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Abstract

& Sensorimotor systems face complex and frequent discrep-
ancies among spatial modalities, for example, growth, optical
distortion, and telemanipulation. Adaptive mechanisms must
act continuously to restore perceptual-motor alignments
necessary for perception of a coherent world. Experimental
manipulations that exposed participants to localized discrep-
ancies showed that adaptation is revealed by the acquisition of
a constrained relation between entire modalities rather than
associations between individual exemplars within these modal-
ities. The computational problem faced by the human nervous
system can thus be conceived as having to induce constrained

relations between continuous stimulus and response dimen-
sions from ambiguous or incomplete training sets, that is,
performing interpolation and extrapolation. How biological
neuronal networks solve this problem is unknown. Here we
show that neural processing based on linear collective
computation and least-square (LS) error learning in popula-
tions of frequency-coded neurons (i.e., whose discharge varies
in a monotonic fashion with a parameter) has built-in
interpolation and extrapolation capacities. This model can
account for the properties of perceptual-motor adaptations in
sensorimotor systems. &

INTRODUCTION

Perceptual-motor distortions have long been used to
explore adaptive capacities of sensorimotor systems
(Redding & Wallace, 1997; Welch, 1978; Held, 1965).
In a typical experiment, participants look through an
optical device that displaces the visual field laterally
(prism), and try to reach visual targets. In this condition,
adaptation is revealed by specific behavioral modifica-
tions during exposure (visuomotor reduction of effect)
and following removal of the prism (visuomotor neg-
ative aftereffect) (Welch, 1986). More generally, human
subjects can adapt more or less completely to many
types of distorted environments and distorting devices
acting on different modalities (Welch, 1986). Much has
been learned about the conditions that produce adap-
tation, the nature of adaptation, and how adaptation
modifies behavior (Redding & Wallace, 1997; Welch,
1986), and a detailed conceptual and functional model
has recently been proposed to account for prism adap-
tation (Redding & Wallace, 1997). Nevertheless, no
mechanism has yet been described that could explain
how changes in neural operations resulting from expo-
sure to sensorimotor discrepancies actually define an
adapted behavior.

The nature of the sought-after mechanism is con-
strained by two cardinal features of perceptual-motor
adaptations (Vetter, Goodbody, & Wolpert, 1999; Shinn-

Cunningham, Durlach, & Held, 1998; Schor, Gleason,
Maxwell, & Lunn, 1993; Bedford, 1989, 1993a, 1993b;
Hay, 1974). First, adapted behavior is not a collection of
input/output associations, but a true relation between
entire dimensions of stimuli. Second, a linear constraint
restricts the range of possible adaptations. These proper-
ties have been revealed by experimental manipulations
that exposed participants to localized discrepancies. For
example, Bedford (1989) studied the acquisition of new
visual-proprioceptive mappings specified by a small
number of isolated pairs of visually and proprioceptively
felt positions. She found that training at a single position
led to a global realignment, and training at two or three
positions resulted in a linear mapping that resembled
the least-square (LS) approximation of the training set
(Bedford, 1989). Closely related observations were made
in experiments using other modalities (Shinn-Cunning-
ham et al., 1998; Schor et al., 1993).

The problem faced by the nervous system in these
circumstances is computationally ‘‘ill posed,’’ and re-
quires rules to interpolate between the training pairs
and extrapolate outside the training range. It can be
considered in the framework of ‘‘function approxima-
tion’’ (Girosi, Jones, & Poggio, 1995; Poggio & Girosi,
1990) and cast as a problem of finding a set of ‘‘basis
functions’’ whose interpolation and extrapolation ca-
pacities meet the preceding requirements. The goal is
not to find the most efficient kind of approximating
functions (Girosi et al., 1995; Hornik, Stinchcombe, &
White, 1989), but functions that match neural con-
straints. Two types of basis functions are classically used
in neural modeling (Pouget & Sejnowski, 1994): radially
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symmetric functions (e.g., Gaussians) to represent
spatial variables defined by receptive fields and vectorial
variables, and ‘‘sigmoid functions’’ to encode values of
intensity parameters (e.g., interaural intensity differ-
ence) or postural parameters that are derived from
proprioceptive and efferent copy sources (Baraduc,
Guigon, & Burnod, 2001; Salinas & Abbott, 1995; Pouget
& Sejnowski, 1994; Dean, 1990; Olson & Hanson, 1990;
Zipser & Andersen, 1988). The above mentioned adap-
tation experiments use egocentric localization parame-
ters (e.g., gaze direction, hand position, vergence,
interaural intensity difference) that follow the latter
coding scheme (see Discussion). In this article, we show
that the properties of perceptual-motor adaptations can

be explained by linear neural computation based on
sigmoid functions (Figure 1) (and more generally on
monotonic functions), but not radial functions. In the
case of 1-D parameters, this result is proven mathemati-
cally for linear functions and with numerical simulations
for nonlinear functions. A tentative extension to 2-D
adaptation paradigms (e.g., Ghahramani, Wolpert, &
Jordan, 1996) is then proposed.

RESULTS

1-D Visual-Proprioceptive Adaptation

A single perturbation (one-pair experiment; Figure 2C)
led to a global generalization to untrained values of the
input dimension (Figure 3A). The result is shown for a
leftward position, but similar results were obtained for
all positions. The two-pair experiment produced a
linear mapping between the training pairs (P = 0.42V
� 0.05, R2 = .997) and a flattening beyond the training
range (Figure 3B). A similar result was obtained for
opposite direction offsets (�15 ! �15 + 10, 15 ! 15
� 10) (not shown). When a third nonaligned pair was
introduced (three pairs), the network still generated a
linear mapping (Figure 3C). Its slope was similar to that
of the two-pair experiment, but the intercept changed
to account for the new training pair (P = 0.42V + 3.55,
R2 = .988). The linear trend of the training set was
P = 0.67V and P = 0.67V + 3.33 in the two- and three-
pair experiments, respectively.

We explored extrapolation properties of the model by
manipulations of the two-pair experiment (Bedford,
1993b). First, we observed that extrapolation failed to
occur for a smaller offset (Figure 4A). This observation
was true for any offset, showing that the absence of
extrapolation was not due to a performance limitation
related to the size of the offset. Second, linear interpo-
lation was not restricted to the central straight-ahead
region, but occurred within the training range in non-
central positions as well (Figure 4B). Third, extrapola-
tion in a range of responses that is smaller than that
encountered during training is similar to that found for
responses larger than already encountered (Figure 4C).
Fourth, no generalization decrement was found when
one of the pairs had no offset (Figure 4D). In this latter
case, decrement around the distorted position might
have been a more conservative strategy.

An open question was whether stronger training
constraints could have forced the network to single
out a training position. This issue was addressed with
the ‘‘isolated’’ experiment (Figure 2C). In fact, the
network was unable to learn an isolated training pair
correctly when explicitly instructed to do so (Figure 5).
Instead, a rigid shift was observed just as in the one-
pair experiment.

We next asked whether we could distinguish trained
from untrained positions in the adapted network. To

Figure 1. (A) Mapping between dimensions x and y through a fully

connected feedforward network: positive populations (.), negative
populations (6), encoding (gray line), decoding (dark line), modifiable

connections (dashed line). (B) Noise-free performance of the decoding

method on the positive output population following training (100,000

iterations, h = 0.0005) on the identity mapping. Dashed line
corresponds to a perfect mapping. Lower inset shows the noise-free

performance of the decoding method on the positive input popula-

tion. Upper inset shows the response function of a single neuron.
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this end, we calculated the variability of the network
response, that is, the variance of network output when
the input activity profile was corrupted by additive
Gaussian noise. We used a two-pair adaptation task as
in Bedford (1993a). This variance was uniform across the
input dimension (Figure 6). Thus, despite the fact that
the network was trained to memorize specific exem-
plars, these became indistinguishable following training:
The emergent behavior of the model was not the
consequence of the training set alone, but also reflected
intrinsic characteristics of the computation.

Altogether these results are in close agreement with
adaptive properties of the human visual-proprioceptive
system (Bedford, 1989, 1993a, 1993b). For each experi-
ment, however, the agreement is true for certain num-
bers of training blocks, but need not hold in general
when learning reaches asymptote. In this latter case,
nonlinear mappings develop that provide better fits to
the training sets (Figure 7). Steady-state adaptation has
not been studied experimentally, and it is an open
question as to whether participants could acquire non-
linear mappings, and whether these mappings would
resemble those predicted by the model.

The preceding results were obtained with a value of
s that corresponded to a compromise between two
extreme cases. On the one hand, when s was small, the
response functions could be approximated by Heavi-
side functions, and they could be linearly combined to
represent any simple function (i.e., constant on inter-
vals). Thus, in the limit of a large number of neurons,
the network could theoretically realize any integrable
function. In this case, sigmoidal generalization was
observed in a two-pair experiment (Figure 8A). On
the other hand, when s was large, the response
functions were approximately linear, and a linear com-
bination of these functions was close to linear (Figure
8B). In fact, in the strictly linear case, it could be
shown that LS error learning in the network is math-
ematically equivalent to the LS approximation of the
training set (Appendix B). Whenever the neurons
encountered restricted nonlinearities in the task range,
the mapping remained close to the LS approximation
of the training set for long training periods because the
development of a better-fitting nonlinear mapping was
determined by the degree of nonlinearities in the
response functions.

Figure 2. (A) Visual-proprioceptive transformation. Target (cross)

and hand locations are measured by the egocentric angles V and P,

respectively. (B) Alignment between V and P. Scale is in degrees.

(C) Four types of transformation of the alignment between V and P.
A new mapping is specified by a restricted number of input/output

pairs (5). For instance, in the one-pair experiment, pointing toward a

target at �108 required a movement toward �208. No information was

given for other targets. In the isolated experiments, the central training
pair was presented on half of the trials.
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The specificity of these results is illustrated by a
comparison with a Gaussian model. Simulations were
run with Gaussian encoding,

xi ¼ exp �ðx � liÞ2

2s2

 !

where s is the width of the Gaussian. Center-of-mass
decoding (Snippe, 1996) was used for narrow tuning
curves and LS decoding for broad tuning curves.
Network architecture and functioning were as for the
sigmoid model, but with a single input, and output
populations each containing N = 100 neurons. Param-
eter s was either 8.48 (narrow Gaussian model) or 47.68
(broad Gaussian model). These values corresponded to
a half-width at half-height of 108 and 568, respectively,
falling below the minimum and in the median range of
tuning widths of motor cortical cells, respectively
(Amirikian & Georgopoulos, 2000).

Generalization was characterized by localized
changes around the training positions (Figure 8C
and D). The inferred mapping was monotonic in
Figure 8D, but was clearly different from the mappings
discovered by the monotonic network. In particular, it
tended to return toward the initial mapping outside
the training range. These results show that a Gaussian
model is unable to explain adaptive properties of the
human visual-proprioceptive system, even with broadly
tuned computational elements.

2-D Visual-Proprioceptive Adaptation

The model can be immediately extended to the multi-
dimensional case by using monotonic surfaces as re-
sponse functions. An open issue is the nature of the
response surfaces that could make the model compat-
ible with adaptation experiments in a 2-D workspace
(Ghahramani et al., 1996). We will not address this
general question directly, but will simply show that
linear saturated functions are appropriate to this task.

For the sake of simplicity, we considered first the case
of linear response functions, where no neuron encoun-
ters a nonlinearity in the task range. We further assumed
that the input and output dimensions were described in
Cartesian coordinates, so we did not address the prob-
lem of coordinate transformations (Vetter et al., 1999;
Ghahramani et al., 1996). Encoding in the input layer
was defined by the affine mapping C in: R2 7! RN, x !
C in(x) = Min x + E in, where Min is an N � 2 matrix and
E in 2 RN (N is the number of neurons). In the same way,
encoding in the output layer was defined by the affine

Figure 3. Perceptual-motor alignment for the sigmoid model.

Training pairs are depicted by 5. (A) One-pair experiment, 50 blocks.
(B) Two-pairs experiment, 300 blocks. (C) Three-pairs experiment, 300

blocks. Gray circles indicate the result obtained in (B).
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mapping Cout: R2 7! RN, x ! Cout(x) = Mout x + Eout.
Decoding the output layer was defined by Dout: RN 7!
R, X ! Dout(X) = (Mout)*(X � Eout), where (Mout)*
is the left pseudo-inverse of Mout. The task workspace
was the unit square. The tuning parameters (Min, E in,
Mout, Eout; same for input and output) were chosen to
cover the workspace approximately uniformly.

Adaptation at the central position led to a uniform
generalization to the whole workspace (Figure 9A).
Adaptation to two opposite displacements at two differ-
ent positions led to a uniform generalization along the
direction of displacement, and a linear generalization in
the perpendicular direction (Figure 9B). For the latter
configuration, we also calculated the pattern of adap-
tation predicted by the LS approximation of the train-
ing pairs (Figure 9C). This pattern did not resemble the
outcome of the model or the experimental observa-
tions (Ghahramani et al., 1996). The proof in Appendix
B does not extend to the multidimensional case.

We replicated these experiments with nonlinear re-
sponse functions. These functions were similar to those
used in the linear case, but with lower and upper
saturations (at 0 and 1). Decoding was performed by
searching for the output coordinates that best predicted
(in the LS sense) the observed activity profile. The
results (Figure 9D and E) are similar to those obtained
in the linear case (Figure 9A and B).

Vetter et al. (1999) studied adaptation to a distortion
at a single noncentral position in a frontal plane. We
simulated this case by testing adaptation in a restricted
central region of the workspace with a distorted point

Figure 4. Extrapolation behavior of the model. Variations of the

two-pairs experiment, 300 blocks. (B) and (C) show the results of two

experiments (open circle for open square targets, closed circle for

closed square targets).

Figure 5. Isolated experiments, five blocks. See Figure 2C and its

legend.
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at the border of this region. The resulting pattern
resembled the abovementioned two-point case, with
a uniform generalization along the direction of the
distortion and a linear generalization along the other
axis (Figure 9A). The slope of this linear trend depended
on the position of the distorted point along the vertical
axis (on the figure) and the amplitude of the distortion.
We calculated the average magnitude of adaptation as a
function of the distance to the exposure point. The
magnitude decreased linearly with distance (Figure 9F).
Vetter et al. (1999) made a similar calculation over a
3-D region and reported a statistically nonsignificant

decreasing trend. The distance effect was not apparent
in the nonlinear case (Figure 9F).

DISCUSSION

The idea that an infinite number of input/output map-
pings are compatible with only a small number of input
and output pairs was originally used to understand
how human subjects (e.g., experts) infer laws from a
restricted set of examples (‘‘function learning’’;
Brehmer, 1974; Carroll, 1963). When applied to the
sensorimotor system, this principle helps reveal inter-
nal rules that guide the formation of mappings be-
tween sensory and motor dimensions (Bedford, 1989).
Here, we addressed these rules by exploring interpola-
tion and extrapolation capacities of single-layer linear
neural networks. We showed that linear computations
between populations of sigmoid neurons explain two
salient features of perceptual-motor adaptations: (1)
Adaptation is characterized by a relation between entire
dimensions of stimuli. (2) This relation is shaped by a
linearity constraint.

The sigmoid coding scheme has been considered,
together with the Gaussian scheme, in the field of
function approximation (Girosi et al., 1995; Hornik
et al., 1989). In this framework, families of sigmoid and
Gaussian functions have been attributed universal ap-
proximation capacities (Girosi et al., 1995; Hornik et al.,

Figure 6. Output variability measured following injection of

additive Gaussian noise (mean = 0, SD = 0.1, 2000 repetitions) in the
input layer in a two-pairs experiment (arrows, V = �15 ! P = V and

V = 0 ! P = V + 10).

Figure 7. Three-pairs experiment, 5000 blocks.

Figure 8. Generalization behavior of monotonic and Gaussian
populations. Training pairs are depicted by 5: (�9;�45) and (9;45).

Each pair was presented 2000 times. Learning rate was 0.0005. Inset in

the lower part of the plots depicts the actual response function. Inset

in the upper part depicts the behavior of the network outside the unit
square (dashed line). (A) Monotonic populations, s = 2. (B) Monotonic

populations, s = 20. (C) Gaussian populations, s = 8.4. (D) Gaussian

populations, s = 47.6.
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1989), and it is believed that they share similar computa-
tional properties (Pouget & Sejnowski, 1997). In partic-
ular, sigmoid functions can be combined to reconstruct
tuned functions (Girosi et al., 1995). Here, we adopted a
different perspective. We asked what computational
mechanism could account for the constrained nature
of perceptual-motor adaptations. Clearly, universal ap-
proximators are inappropriate for this task because their
abilities largely exceed those of the nervous system. Our
approach has more in common with basis function
models of sensorimotor transformations, in which a
single layer of synaptic weights is used to represent
the transformations (Salinas & Abbott, 1995; Pouget &
Sejnowski, 1994). However, it differs from these models
because (1) the monotonic neurons were not combined

with tuned neurons, and (2) the goal was not to
reconstruct a tuned activity profile, but a monotonic
activity profile. In fact, the model is closely related to the
notion of structured representation (Atkeson, 1989),
because manipulated variables are readily available in
the discharge frequency of input and output neurons.
An expected and actually observed property of collective
computation in populations of monotonically respond-
ing neurons is, thus, the global generalization of learning
to nonexperienced situations (Atkeson, 1989). In a
recent study (Baraduc et al., 2001), we used this princi-
ple to learn a distributed representation of the inverse
kinematics of the arm. An appropriate approximation of
the desired mapping was obtained following training on
a few samples of this mapping. A similar principle was
also used by McCandless and Schor (1997) to account
for interpolation and extrapolation effects in vertical
phoria adaptation (McCandless, Schor, & Maxwell,
1996; Schor et al., 1993). However, in their model, the
adapted variable was directly represented in output, and
they did not address the case of the distributed repre-
sentation of this variable. Here, we provide a more
general approach to computation between populations
of monotonically responding neurons.

The specific component of the model is the sigmoid
response function. We therefore need to show that this
function is appropriate to encode the dimensions in-
volved in visual-proprioceptive mappings. In the ab-
sence of visual landmarks, measuring the direction of
a point source in darkness relies on information about
eye and head positions (Jeannerod, 1988). The central
or peripheral origin of signals related to eye and head
posture has not been determined, though the discharge
of single neurons in many brain regions is modulated in
a monotonic fashion by the static position of the eye
and the head (or the gaze) (Bremmer, Pouet, & Hoff-
man, 1998; Brotchie, Andersen, Snyder, & Goodman,
1995; Andersen, Essick, & Siegel, 1985). The direction of
the pointing response toward the point source can be
derived from the proprioceptive and efference copy.
Neural correlates of static arm posture are found at
different levels of somatosensory and motor pathways,
and take the form of broad monotonic modulations
with variable recruitment thresholds and saturations
(Helms Tillery, Soechting, & Ebner, 1996; Gardner &
Costanzo, 1981).

The parameter s plays a central role in the model. Its
value determines the way the network extrapolates
outside the training range, and was chosen to reflect
Bedford’s conclusions that changes in pointing level off
outside the training range. The value of s also influences
the strength of the linear constraint on the formation of
new mappings. In fact, the choice of s appears as a
compromise between extrapolation and linearity: Weak
(strong) extrapolation capacities are associated with a
weak (strong) linearity constraint. Further data would
be necessary to decide on a reasonable s. Our basic

Figure 9. Experiments of Ghahramani et al. (1996). Adapted points
are depicted by 5 and an arrow. Test points are depicted by 6.

Adaptation is shown by line segments. (A) Adaptation at the central

position. (B) Adaptation at two positions. (C) Mapping predicted by

the least-square adjustment of the training positions. The line
segments have been shortened to improve legibility. (D) Same as (A) in

the nonlinear case. (E) Same as (B) in the nonlinear case. (F) Mean

change in adaptation as a function of the distance to the exposure
point (4: linear; 5: nonlinear). 2500 points within the restricted

workspace (inset) were used.
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conclusions, however, are not qualitatively altered by
the value of s. Still, an open question is the value of s for
neurons in the central nervous system. The steepness
defines the range of a dimension over which the
discharge of a neuron is modulated (i.e., not saturated).
Available data from different regions indicate that in
general this range encompasses a large portion of the
measured range (for eye position: Bremmer et al., 1998;
Squatrito & Maioli, 1996; Andersen, Bracewell, Barash,
Gnadt, & Fogassi, 1990; for arm position Helms Tillery
et al., 1996; Lacquaniti, Guigon, Bianchi, Ferraina, &
Caminiti, 1995; Gardner & Costanzo, 1981). However, s
is defined by the dimension range (i.e., the range of the
recruitment thresholds of neurons), which is difficult to
determine (see Materials and Methods).

Bedford’s experiments (Bedford, 1989, 1993a, 1993b)
can be interpreted in the framework proposed by Redd-
ing and Wallace (1997). These authors suggested that
prism adaptation is subserved by two mechanisms. ‘‘Stra-
tegic control’’ is driven by performance error during
exposure and is responsible for the visuomotor reduc-
tion of effect (direct effects). ‘‘Adaptive spatial align-
ment’’ acts to reduce the discordance between
expected and achieved effector positions induced by
the prism. Adaptation results in a visuomotor negative
aftereffect. In the Bedford experiments, the participant’s
initial pointing response was elaborated by the current
internal representation of the visual-proprioceptive cor-
respondence. This response is generally wrong due to
the prism-induced distortion and the structure of the
internal model. Through trial and error, the participant
can discover the correct pointing direction. On the one
hand, compensation during exposure is by definition
complete from the first trial, because the participant
was given feedback about the required response. On
the other hand, the discrepancy between the initial and
corrected pointing positions is an error signal that slowly
drives long-term realignment between the visual and
proprioceptive dimensions. The present model is a mod-
el of the latter process, which fits the requirements for a
mechanism of spatial alignment (Redding & Wallace,
1997): It defines an adjustable parameter-dependent
transformation that maintains alignment between spatial
dimensions, and can compensate for steady-state dis-
crepancies between the dimensions.

Adaptation was defined as a modified correspondence
from a visual to a proprioceptive dimension (V ! P).
This description was used to obtain a direct link be-
tween experimental and modeling results. In fact, a large
component of the adaptation is probably related to
changes in the head–hand system, namely, changes in
the perceived position of the hand (Bedford, 1993a).
Thus, the adaptation should be better conceived as a
modified mapping from proprioception to vision, or to a
new representation of proprioception. However, the
exact nature of adaptation has no influence on the
results reported here.

What are the possible extensions of Bedford’s theory
to multidimensional cases? A first solution is uniform
generalization over space. Experimental data do not
allow us to dismiss this possibility, but the model is
incompatible with this idea. A second solution is LS
interpolation among the training pairs, which is not
supported by experiments (Ghahramani et al., 1996)
or by the model. A third solution is that produced by
the model. It is not directly supported by experimental
data, but it is not incompatible with the available data.
This latter solution provides a reasonable extension of
the 1-D case to the 2-D case: (1) uniform generalization
in the direction of the remapping and (2) linear inter-
polation in the direction perpendicular to the remap-
ping. The model suggests that adaptation in the general
multidimensional case is not a linear regression. This
should not be considered as a limitation of the model as
it has been shown experimentally that adaptation is not
a linear regression in 2-D (Ghahramani et al., 1996).
However, adaptation in 1-D is a particular case where
the adaptation is equivalent to a linear regression
(Bedford, 1989).

When human subjects are asked to learn associations
between stimuli and responses drawn from arbitrary
dimensions (function learning), they induce a continu-
ous relation between stimulus and response magnitudes
(DeLosh, Busemeyer, & McDaniel, 1997; Koh & Meyer,
1991; Brehmer, 1974; Carroll, 1963). Further, they display
a marked preference for linear relations (DeLosh et al.,
1997; Koh & Meyer, 1991; Brehmer, 1974; Carroll, 1963),
and response variability is constant across output values
(Koh & Meyer, 1991). Function learning, thus, appears to
operate much like perceptual-motor learning. The
present model constitutes an alternative to rule-based
or hybrid rule/exemplar-based approaches to human
performance in function learning (DeLosh et al., 1997;
Koh & Meyer, 1991). It also offers a neural basis for many
high-order cognitive skills (e.g., forecasting, decision
making) that require one to have the capacity to discover
relations among varying conditions of the environment.

METHODS

General Principle

The principle of the model is the following. A generic
mapping between two scalar dimensions x and y is
represented by a single-layer linear neural network
(Figure 1A). The network is defined by (1) an input
layer that encodes x into an activity profile x (x 7! x =
C(x) 2 RN; Equation 1, below), (2) an output layer
that can be decoded to recover y from the activity profile
y ( y 7! y = D( y) 2 R; Equation 2), and (3) a set of
synaptic weights W that establishes a linear correspond-
ence between these dimensions, y = Wx. The weights
can be modified to learn a particular mapping defined by
a set of practice pairs. The learning procedure is an
error-correction rule (Widrow & Hoff, 1960). Changes in
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the synaptic weight between input neuron j and output
neuron i are described by

�Wij ¼ h xjð y�i � yiÞ

where yi
� is the desired output, and h the learning rate.

After training, the behavior of the network can be
assessed on a set of test pairs. Below we describe
encoding and decoding schemes corresponding to
families of sigmoid response functions.

Sigmoid Encoding and Decoding Scheme

Consider a population of N neurons. Each neuron i has a
mean discharge that varies in a sigmoid fashion with a
dimension x in [a; b] (‘‘dimension range’’) according to

xi ¼ f ðx;li; sÞ ¼ 1

1 þ e�ðx�liÞ=s
ð1Þ

where f is the response function, li the recruitment
threshold, and 1/s the steepness of f. We assume that
the li are uniformly distributed in [a; b]. The vector
x = C(x) = [x1 . . . xN]T defines the encoded represen-
tation of x.

The quantity

DðxÞ ¼ a þ b � a

N

XN

i¼1

xi ð2Þ

is an estimator of x (Appendix A). Noise-free decoding
is illustrated in Figure 1B (lower inset) for N = 50, s = 5
(upper inset), and [a; b] = [�90; 90]. Errors were
confined to the extreme parts of the dimension range.
Lower s would reduce these errors. The dimension
range should not be confounded with the task range,
that is, the actual values of the dimension encountered
in a given task, and the physiological range, namely, the
maximal realizable values of the dimension (e.g., due to
mechanical limitations).

Unlike center-of-mass (Baldi & Heiligenberg, 1988)
and population vector (Georgopoulos, Ketter, &
Schwartz, 1988) estimators, which apply to the broad
tuning case, our estimator is not unbiased because
definite decoding errors occur near the extremities of
the dimension range. The absence of bias, however, is
not an absolute requirement for two reasons. First,
systematic biases can be partially avoided by adjusting
the dimension range relative to the task range. For a
given task range, the larger the dimension range, the
smaller the biases. In fact, there is experimental evi-
dence that the dimension range does not coincide with
the physiological range. Limb positions that are mechan-
ically impossible can be perceived when effector move-
ment is prevented, but continued changes in muscle
afference are induced by artificial means (Craske, 1977).
This result suggests that the nervous system possesses
receptors whose sensitivity extends outside the physio-
logical range of mechanical parameters. These receptors

could define the dimension range. Second, information
derived from proprioception and efferent copy sources
is known to be inaccurate (Wann & Ibrahim, 1992).
Systematic errors are found when participants point in
the dark in a visually specified direction (Bedford, 1989)
or toward their unseen hand (Baud-Bovy & Viviani,
1998; van Beers, Sittig, & Denier van der Gon, 1998).
The use of unbiased decoding methods would not
change qualitatively the results to be reported.

Our encoding/decoding scheme can be extended to
the case where the steepness of the response function
and the maximal discharge vary among neurons. The
decoding method still applies if the distribution of
steepness and maximal discharge is the same for each
li. This hypothesis can be relieved by using a more
efficient decoding method (e.g., LS or maximum like-
lihood estimation). In a different framework, Pouget,
Zhang, Deneve, and Latham (1998) and Zhang, Ginz-
burg, McNaughton, and Sejnowski (1998) raised the
possibility that neural circuits could implement such
optimal estimators.

The sigmoid response function was chosen to allow
analytical derivations (Appendix A), but, any other
S-shaped function (e.g., piecewise linear function)
would lead to similar results.

Perceptual-Motor Alignments

A set of experiments on learning new mappings was
performed by Bedford (Bedford, 1989, 1993a, 1993b).
Participants were required to point to visual targets in
the dark. Target location was measured by egocentric
angular location V and pointing position by egocentric
angle P (Figure 2A). Alignment between V and P (Figure
2B) was distorted by assigning new outputs to a discrete
set of inputs using a prism (exposure; Figure 2C).
Training positions were in the interval [�258; 258], with
08 corresponding to straight ahead. Exposure consisted
of a randomized presentation of training pairs. Exposure
duration was defined as the number of presentations of
each pair (blocks). Adaptation was measured as the
change in pointing position �P = P � Ppre for 11 visual
positions between �258 and 258, where Ppre is the
pointing position before exposure.

Simulations

The network described above was first trained to repro-
duce the identity mapping P = V (with x = V and y = P)
over the dimension range [�908; 908] (pretraining;
Figures 2B and 1B). This interval was chosen to encom-
pass a broad set of visual and pointing locations. Actual
values of V and P (in [�258; 258]) were within a
restricted central portion of the range of the response
function to avoid decoding errors near the extremities.
In this way, patterns of adaptation could not be ex-
plained by decoding biases. Pretraining consisted of

546 Journal of Cognitive Neuroscience Volume 14, Number 4



100,000 presentations of randomly chosen pairs in the
dimension range. Then new mappings were induced as
described above (Figure 2C).

Each layer contained two populations of N neurons:
One with s > 0 (‘‘positive’’ population) and the other
with �s (‘‘negative’’ population). Output P was decoded
from the positive population of the output layer. By
symmetry, the negative population could be decoded as
well and would provide the same value. Although the
two input populations contained the same information,
both proved to be necessary to obtain the results
reported here. In the same way, although a single-output
population is sufficient to recover information from the
output layer, the two populations are necessary to
convey (input) information to further processing steps.

The purpose of the positive and negative populations
is, first of all, related to physiological observations. In
general, there should be as many positive and negative
neurons related to a given dimension due to the agonist/
antagonist organization of postural and motor systems.
This characteristic is also necessary for proper function-
ing of the model. The activity profile of the positive
population is a decreasing monotonic pattern that ap-
proaches 0 toward rightward positions when encoding
leftward positions. Connections arising from the weakly
active neurons are little modified during the training
period due to the presynaptic term in the learning rule.
As a result, there is a nonuniform generalization to
untrained values. The activity profile of the negative
input population is such that the activity is maximal at
positions where activity in the positive population is
minimal. Strongly active neurons of the negative pop-
ulation change their outgoing weights during training
and compensate for the absence of information in the
positive population.

We note that similar results would be obtained
using a direct representation instead of a distributed
representation of P in the output layer (Pouget &
Sejnowski, 1994).

Parameters were N = 50, s = 5, and h = 0.0005. All
weights were initially set to zero.

APPENDIX

A. Decoding Monotonic Populations

We consider the linear estimator defined by Equation
2. For the sake of simplicity, we consider a normalized
dimension X ([a; b] = [0; 1]), with normalized recruit-
ment thresholds �i, and steepness S. Equivalence
between the normalized and nonnormalized cases is
given by

X ¼ ðx � aÞ=ðb � aÞ

�i ¼ ðli � aÞ=ðb � aÞ

S ¼ s=ðb � aÞ

:

8>>>><
>>>>:

For a large number of neurons, we can use a continuous
approximation and write the estimator as

LðX ; SÞ ¼
Z 1

0

f ðX ;�; SÞd�

One easily shows that

LðX ; SÞ ¼ 1 � S ln
1 þ eð1�XÞ=S

1 þ e�X=S

If we let S ! 0, then L(X, S) ! X. Thus L(X, S) is an
unbiased estimator of X for small S.

B. Least-Square Error Learning and Least-Square
Approximation

Here we demonstrate that for linear response functions
LS error learning in the network is mathematically
equivalent to the LS approximation of the training
set. There exists a shorter, but less instructive proof
for this result.

We use the following notations. Encoding in the input
layer is defined by the affine mapping C in: R 7! RN, x !
C in(x) = x Ain + Bin, with Ain and Bin 2 RN (N is the
number of neurons). In the same way, encoding in the
output layer is defined by the affine mapping Cout: R 7!
RN, x ! Cout(x) = x Aout + Bout, with Aout and Bout 2RN.
We assume without loss of generality that kAoutk = 1.
Decoding the output layer is defined by Dout: RN 7! R,
X ! Dout(X ) = (Aout)T (X � Bout). It can be shown that
this decoding scheme provides the maximum likelihood
estimate of the encoded parameter for Gaussian and
Poisson noise.

The network can be trained to produce a mapping
defined by the training set {xt, yt}, (1 � t � M, M � 2)
using LS error learning, i.e., finding a perceptron PP1ˆ

(defined by a matrix W) that minimizes

EðPÞ ¼
X

t

k Coutð ytÞ � ðP6 CinÞðxtÞ k2

The actual mapping defined by the network is then the
linear mapping y = (Dout 6 PP1ˆ 6 C in)(x), which can be
written

y ¼ ðAoutÞT WAin x þ ðAoutÞT WBin � ðAoutÞT Bin

We want to show that this mapping is exactly that
defined by linear regression on the training set, that is

ðAoutÞT WAin ¼ Ka

ðAoutÞT WBin � ðAoutÞT Bin ¼ Kb

8<
: ðB:1Þ

with

ða;bÞ ¼ arg mina;b

X
i

½ yt � ðaxt þ bÞ�2

and K is a constant.
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We note wi
T the ith raw of W, and we write

EðPÞ ¼
X

i

EiðwiÞ

with

EiðwÞ ¼
X

t

ðAout
i yt þ Bout

i � wT Ainxt � wTBinÞ2

We assume that Ai
out 6¼ 0. The vector wi that minimizes

Ei(w) verifies

wT
i Ain ¼ Aout

i a

wT
i Bin ¼ Bi

out þ Ai
outb

8<
: ðB:2Þ

This linear system has a solution in wi
T iff Ain and Bin

are not parallel, meaning that the encoding scheme C in

contains at least two different response functions. It is
immediate that Equation B.2 implies that Equation B.1 is
satisfied with K = 1. Thus, the network actually calcu-
lates the linear regression of the training set.
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