

Kawagushi Y, Wilson CJ, Emson PC (1989) Intracellular recording of identified neostriatal patch and

matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol 62:1052-1068.

Kawato M, Furukawa K, Susuki R (1987) A hierarchical neural network model for control and learning of

voluntary movements. Biol Cybern 57:169-185

Kawato M, Gomi H (1992) The cerebellum and VOR/KOR learning models. Trends Neurosci 15:445-

453.

Knierim JJ, Van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of the alert

macaque monkey. J Neurophysiol 67:961-980.

Knudsen EI, du Lac S, Esterly SD (1987) Computational maps in the brain. Ann Rev Neurosci 10:41-65.

Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and

role in information processing. Proc Natl Acad Sci USA 80:2799-2802.

Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:56-69.



163

Kohonen T (1988) Self-organization and associative memory. Berlin: Springer-Verlag.

Kohonen T, Oja E, Lehtio P (1981) Storage and processing of information in distributed associative

memory systems. In: Parallel Models of Associative memory (Anderson JA, Hinton GE, eds), pp

105-143. Hillsdale: Erlbaum.

Kojima S (1980) Prefrontal unit activity in the monkey: relation to visual stimuli and movements. Exp

Neurol 69:110-123.

Kojima S, Goldman-Rakic PS (1982) Delay-related activity of prefrontal neurons in rhesus monkeys

performing delayed response. Brain Res 248:43-49.

Komatsu H (1982) Prefrontal unit activity during a color discrimination task with GO and NO-GO

responses in the monkey. Brain Res 244:269-277.

Kornhuber HH, Deecke L (1965) Hirnpotentialanderungen bei Willkurbewegungen und passiven

Bewegungen des Menschen. Bereitschafstpotential und reafferente Potentiale. Pflügers Arch Ges

Physiol 284:1-17.

Kubota K, Funahashi S (1982) Direction-specific activities of dorsolateral prefrontal cortex and motor

cortex pyramidal tract neurons during visual tracking. J Neurophysiol 47:362-376.

Kubota K, Iwamoto T, Suzuki H (1974) Visuokinetic activities of primate prefrontal neurons during

delayed response performance. J Neurophysiol 37:1197-1212.

Kubota K, Komatsu S (1985) Neuron activities of monkey prefrontal cortex during learning of visual

discrimination tasks with GO/NO-GO performances. Neurosci Res 3:106-129.

Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys.

J Neurophysiol 34:337-347.

Kubota K, Tonoike M, Mikami A (1980) A neuronal activity in the monkey dorsolateral prefrontal cortex

during discrimination task with delay. Brain Res 183:29-42.

Kuperstein M (1988) Neural model of adaptive hand-eye coordination for single postures. Science 239:

1308-1311.

Kuperstein M, Rubinstein J (1989) Implementation of an adaptive neural controller for sensory-motor

coordination. In: Connectionism in Perspective (Pfeifer R, Schreter Z, Fogelman-Soulie F, Steels L,

eds), pp 49-61. Amsterdam: Elsevier Science Publishers.

Lamotte RH, Acuña C (1978) Defects in accuracy of reaching after removal of posterior parietal cortex in

monkeys. Brain Res 139:309-326.

LeCun Y (1987) Modèles connexionistes de l'apprentissage. PhD thesis, Université Pierre et Marie Curie,

Paris, France.

Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the

superior colliculus. Nature 332:357-360.

Lehky SR, Sejnowski TJ (1988) Network model of shape-from-shading: neural function arises from both

receptive and projective fields. Nature 333:452-454.



164

Lestienne R, Strehler BL (1988) Differences between visual cortical cells in triplet and ghost doublet

informational symbols relationships. Biol Cybern 59:337-352.

Levine DS (1991) Introduction to neural and cognitive modeling. Hillsdale: Lawrence Erlbaum

Associates.

Levy WB, Colbert CM, Desmond NL (1990) Elemental adaptive processes of neurons and synapses: a

statistical/computational perspective. In: Neuroscience and Connectionist Theory (Gluck M,

Rumelhart DE, eds), pp 187-235. Hillsdale: Lawrence Erlbaum Associates.

Linsker R (1986) From basic network principles to neural architectures: emergence of spatial opponent

cells. Proc Natl Acad Sci USA 83:7508-7512.

Lisberger SG, Sejnowski TJ (1992) Motor learning in a recurrent network model based on the vestibulo-

ocular reflex. Nature 360:159-161.

Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and

memory. Proc Natl Acad Sci USA 86:9574-9578.

Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into

central nervous system function. Science 242:1654-1663.

Lockery SR, Wittenberg G, Kristan WB, Cottrell GW (1989) Function of identified interneurons in the

leech elucidated using neural networks trained by back-propagation. Nature 340:468-471.

Lorente de Nó R (1922) La corteza cerebral del raton. Trab Invest biol Univ Madrid 20:41-78.

Lund (1984) Spiny stellate neurons. In: Cerebral Cortex, Vol 1: cellular components of the cerebral

cortex (Peters A, Jones EG, eds). New York: Plenum Press.

Lund JS, Boothe R (1975) Interlaminar connections and pyramidal neuron organization in the visual

cortex, area 17, of the macaque monkey. J Comp Neurol 159:305-334.

Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF (1975) The origin of efferent pathways from

the primary visual cortex, area 17, of the macaque monkey. J Comp Neurol 164:287-304.

Madison DV, Malenka RC, Nicoll RA (1991) Mechanisms underlying long-term potentiation of synaptic

transmission. Ann Rev Neurosci 14:379-397.

Malenka RC (1993) Long-term depression: not so depressing after all. Proc Natl Acad Sci USA 90:3121-

3123.

Marín-Padilla M (1990) The pyramidal cell and its local-circuit interneurons: a hypothetical unit of the

mamalian cerebral cortex. J Cogn Neurosci 2:180194.

Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437-470.

Marr D (1982) Vision. San Franscico: Freeman.

Marr D, Poggio T (1977) From understanding computation to understanding neural circuitry. Neurosci

Res Program Bull 15:470-488.

Massone L, Bizzi E (1989) A neural network model for limb trajectory formation. Biol Cybern 61:417-

425.



165

Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior

area 6 in the macaque monkey. J Comp Neurol 251:281-298.

Matsumura M, Sawaguchi T, Kubota K (1992) GABAergic inhibition of neuronal activity in the primate

motor and premotor cortex during voluntary movement. J Neurophysiol 68:692-702.

Maunsell JHR, Newsome WT (1987) Visual processing in monkey extrastriate cortex. Ann Rev Neurosci

10:363-401.

Maunsell JHR, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their

relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563-2586.

McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull

Math Biophys 5:115-133.

McGinty D, Szymusiak R (1988) Neuronal activity patterns in behaving animals: brainstem and limbic

system. Ann Rev Psychol 39:135-168.

Mel B (1991) A connectionist model may shed light on neural mechanisms for visually guided reaching. J

Cogn Neurosci 3:273-292.

Merzenich MM (1987) Dynamic neocortical processes and the origins of higher brain functions. In: The

Neural and Molecular Basis of Learning (Changeux J-P, Konishi M, eds). Chichester: Wiley.

Mikami A, Ito S, Kubota K (1982) Visual response properties of dorsolateral prefrontal neurons during

visual fixation task. J Neurophysiol 47:593-605.

Mikami A, Kubota K (1980) Inferotemporal neuron activities and color discrimination with delay. Brain

Res 182:65-78.

Mishkin M, Appenzeller T (1987) The anatomy of memory. Sci Am 256:62-71.

Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways.

Trends Neurosci 6:414-417.

Mitz AR, Godschalk M, Wise SP (1991) Learning-dependent neuronal activity in the premotor cortex:

activity during the acquisition of conditional motor associations. J Neurosci 11:1855-1872.

Miyashita Y (1990) Associative representation of the visual long-term memory in the neurons of the

primate temporal cortex. In: Vision, Memory, and the Temporal Lobe (Iwai E, Mishkin M, eds), pp

75-87. New York: Elsevier Science Publishing Co.

Morel A, Bullier J (1990) Anatomical segregation of two cortical visual pathways in the macaque

monkey. Visual Neurosci 4:555-578.

Mountcastle VB (1978) The unit module and the distributed system. In: The mindful brain: cortical

organization and the group selective theory of higher brain functions (Edelman GM, Mountcastle VB,

eds), pp 7-50. Cambridge: MIT Press.

Mountcastle VB, Lynch JC, Georgopoulos AP, Sakata H, Acuna C (1975) Posterior parietal association

cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol

38:871-908.



166

Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four

somatotopically organized “premotor” areas. Brain Res 177:176-182.

Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term

depression in area CA1 of the hippocampus. Neuron 9:967-975.

Nambu A, Yoshida S, Jinnai K (1990) Discharge patterns of pallidal neurons with input from various

cortical areas during movement in the monkey. Brain Res 519:183-191.

Neal JW, Person RCA, Powell TPS (1990) The ipsilateral corticocortical connections of area 7 with the

frontal lobe in the monkey. Brain Res 509:31-40.

Niki H (1974a) Prefrontal unit activity during delayed alternation in the monkey: I. Relation to direction

of response. Brain Res 68:185-196.

Niki H (1974b) Prefrontal unit activity during delayed alternation in the monkey: II. Relation to absolute

versus relative direction of response. Brain Res 68:197-204.

Niki H (1974c) Differential activity of prefrontal units during right and left delayed response trials. Brain

Res 70:346-349.

Niki H, Sakai M, Kubota K (1972) Delayed alternation performance and unit activity of the caudate head

and medial orbitofrontal gyrus in the monkey. Brain Res 38:343-353.

Niki H, Sugita S, Watanabe M (1990) Modification of the activity of primate frontal neurons during

learning of a GO/NO-GO discrimination and its reversal. A progress report. In: Vision, Memory, and

the Temporal Lobe (Iwai E, Mishkin M, eds), pp 305-311. New York: Elsevier Science Publishing

Co.

Niki H, Watanabe M (1976) Prefrontal unit activity and delayed response: relation to cue location versus

direction response. Brain Res 105:79-88.

Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey.

Brain Res 171:213-224.

Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-

activated channels in mouse central neurones. Nature 307:462-465.

Okano K, Tanji J (1987) Neuronal activities in the primate motor fields of the agranular frontal cortex

preceding visually triggered and self-paced movements. Exp Brain Res 66:155-166.

Ono T, Nishino H, Fukuda M, Sasaki K, Nishijo H (1984) Single neuron activity in dorsolateral

prefrontal cortex of monkey during operant behavior sustained by food reward. Brain Res 311:322-

332.

Otto I, Guigon E, Boutkhil L, Grandguillaume P, Burnod Y (1992) Direct and indirect cooperation

between temporal and parietal networks for invariant visual recognition. J Cogn Neurosci 4:35-57.

Papakostopoulos D (1978) The serial order of self-paced movement in term of brain macropotentials in

man. J Physiol (Lond) 280:70-71.

Papakostopoulos D, Cooper R, Crow HJ (1975) Inhibition of cortical evoked potentials and sensation by

self-initiated movement in man. Nature 258:321-324.



167

Passingham RE (1985) Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behav

Neurosci 99:3-21.

Pearson JC, Finkel LH, Edelman GM (1987) Plasticity in the organization of adult cerebral cortical

maps: a computer simulation based on neuronal group selection. J Neurosci 7:4209-4223.

Pennartz CMA, Boeijinga PH, Kitai ST, Lopes da Silva FH (1991) Contribution of NMDA receptors to

postsynaptic potentials and paired-pulse facilitation in identified neurons of the rat nucleus accumbens

in vitro. Exp Brain Res 86:190-198.

Petrides M (1982) Motor conditional associative-learning after selective prefrontal lesions in the monkey.

Behav Brain Res 5:407-413.

Petrides M (1991) Proc R Soc London B 246:293-298.

Petrides M, Alivisatos B, Evans AC, Meyer E (1993a) Dissociation of human mid-dorsolateral from

posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci USA 90:873-877.

Petrides M, Alivisatos B, Meyer E, Evans AC (1993b) Functional activation of the human frontal cortex

during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878-882.

Pigarev IN, Rizzolatti G, Scandolara C (1979) Neurons responding to visual stimuli in the frontal lobe of

macaque monkeys. Neurosci Lett 12:207-212.

Poggio T, Torre V, Koch C (1985) Computational vision and regularization theory. Nature 317:314-319.

Pouget A, Fisher SA, Sejnowski TJ (1993) Egocentric spatial representation in early vision. J Cogn

Neurosci 5:150-161.

Powell TPS, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the

postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with

cytoarchitecture. Bull John Hopk Hops 105:133-162.

Preuss TM, Goldman-Rakic PS (1989) Connections of the ventral granular frontal cortex of macaques

with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in

primate frontal association cortex. J Comp Neurol 282:293-316.

Prince DA, Huguenard JR (1988) Functional properties of neocortical neurons. In: Neurobiology of

Neocortex (Rakic P, Singer W, eds), pp 153-176. Chichester: Wiley.

Quintana J, Fuster JM (1992) Mnemonic and predictive functions of cortical neurons in a memory task.

NeuroReport 3:721-724.

Quintana J, Fuster JM, Yajeya J (1989) Effects of cooling parietal cortex on prefrontal units in delay

tasks. Brain Res 503:100-116.

Quintana J, Yajeya J, Fuster JM (1988) Prefrontal representation of stimulus attributes during delay

tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain

Res 474:211-221.

Rakic P, Singer W (1988) Neurobiology of Neocortex. Chichester: Wiley.

Reeke GN, Edelman GM (1988) Real brains and artificial intelligence. Deadalus Proc Am Acad Arts Sci

117:143-173.



168

Reeke GN Jr, Finkel LH, Sporns O, Edelman GM (1990) Synthetic neural modeling: a multilevel

approach to the analysis of brain complexity. In: Signal and Sense: Local and Global Order in

Perceptual Maps (Edelman GM, Gall WE, Cowan WM, eds), pp 607-706. New York: Wiley.

Reeke GN, Sporns O (1993) Behaviorally based modeling and computational approaches to neuroscience.

Ann Rev Neurosci 16:597-623.

Reeke GN, Sporns O, Edelman GM (1989) Synthetic neural modelling. In: Connectionism in Perspective

(Pfeifer R, Schreter Z, Fogelman-Soulié F, Steels L, eds), pp 113-139. Amsterdam: Elsevier Science

Publishers.

Ritter HJ, Martinetz TM, Schulten KJ (1989) Topology-conserving maps for learning visuo-motor-

coordination. Neural Netw 2:159-168.

Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain

103:221-244.

Rolls ET (1990) The representation of information in the temporal lobe visual cortical areas of macaques.

In: Advanced Neural Computers (Eckmiller R, ed), pp 69-78. Amsterdam: Elsevier Science

Publishers.

Romo R, Schultz W (1987) Neuronal activity preceding self-initiated or externally timed arm movements

in area 6 of monkey cortex. Exp Brain Res 67:656-662.

Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the

brain. Psychol Rev 65:386-408.

Rosenkilde CE (1979) Functional heterogeneity of the prefrontal cortex in the monkey: a review. Behav

Neural Biol 25:301-345.

Rosenkilde CE, Bauer RH, Fuster JM (1981) Single cell activity in ventral prefrontal cortex of behaving

monkeys. Brain Res 209:375-394.

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors.

Nature 323:533-536.

Rumelhart DE, McClelland JL (1986) PDP models and general issues in cognitive science. In: Parallel

Distributed Processing, Explorations in the microstructure of cognition, Vol. 1: Foundations

(Feldman JA, Hayes PJ, Rumelhart DE, eds), pp 110-146. Cambridge: MIT Press.

Saint-Cyr JA, Taylor AE, Lang AE (1988) Procedural learning and neostriatal function in man. Brain

111:941-959.

Sakai M (1974) Prefrontal unit activity during visually guided lever pressing reaction in the monkey.

Brain Res 81:297-309.

Sakai M, Hamada I (1981) Intracellular activity and morphology of the prefrontal neurons related to visual

attention task in behaving monkeys. Exp Brain Res 41:195-198.

Sandell JH, Schiller PH (1982) Effects of cooling area 18 on striate cortex cells in the squirrel monkey. J

Neurophysiol 48:38-48.



169

Sasaki K, Gemba H (1982) Development and change of cortical field potentials during learning processes

of visually initiated hand movements in the monkey. Exp Brain Res 48:429-437.

Sawaguchi T (1987) Properties of neuronal activity related to visual reaction time task in the monkey

prefrontal cortex. J Neurophysiol 58:1080-1099.

Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in

working memory. Science 251:947-950.

Sawaguchi T, Matsumura M, Kubota K (1989a) Depth distribution of neuronal activity related to a visual

reaction time task with monkey prefrontal cortex. J Neurophysiol 61:435-446.

Sawaguchi T, Matsumura M, Kubota K (1989b) Delayed response deficits produced by local injection of

bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys. Exp Brain Res

75:457-469.

Sawaguchi T, Matsumura M, Kubota K (1990a) Effects of dopamine antagonists on neuronal activity

related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1401-1412.

Sawaguchi T, Matsumura M, Kubota K (1990b) Catecholaminergic effects on neuronal activity related to

a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1385-1400.

Schank R (1982) Dynamic memory: a theory of reminding and learning in computers and people.

Cambridge: Cambridge University Press.

Schultz W (1986) Activity of pars reticulata neurons of monkey substantia nigra in relation to motor,

sensory, and complex events. J Neurophysiol 55:660-677.

Schwartz ML, Goldman-Rakic PS (1984) Callosal and intrahemispheric connectivity of the prefrontal

association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J

Comp Neurol 226:403-420.

Sejnowski TJ (1986) Open questions about computation in cerebral cortex. In: Parallel Distributed

Processing, Explorations in the microstructure of cognition, Vol. 2: Psychological and biological

models (Feldman JA, Hayes PJ, Rumelhart DE, eds), pp 372-389. Cambridge: MIT Press.

Selfridge OG (1958) Pandemonium: a paradigm for learning. In: Mechanisation of thought processes:

Proceedings of a Symposium Held at the National Physical Laboratory, pp 513-526. London: HMSO.

Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain, signal-

to-noise ratio, and behaviour. Science 249:892-895.

Shallice T (1988) From Neuropsychology to Mental Structure. Cambridge: Cambridge University Press.

Sheperd GM, Koch C (1989) Introduction to synaptic circuits. In: The Synaptic Organization of the

Brain. New York: Oxford University Press.

Singer W (1987) Activity-dependent self-organization of synaptic connections as a substrate for learning.

In: The Neural and Molecular Basis of Learning (Changeux J-P, Konishi M, eds), pp 301-335.

Chichester: Wiley.

Singer W, Tretter F, Yinon U (1982) Central gating of developmental plasticity in kitten. J Physiol

(Lond) 324:221-237.



170

Stent GS (1973) A physiological mechanism for Hebb’s postulate learning. Proc Natl Acad Sci USA

70:997-1001.

Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons.

Nature 336:379-381.

Strehler BL, Lestienne R (1986) Evidence on precise time-coded symbols and memory of patterns in

monkey cortical neuronal spike trains. Proc Natl Acad Sci USA 83:9812-9816.

Stryker et al. (1988) Group Report - Principles of cortical self-organization. In: Neurobiology of

Neocortex (Rakic P, Singer W, eds), pp 115-136. Chichester: Wiley.

Surmeier DJ, Stefani A, Foehring RC, Kitai ST (1991) Developmental regulation of a slowly-

inactivating potassium conductance in rat neostriatal neurons. Neurosci Lett 122:41-46.

Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks: expectation and prediction.

Pyschol Rev 88:135-170.

Suzuki H, Azuma M (1977) Prefrontal neuronal activity during gazing at a light spot in the monkey.

Brain Res 126:497-508.

Suzuki H, Azuma M (1983) Topographic studies on visual neurons in the dorsolateral prefrontal cortex of

the monkey. Exp Brain Res 53:47-58.

Szentágothai J (1975) The “module-concept” in cerebral cortex architecture. Brain Res 95:475-496.

Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal

cortex of the macaque monkey. J Neurophysiol 66:170-189.

Tanila H, Carlson S, Linnankoski I, Kahila H (1993) Regional distribution of functions in dorsolateral

prefrontal cortex of the monkey. Behav Brain Res 53:63-71.

Tanji J, Tanigushi K, Saga T (1980) Supplementary motor area: neuronal responses to motor

instructions. J Neurophysiol 43:60-68.

Thorpe SJ (1989) Local vs distributed coding. Intellectica 2:3-40.

Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving

monkey. Exp Brain Res 49:93-115.

Toates F (1986) Motivational systems. Cambridge: Cambridge University Press.

Trotter Y, Fregnac Y, Buisseret P (1987) The period of susceptibility of visual cortical binocularity to

unilateral proprioceptive deafferentation of extraocular muscles. J Neurophysiol 58:795-815.

Tsumoto T (1992) Long-term potentiation and long-term depression in the neocortex. Prog Brain Res

39:209-228.

Ungerleider LG, Gaffan D, Pelak VS (1989) Projections from inferior temporal cortex to prefrontal cortex

via the uncinate fascicle in rhesus monkey. Exp Brain Res 76:473-484.

Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Analysis of Visual Behavior (Ingle

DJ, Goodale MA, Mansfield RJW, eds), pp 549-586. Cambridge: MIT press.

Vaadia E, Benson DA, Heinz RD, Goldstein MH (1986) Unit activity of monkey frontal cortex: active

localization of auditory and visual cues. J Neurophysiol 56:934-957.



171

Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual

cortex. Trends Neurosci 6:370-374.

Waibel A (1989) Modular construction of time-delay neural networks for speech recognition. Neural

Comp 1:39-46.

Watanabe M (1981) Prefrontal unit activity during delayed conditional discriminations in the monkey.

Brain Res 225:51-66.

Watanabe M (1986a) Prefrontal unit activity during delayed conditional Go/No-Go discrimination in the

monkey. I. Relation to the stimulus. Brain Res 382:1-14.

Watanabe M (1986b) Prefrontal unit activity during delayed conditional Go/No-Go discrimination in the

monkey. II. Relation to Go and No-Go responses. Brain Res 382:15-27.

Watanabe M (1989) The appropriateness of behavioral responses coded in post-trial activity of primate

prefrontal units. Neurosci Lett 101:113-117.

Watanabe M (1990) Prefrontal unit activity during associative learning in the monkey. Exp Brain Res

80:296-309.

Watanabe M (1992) Frontal units of the monkey coding the associative significance of visual and auditory

stimuli. Exp Brain Res 89:233-247.

Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2: 1329-1345.

Weiskrantz L (1990) Visual prototypes, memory and the inferotemporal cortex. In: Vision, Memory and

the Temporal Lobe (Iwai E, Mishkin M, eds), pp 13-28. New York: Elsevier Science Publishing Co.

Weiskrantz L, Saunders RC (1984) Impairments of visual object transforms in monkeys. Brain 107:1033-

1072.

Wexler EM, Stanton PK (1993) Priming of homosynaptic long-term depression in hippocampus by

previous synaptic activity. NeuroReport 4:591-594.

Widrow B, Gupta N, Maitra S (1973) Punish/reward: learning with a critic in adaptive threshold systems.

IEEE Trans Syst Man Cyber SMC-5:455-465.

Widrow B, Hoff ME (1960) Adaptive switching circuits. Stanford Electronics Laboratories Technical

Report 1553-1, Stanford University, Stanford, CA.

Williams RJ (1986) The logic of activation functions. In: Parallel Distributed Processing, Explorations

in the microstructure of cognition, Vol. 1: Foundations (Feldman JA, Hayes PJ, Rumelhart DE, eds),

pp 423-443. Cambridge: MIT Press.

Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural

networks. Neural Comp 1:270-280.

Wolberg Z, Sela J (1980) Frontal cortex of the awake squirrel monkey: responses of single cells to visual

and auditory stimuli. Brain Res 198:216-220.

Wurtz RH, Albano JE (1980) Visuo-motor function of the primate superior colliculus. Ann Rev Neurosci

3:189-226.



172

Yajeya J, Quintana J, Fuster JM (1988) Prefrontal representation of stimulus attributes during delay

tasks. II. The role of behavioral significance. Brain Res 474:222-230.

Young MP (1992) Objective analysis of the topological organization of the primate cortical visual

system. Nature 358:152-155.

Young MP, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science

256:1327-1331.

Zeki SM, Shipp S (1988) The functional logic of cortical connections. Nature 335:311-316.

Zipser D (1991) Recurrent network model of the neural mechanism of short-term active memory. Neural

Comp 3:179-193.

Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response

properties of a subset of posterior parietal neurons. Nature 331:679-684.



173

CONTENTS

Remerciements ................................................................................................................ 1

Introduction..................................................................................................................... 2

Information-processing models of brain functions .....................................................................3
Constraints on models of brain functions ................................................................................4
Modeling cortical functions ..................................................................................................5
Model of prefrontal functions................................................................................................5
Methodology .....................................................................................................................6
Plan of work......................................................................................................................6
Collaborations ...................................................................................................................7

Neural Modeling Principles ........................................................................................ 10

1 Introduction .................................................................................................................. 10
2 Basic aspects of neural modeling....................................................................................... 11

Neural processing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Adaptive properties .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Neural architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Representation of information.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Discussion.................................................................................................................... 16
Framework for Modeling Cortical Functions ........................................................... 18

1 Introduction .................................................................................................................. 18
2 Modular organization of the cortex .................................................................................... 20

Representation of information - Mapping of multidimensional parameters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Architecture of cortical networks .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Cytoarchitectonics .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Input/output organization and intrinsic connectivity of a cortical column ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Columnar processing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Adaptive properties .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Conclusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 A unit for cortical processing ........................................................................................... 29
Representation of information.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Connectivity in cortico-cortical circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Column-like processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
“Columnar” operations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Adaptive properties .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Summary... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Cortical network organization and sensory-motor programs.................................................... 36
Cortical network architecture: Circular representation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
From retinal to object-centered reference frame... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
From retinal to arm-centered reference frame... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Time integration in prefrontal circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



174

5 Discussion.................................................................................................................... 43
From Retinal to Object-centered Reference Frame ................................................... 46

1 Introduction .................................................................................................................. 46
2 Perceptual grouping........................................................................................................ 47

Description of the model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Behavior of the model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Discussion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Invariant recognition....................................................................................................... 49
References.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Description of the model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Behavior of the model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Discussion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 General discussion.......................................................................................................... 63
From Retinal to Arm-centered Reference Frame....................................................... 64

1 Introduction .................................................................................................................. 64
2 Coordinates transformation .............................................................................................. 65

Description of model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Behavior of the model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Discussion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Operant learning of the direction of a movement .................................................................. 69
References.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Description of the model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Behavior of the model - Simulations, results and predictions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Discussion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 General discussion.......................................................................................................... 77
Modeling Prefrontal Functions................................................................................... 79

1 Introduction .................................................................................................................. 80
2 Prefrontal cortex ............................................................................................................ 81

Anatomical organization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Neurophysiological studies.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Pharmacological tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Metabolic studies .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Theoretical views ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Modeling studies.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Description of the model ................................................................................................. 93
Modeling constraints .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Representation of the external world .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Network architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Rules for neural processing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Training protocol - Example of the delayed-response task .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Behavior of the model - Simulations, results and predictions ................................................ 100
Computer simulations - Methods .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



175

General behavior of the network.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Activities after learning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Modulation of activity during learning.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Internal representation of sensory-motor sequences.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Sensitivity to parameters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Discussion.................................................................................................................. 118
The delayed response task and prefrontal functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Modeling others tasks .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Rule-coding units - Higher-level modeling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A rule for prefrontal units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Reinforcement.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Sustained activities.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A rule for sensory-motor units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Prefrontal vs. sensory-motor processing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Procedural vs. declarative: different memory systems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Learning Rules and Biological Substrate................................................................ 128

1 Introduction ................................................................................................................ 128
2 Neuronal processing and synaptic plasticity....................................................................... 130

Neuronal processing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Long-lasting changes in synaptic efficacy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Conclusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3 Cellular plasticity and formal learning rules ...................................................................... 134
Hebbian rules .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Error-correcting rules .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Learning temporal sequences .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Conclusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4 Cortical area, cortical function, and learning rule................................................................ 141
Visual cortex.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Inferotemporal cortex.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Parietal/premotor/motor cortex.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Prefrontal cortex .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Discussion.................................................................................................................. 145
Conclusion................................................................................................................... 146

Appendix: Model of the delayed-response task ...................................................... 150

Formal description of the model ........................................................................................ 150
Description of the simulations .......................................................................................... 152

Abbreviations.............................................................................................................. 153

References .................................................................................................................... 154



Résumé de la thèse - Le présent travail s’inscrit dans le cadre des développements récents
des Sciences Cognitives. Le thème central est la modélisation des propriétés et des fonctions
du cortex cérébral. Le but de ce travail est de proposer un cadre formel pour la modélisation
et, dans ce cadre, de comparer les processus corticaux liés à l’intégration sensorielle
(reconnaissance de formes), à la performance motrice (commande du mouvement) et à
l’organisation temporelle du comportement (planification).

Le chapitre 1 présente un vue générale des principes de modélisation neuronale venant
des modèles connexionnistes. Un cadre de modélisation défini à partir des principes
d’organisation du le cortex cérébral est décrit dans le chapitre 2. Le but de ce chapitre est de
fournir une description formelle de ces principes pour la modélisation. En particulier, une
formulation mathématique des propriétés computationnelles des circuits corticaux est
exposée.

Les chapitres 3, 4, et 5 fournissent une description détaillée de modèles d’intégration
visuelle, de performance motrice et d’organisation temporelle du comportement. Le chapitre
3 illustre les transformations de l’information rétinienne pour la reconnaissance de formes et
le chapitre 4, les transformations pour le contrôle du mouvement du bras. Le chapitre 5
commence par une revue sur le cortex préfrontal et présente un modèle de réseau de
neurones construit à partir des propriétés du cortex préfrontal. Ce modèle prédit les activités
neuronales pendant l’apprentissage et l’exécution d’une tâche de planification similaire à
celle utilisée pour les études chez le primate (tâche de réponse différée).

Le chapitre 6 propose une discussion sur les bases biologiques de la plasticité et sur les
règles d’apprentissage utilisées pour modéliser les fonctions corticales. Elle montre que la
règle de Hebb n’est pas suffisante pour rendre compte des propriétés adaptatives du cortex.
Des extensions de cette règle sont proposées, en particulier pour intégrer le temps dans les
phénomènes d’apprentissage synaptique et cellulaire. Une théorie qui relie les règles de
plasticité et la spécialisation des régions et des fonctions corticales est exposée comme une
synthèse des différents modèles proposés.

Mots clefs - Modélisation, Cortex cérébral, Réseaux de neurones, Règles d’apprentissage

Thesis abstract - The present work is related to recent developments within cognitive
science. The main purpose is to model the properties and functions of the cerebral cortex.
The goal is to build a modeling framework, and within this framework, to compare cortical
processes involved in sensory integration (pattern recognition), motor performance
(command of arm movement), and temporal organization of behavior (planning).

Chapter 1 gives an overview of neural modeling principles derived from connectionist
models. A modeling framework based on principles of cortical organization and operation is
exposed in chapter 2. The goal of this chapter is to provide a formal description of these
principles for the use of modeling. In particular, mathematical equations corresponding to
computational properties of cortical circuits are given.

Chapters 3, 4, and 5 provide detailed descriptions of models concerning visual integration,
motor performance, and temporal organization of behavior. Chapter 3 illustrates
transformations of retinal information for object recognition and chapter 4 transformations
of retinal information for arm movement. Chapter 5 begins by a review on prefrontal
functions and then presents a neural network model built from the properties of the
prefrontal cortex. This models predicts neuronal activities during the acquisition and
expression of simple planning task, similar to that used in primates (delayed response task).

Chapter 6 contains a discussion on the biological basis of plasticity and on learning rules
used in models of cortical functions. It shows that the Hebbian rule is not sufficient to
account for the adaptive properties of neocortex. Extensions of this rule are proposed, in
particular to introduce the temporal dimension in synaptic and cellular plasticity. A tentative
theory relating synaptic plasticity rules and the specialization of cortical regions and function
is presented, which is a synthesis of the different models exposed in this work.

Keywords - Modeling, Cerebral cortex, Neural networks, Learning rules




