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Abstract

Recent neurophysiological studies have revealed the patterns of neuronal activity during the acquisition of
goal-directed behaviors, both in single cells, and in large populations of neurons. We propose a model which helps
three sets of experimental results in the monkey to be understood: (1) activity of single cells vary greatly and only
population activities are causally related to behavior. The model shows how a population of stochastic neurons,
whose behaviors vary widely, can learn a skilled conditioned movement with only local activity-dependent synaptic
changes. (2) typical changes in neuronal activity occur when the rules governing the behavior are changed, i.c. when
the relationship between cues and actions to reach a goal changes over time. There are two types of neuronal
patterns during changes in reward contingency: a monotonic increasing pattern and a non-monotonic pattern which
follows the change in the way the reward is obtained. Units in the model display these two types of change, which
correspond to synaptic modifications related to the encoding of the behavioral significance of sensory and motor
events. (3) These two patterns of neuronal activity define two populations whose anatomical distributions in the
frontal lobe overlap with a gradient organized in the rostro-caudal direction. The model consists of two artificial
neural networks, defined by the same set of equations, but which differ in the values of two parameters (P and Q). P
defines the adaptive properties of processing units and Q describes the coding of information. The model suggests
that a balance in the relative strengths of these parameters distributed along a rostro-caudal gradient can explain the
distribution of neuronal types in the frontal lobe of the monkey.
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1. Introduction lations of neurons, but it remains unclear how
these populations are programmed to produce

A major adaptive property of brain circuits is the motor signals needed to execute a given be-
their great capacity to learn new behaviors. This havior. Several recent studies have begun to char-
capacity is generally distributed over large popu- acterize the changes in cerebral activity with on-

line acquisition or modification of goal-directed

behaviors, both at the level of neurons with single
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1991), and at the level of neuronal populations,
with cortical fields in monkeys (Sasaki and
Gemba, 1982) and brain potentials in humans
(Papakostopoulos, 1978; Chiarenza et al., 1983).

Changes in neuronal activity during the acqui-
sition of goal-directed behaviors should reflect
both behavioral changes and plasticity phenom-
ena at the synapses, neurons and circuits. This
intuitive formulation of the problem of the rela-
tionship between plasticity and behavior leads to
the question of the rules used by the brain to
build internal representation of goal-directed be-
haviors. This question is approached in this paper
by neural network modelling (Rumelhart and Mc-
Clelland, 1986; Hertz et al., 1991). Neural net-
work models help to formulate hypotheses on the
adaptive properties at the neuronal level by relat-
ing local processing and global performance. In
these models, the basic processing unit is a neu-
ron-like element which receives a set of inputs
from other units and adjusts its output in re-
sponse to inputs. Units are grouped into subsets
(such as layers, maps) and connected according to
specific rules (random connections, full or partial
connections between subsets, etc.) to form a net-
work. A network usually contains input and out-
put units, which define a processing pathway and
provide a way to place constraints on the net-
work. The ability of such a network is given by
the set of modifiable connection weights between
units, which shape unit activation. During a train-
ing session where inputs and/or outputs of the
network are constrained to particular values, con-
nection weights are modified according to a
learning rule. Neural network models provide two
types of results. First, it is possible to analyze the
global behavior of the network (performance,
generalization, resistance to input breakdown and
synaptic weighting). The results can be compared
with the outcomes of psychophysical and learning
experiments. The second concern the properties
of neurons in the network (e.g., their selectivity)
that give information on the internal representa-
tions used and on the building of these represen-
tations by learning (Zipser and Andersen, 1988;
Burnod et al., 1992; Guigon et al., 1995).

We propose a neural network model, which
defines a relationship between the activity of a

single neuron and the behavior of a population of
neurons during the acquisition of two goal-di-
rected tasks. The model is consistent with avail-
able experimental results on neuronal activities in
monkeys, and helps to explain three observations
which have been frequently made in study of
goal-directed behaviors.

The first observation is that the command of
movement is not produced by a single neuron
that control the whole behavior, but is distributed
over a large population of broadly tuned neurons
(Georgopoulos et al., 1986). We propose a net-
work (A) which learns the distributed control of
the direction of planar arm movements. After
learning, the network produces movements in the
direction defined by a goal, and population activ-
ity in the network can be viewed as an internal
representation of the intended movement.

The second observation is that typical changes
in neuronal activity occur when the rules govern-
ing the behavior are changed, i.e. when the rela-
tionship between cues and actions to reach a goal
changes over time. There are two populations of
neurons in the frontal lobe during theses changes
(Niki et al., 1990). The first population appears to
encode the impending behavioral response, while
the second is more responsible for the association
between guiding sensory cues and behavioral re-
sponses (Niki et al., 1990; di Pellegrino and Wise,
1991). We propose a network (B) that can adapt
to changes in reward contingencies during new
learning and reversal learning experiments and
displays patterns of neuronal activity similar to
those observed experimentally.

The third observation is that there is not a
clear delineation between these populations. In-
stead, they seem to overlap with a gradient orga-
nized in the rostro-caudal direction. Networks A
and B show how the two properties can be de-
rived from the same basic mechanism by chang-
ing the value of two parameters. The proposal of
the model is that these parameters vary along a
rostro-caudal gradient in the frontal lobe, allow-
ing the cortical networks to learn both to repre-
sent the intended movements (network A, more
caudal) and to change their relations with cues in
order to adapt to changes in reward contingen-
cies (network B, more rostral).
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2. Methods

The model is formally presented. A model
neuron is first defined by its excitability and plas-
ticity properties (Egs. 1 and 2). Two network
models (A and B) are then described by (i) a
subset of interconnected model neurons, (ii) a set
of input and output pathways carrying informa-
tion from and to the external world, (iii) a task
which represents the desired function of the net-
work, (iv) and a training protocol which indicates
the interactions with the external world which are
necessary to learn the task.

Neural network modelling

Neuronal processing can be approximated by
nonlinear interactions between inputs which sig-
nal for different types of information. This ap-
proximation is derived from the integrative prop-
erties of dendritic trees (Shepherd and Koch,
1989; Mel, 1993) and from experimental results
on the combination of information in different
cortical areas (Andersen et al., 1985; Caminiti et
al., 1991; Burnod et al., 1992; Trotter et al.,
1992). Another characteristic of neuronal pro-
cessing is the stochastic behavior of neurons,
which reflects the equivalence between the firing
rate of a neuron and its probability of firing
(Sejnowski, 1986).

A model neuron has n binary input pathways
x; and an output pathway y. Its output is given by

y(t) =F[a(1)]Q(1) (1)
where
a(t) = Zai(t)xi(t) + Z.Bij(t)xi(t)xj(t)

and where Q(t) corresponds to the influence of
the population of neurons on the neuron. The «;
and B;; are modifiable “learning” coefficients in
the interval {0,1]. The variable t is a quantized
time, which describes the course of processing. F
is the stochastic output function defined by

F(u) =1 with prob g(u) and 0 with prob 1-g(u)
where

g(w)=1/[1+exp(—y(u~))]

where y and ¢ are parameters. Eq. 1 states that
the probability of a neuron discharging is an
increasing function of the quantity of presynaptic
activity.

Neurons should have a way to measure the
consequence of their activations in relation to the
expected goal in order to learn to reach that goal.
We propose a local rule for modifying of learning
coefficients that has this property, independently
of the nature of the goal (reward, sensory effect,
etc). The rule describes the change in the learn-
ing coefficients «; and g following ongoing vari-
ations in the activity of input and output path-
ways between time t and t + 1

Aa;(t,t +1) =y(r){Ax,(t +1) —u[x,(t + 1)]}
AB(tt + 1)y =x,()y(){Ax,(t +1)

—u[l—x (e + D]} (2)

where A and u are parameters. Eq. 2 states that
a postsynaptic activity y(t) followed by a presy-
naptic activity x,(t+ 1) is a critical pattern in
order to modify learning coefficients. The presy-
naptic activity reinforces previous activity by elic-
iting an increase in the coefficient by A. On the
other hand, the coefficient decreases by u when
no presynaptic activity follows the postsynaptic
activity. The relative values of A and u (described
by the quantity P = u /A) define the influences of
reinforced and non-reinforced activities.

Eq. 2 can be described intuitively in the follow-
ing way. If the output activity of the unit is always
followed, through an external feedback loop, by
the same reafferent input (pathway i), the input-
output relation in the unit can represent a one-
to-one sensory-motor correspondence which al-
ways predicts the sensory effect of the output
activity, independently of any other conditions. In
this case, the learning coefficient «; increases,
and, after learning, the input x; can trigger a
strong output (full anticipation of the effect).
When the reafferent activity occurs only some-
times, it means that another condition is re-
quired, which may be represented by another
input (pathway j). If the conjunction of the same
two inputs has an higher probability of being
related to a strong output, the learning coeffi-
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cient B; increases and the activity in one pathway
acts as a gating signal on the other input. This
rule has been used to learn the coordinate trans-
formation for visually-guided arm reaching move-
ments (Burnod et al., 1992). Since the computa-
tion of the appropriate motor command requires
information on both the target position and the
arm position, conditional relationships between
the two types of information were learned using
reafferent visual information corresponding to the
sensory effect of a motor command.

Two networks (A and B) are described in the
following. Eqgs. 1 and 2 define the properties of
the processing units in both models, but for two
different sets of value of the parameters P and Q.

Network A

This model illustrates the behavior of a popu-
lation of neurons in which all the neurons con-
tribute to a continuously graded output (direction
of movement). The starting point is the experi-
mental results which show that neurons in several
cortical areas have directional tuning properties

drive/reinforcement

A
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and that this directional tuning is distributed in a
regular way within the population and within the
space of the movement (Georgopoulos et al.,
1982, 1986; Caminiti et al., 1991). The population
consists of n (n=16) neurons (N;,, 1<i<n),
each tuned for a preferred direction of movement
p; (bold characters are used for vectors) in the 2D
horizontal plane, in such a way that the vectors p;
are uniformly distributed in this plane. This means
that, at each time t, the neuron N; contributes to
the direction of the movement in proportion to
its activity y,(t) along its preferred direction p;.
The resulting movement is characterized by the
direction d(t) according to

d(r) =(1/n)Ly(1)p; (3)

Eq. 3 is a population code, as proposed by Geor-
gopoulos et al. (1986). The values of the parame-
ters are A = 0.5, u = 0.15 (P = 0.3) and

Q(1) = cos(p;,d(1))

which describes lateral interactions between neu-
rons.

context

I | |
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Fig. 1. Diagram of network A and the task used with this network. A: network architecture. Each neuron has two input pathways
(context and drive /reinforcement) and one output pathway. Thin dashed arrow at the center of a neuron represents the preferred
direction of the neuron (see text). Thick dashed arrow is the population vector. B: the goal of the task is to move the arm
(represented by two connected lines) between an initial central position (thin line) to a peripheral position (thick line) in the shaded

angular sector.
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The direction of movement at each time is
defined by the activity in two afferent pathways
which indicate the actual sensory cues (context)
and the goal to reach (drive /reinforcement). The
network architecture is shown in Fig. 1A. Each
neuron receives (1) a context signal. This signal is
different at each time and for each unit. It corre-
sponds to the ability of the network to generate
all possible behaviors (all directions of move-
ment); (2) a drive /reinforcement signal. This sig-
nal is the same for all neurons: it indicates both
an internal motivational state related to the ex-
pectation of a reward and the effective reward.

A simple task, a movement of the arm in a
specific direction in order to get a reward, is used
to train the network. The population of neurons
controls the direction of arm movements in the
horizontal plane (Fig. 1B). The desired behavior
of the population is to move the arm from an
initial central position to the periphery in such a
way that the final hand position is in a given
angular sector ([60°, 115°] in Fig. 1B). Starting
from a random behavior, the network is trained
with repeated pairings of the drive/rein-
forcement input and some randomly selected
context inputs. Whenever a combination elicits a
movement in the correct direction, a reinforce-
ment is given as a reafferent input in the
drive /reinforcement pathway. The network
adaptation results from activity-dependent modi-
fications of learning coefficients according to Eq.
2.

Network B

The efficacy of a goal-directed action may de-
pend upon previous processing, for example to
take into account a sensory cue. Furthermore, the
relationships between actions and goals are not
fixed, but change with changes in the external
world. These alterations are explored using ex-
perimental paradigms such as new learning and
reversal learning, where the behavioral signifi-
cance of an action is modified in the course of a
conditioning program. Network B illustrates the
behavior of a population of neurons in which
each neuron (or subpopulation of neurons) can
define the association between a cue and an
action, where cues and actions are related by

arbitrary and changing rules. Considering the
same network architecture as for network A, we
assume that the n neurons (N;, 1 <i<n) con-
tribute by their output to the independent con-
current actions (A;, 1<i<n). Thus only one
neuron N; is active at a given time, and the
context input to this neuron acts as a cue for
action A;.

For the sake of simplicity, we conserved only a
subset of neurons that will be involved in a spe-
cific change in reward contingency. We consider
a network of n =3 neurons, N,, N,, N;, corre-
sponding to actions A,, A,, A;. The network is
first trained to execute the task described in Fig.
2A. The cue C, elicits the rewarded action A,.
The cue C, elicits the non-rewarded action A,.
The cue C; is never delivered (Fig. 2A). From
this state, we produce a change in the condition-
ing program. The desired behavior of the network
is to execute the new task described in Fig. 2B,
which is derived from the task of Fig. 2A by a
change in reward contingency. Learning the new
task requires both reversal learning (the cue C, is
now associated with a non-rewarded action) and
new learning (the cue C; now elicits the re-
warded action Aj;).

In this case, the values of the parameters are
A =005 x=0.04 (P=0.8), and Q) =1, since
the outputs of the network are independent. The
network is trained with repeated pairing of the
drive /reinforcement input and context inputs ac-
cording to the current rule (Figs. 2A and 2B).

Computer simulations

The computer simulations of the neural net-
work models A and B were run. All learning
coefficients were initially at 0.5. The training con-
sisted of 30 blocks of 10 trials, where a trial
corresponds to (1) the activation of the network,
(2) the measure of network output (direction of
the resulting movement in network A and action
in network B), and (3) the delivery of a reward
for a correct output.

The results of each trial were noted as correct
or not, and the activity and the variation in the
learning coefficients in each neuron were
recorded. The performance rate was computed
using the percentage of correct responses in suc-
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A : o C, ’ C;
A A, As
reward no reward
B C, ‘ C, : C,
Al A, Aj
no reward reward

(reversal learning) (new learning)

Fig. 2. Schematic description of the two tasks used to illus-
trate acquisition of a change in reward contingencies. The
neurons are depicted as in Fig. 1A, with a context and a
drive /reinforcement pathway. A: the network first learns the
association between three cues (C;, C,, C;), three actions
(A, A,, A3) and a reward, according to a specific rule. B; a
new rule is defined which involves both new learning and
reversal learning. The goal of the network is to learn the new
rule starting from the initial behavior described above.

cessive blocks of 10 trials (trials with no move-
ment were not taken into account). Individual
trial activity and variation in the learning coeffi-
cients were average by block of 10 trials for each
neuron. Histograms were constructed which indi-
cate the change in the performance of the net-
work, the changes in the activity and learning
coefficients in a unit (Figs. 3 and 4).

3. Results

This section provides a quantitative evaluation
of networks A and B. The results concern the
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Fig. 3. Quantitative description of the behavior of network A.
A: changes in performance level (0). Each horizontal division
represents a block of 10 successive trials (trials are not taken
into account if no movement occurs). The corresponding
ordinate value is the proportion of correct trials in the block.
B: normalized neuronal activity (crosses) and normalized
learning coefficient g (®) for a neuron, whose preferred
direction is indicated by the thick arrow at the right of the
graph. C: same as (B) for a neuron with a different preferred
direction. The parameters are: A = 0.5, . =0.15, y=8.0, ¢ =
0.5, wy=0.5.
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global behavior of the network (as measured by
the number of correct trials) and the behavior of
units in the network (measured by neuron activa-
tion).

Network A

The performance of the network obtained by
computer simulations is shown in Fig. 3A. The
monotonic increase in the performance rate (open
circles) reflected the increase in the number of
movements in the intended angular sector (see
Fig. 1B). Two observations were made.

First, changes in neuronal activity were differ-
ent for different units, as shown for two units in
Figs. 3B and 3C. A unit whose preferred direc-
tion was in the intended angular sector (Fig. 3B)
displayed a learning-dependent increase in activ-
ity (crosses) correlated with the increase in the
learning coefficient B (solid circles) and with the
change in performance (open circles). There was
no change in the activity of a unit whose pre-
ferred direction was not directed toward the cor-
rect sector (Fig. 3C). The model thus showed that
the excitability of neurons which have been in-
volved in the production of the intended response
was modified in such a way as to increase their
involvement in future responses. In the same way,
the activities of neurons involved in the produc-
tion of incorrect responses were depressed. As a
result, the correct response was more surely and
more frequently evoked.

Second, increasing activity in network was re-
lated to the variation in learning coefficients and
occurred in parallel with the acquisition of the
task. However, although the learning coefficients
varied smoothly, activity and performance curves
had an S-shape, with a strong nonlinear increase
in the middle of the training period (Fig. 3B).
The development of performance also seemed to
precede the development of activity (Fig. 3B).

Network B

The results are shown in Fig. 4 and concern
the variations in the performance rate, in the
neuronal activities and in the learning coeffi-
cients during the acquisition of the tasks defined
in Fig. 2. The vertical dashed line on each graph
corresponds to the time of change in reward
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Fig. 4. Quantitative description of the behavior of network B.
Same conventions as in Fig. 3. A: changes in performance
level. B: normalized neuronal activity and normalized learning
coefficient for the neuron N; of Fig. 2. C: same as (B) for the
neuron N,. C: same as (B) for the neuron N;. The parameters
are: A =0.05, £ =0.04, A=8.0, ¢ =10.35 wy=0.5.
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contingencies. The performance rate is shown in
Fig. 4A. It increased during the acquisition of the
first task, started to decrease when the rule of the
task changes and then increased once again. Fig.
4 B1, B2, and B3 correspond to neurons N,, N,,
N,, respectively (Fig. 2). We observed that each
neuron had a specific behavior. After a steady
increase during the first task, repetitive non-re-
warded executions of action A, lead to a decreas-
ing activity in neuron N, (Fig. 4B1). In this way,
the non-rewarded behavior was extinguished,
while a new rewarded behavior (action A;) re-
lated to cue C; gradually developed (Fig. 4B3).
Action A, was gradually lost since it was not
rewarded (Fig. 4B2). Note the complementary
contributions of neurons N, (Fig. 4B1) and N,
(Fig. 4B3) to change in the behavior of the net-
work (Fig. 4A).

4. Discussion

Learning a distributed representation of an in-
tended movement

The main feature of network A is the dis-
tributed coding of a single parameter (direction
of movement) in a population of neurons. Learn-
ing a specific value of this parameter requires the
simultaneous tuning of many neurons in the pop-
ulation. The learning rule (defined by Eq. 2)
allows the neurons to improve their contribution
to the correct intended response, either in a
positive way when their preferred direction is
close to the intended direction, or in a negative
way. We have introduced the quantity P, which
defines the balance between depression and po-
tentiation of learning coefficients. This quantity
should be small in this model, since neurons
whose preferred direction is close to the intended
direction can be nonetheless active (and thus
become depressed) for incorrect movements.

The model suggests that changes in activity are
likely to be described by changes in conditional
probability encoded in learning coefficients 8 of
the network. This interpretation provides a sim-
ple way to relate distributed information process-
ing in a neuronal network and the execution of a
global action, and is consistent with experimental

data. Burnod et al. (1982) have described the
short-term changes in neuronal activity in motor
and parietal areas during the operant acquisition
of self-initiated flexion movements. Monkeys were
trained to perform a flexion movement from a
starting position to a final predetermined angular
sector without visual control. They observed that
the relationships between the neuronal activity of
movement-related cells and the movement
changed with the performance rate: as the per-
formance improved, the neuronal activity became
more closely time-locked with the onset of the
movement. This modification reflects an increase
in the conditional probability of discharge of neu-
rons in relation to the beginning of the move-
ment.

Another important aspect of the model is that
the behaviors of the network at early and late
phases of training are quite similar, in the sense
that the network is able to sometimes produce
the correct response at the beginning of the train-
ing. The main difference between early and late
training period is thus not really a matter of
ability to succeed in a given trial, but rather of
ability to reach a good performance criterion.
This interpretation is consistent with paradoxical
observations that show that the development of
performance seems to precede the development
of activity. A similar observation has been made
in experimental studies, when recordings are
made during training periods (Sasaki and Gemba,
1982; Watanabe, 1990; Mitz et al., 1991). Sasaki
and Gemba (1982) recorded cortical field poten-
tials in monkeys during the learning of a skilled
conditioned movement. They observed that activ-
ity related to the production of the response
(early and late precentral potentials) appeared
only when the monkey starts to perform correctly
(Sasaki and Gemba, 1982). Some activity became
differentiated earlier than the performance, but it
was true only for sensory processes.

Learning changes in reward contingencies
Network A illustrates the learning of skilled
arm movement. The results of network B show
the effects of changing the way a reward is ob-
tained, assuming that some behaviors (for in-
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stance, skilled arm movements) are already known
by the network. This change involves both new
learning (since a cue which was never seen before
was introduced) and reversal learning (since a cue
previously associated with a rewarded action was
associated with a non-rewarded action in the new
task). The main characteristics of neuronal activ-
ity in the network are (1) a monotonic increase in
activity associated with new learning (Fig. 4B3),
and (2) a non-monotonic change in activity when
the current behavior is suddenly not rewarded
(Fig. 4B1).

Niki et al. (1990) described the changes in
neuronal activity in the frontal cortex during new
learning (discriminations of new visual stimuli)
and reversal learning. Monkeys were first trained
on a GO/NO-GO discrimination task with sev-
eral pairs of stimuli. Long-lasting alterations of
activity were found when new stimuli were used:
activity increased for one stimulus, but did not
change for the other stimulus. Niki et al. (1990)
observed that such learning-dependent changes
occurred in neurons whose activity was related to
the forthcoming movement.

Niki et al. (1990) observed two characteristic
patterns of changes during reversal learning: (1)
Neurons which showed opposite discharge pat-
terns for correct and incorrect trials (Type 1)
keep the same level of activity when the behav-
ioral responses are reversed; (2) Neurons which
showed the same discharge patterns for correct
and incorrect trials (Type 2) reversed their activ-
ity with the reversal. Type 1 reflects a depend-
ence on the impending response whereas Type 2
is related to stimulus-response association. Simi-
lar results were obtained by Watanabe (1990).
Indeed, Watanabe (1990) observed that changing
the “associative” significance of a visual cue (i.e.,
does it predict a reward?) elicits learning-depend-
ent decrease in neuronal activity in the units
examined in prefrontal and premotor cortices.

These non-monotonic changes may contribute
to both the development of new behaviors and
the transition between two behaviors following
changes in reward contingencies. Decreasing ac-
tivity related to unrewarded behavioral actions is
responsible for the suppression of these actions.
Subsequent increases in neuronal activity reflect

the construction of a new rewarded behavior (eg.,
the integration of new environmental cues).

The quantity P must be high in network B.
Neurons which have been involved in a non-re-
warded action must be strongly depressed in or-
der to rapidly suppress this action and to select
new rewarded actions.

Adaptive properties and information coding

The adaptive properties in networks A and B
depend on two parameters: P which defines the
learning rate of neurons (A and p in Eq. 2), and
Q which defines the coding of information in the
neural network.

Parameters A and u are related to the contri-
bution of rewarded and non-reward behaviors.
The quantity P = /A is an index of the sensitiv-
ity to external constraints defining the correctness
of the behavior: if P is low, the learning coeffi-
cients show a large positive change for rewarded
trials and a small negative change for non-re-
warded trials (Eq. 2); if P is high, the learning
coefficients change by almost the same positive or
negative amount for rewarded and non-rewarded
trials.

The quantity Q defines the coding of informa-
tion in the network. Some brain structures are
organized in a map, which reflects changes in the
value of a parameter coding for a sensory or a
motor feature across one or more dimensions of
the biological substratum (Knudsen et al., 1987).
On the other hand, some structures, like the
prefrontal cortex, are not organized into maps
along specific sensory or motor features. In this
case, neurons appear to become specialized by
learning processes (Fuster, 1988). This character-
istic can be defined by the quantity Q, which
reflects the degree of organization of a structure.
We will say that Q is high in the former case and
low in the latter.

The networks A and B illustrate two configu-
rations of quantities P and Q. Network A corre-
sponds to low P and high Q. In this case, neurons
are broadly tuned around a preferred value and
learning allows selection of a range of values
which are effective for producing a given behav-
ior. There is no absolute relationship between
single neuron activity and behavior, which is due
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to population coding. A small influence of non-
rewarded trials is thus required to ensure smooth
changes in learning coefficients and the selection
of continuous values (continuous range of move-
ment direction). It corresponds to a low value of
P. The example in Fig. 1 and the corresponding
results in Fig. 3 illustrate this mechanism (P =
0.3). This configuration may occur in parts of
motor and premotor areas. Indeed, ncuronal ac-
tivities in these areas are mainly related to the
impending behavioral response (movement) and
do not change with change in reward contingency
(Niki et al., 1990). For these structures, the high
value of Q corresponds to the coding of direction
of movement (Georgopoulos et al., 1982).

Network B corresponds to high P and low Q.
Learning may correspond to the selection of a
subset of neurons which participates in the in-
tended behavior through their specific connec-
tions with sensory and motor structures. This
selection would be efficient if the index P is high
enough, allowing the extinction of non-rewarded
behaviors and the production of new behaviors.
In the example in Fig. 4, the index P is 0.8.
Current views of the prefrontal cortex agree with
this configuration (see Fuster, 1988). The influ-
ence of reinforcement contingencies is a funda-
mental aspect of prefrontal functions. It is char-
acterized by the inability of prefrontal animals to
adjust their behavior in response to changes in
reward contingencies (for instance, during rever-
sal discrimination; Fuster, 1988). Milner and
Petrides (1984) have shown with the Wisconsin
Card Sorting Test that humans with prefrontal
lesions failed to change their behavior when the
rule was changed. The anatomical organization of
the prefrontal cortex is consistent with a low
value of Q. The prefrontal cortex is generally
described as a region of cross-modal integration,
receiving auditory, somatic and visual information
(Fuster, 1988). Although there are local anatomi-
cal specializations, prefrontal neurons appear to
be active only in the execution of purposive be-
haviors.

The model thus suggests that two properties
(defined by the quantities P and Q) allow
motor /premotor and prefrontal circuits to make
differential functional contributions to learning

processes. This regionalization is predicted by the
patterns of connectivity of these cortical struc-
tures (Barbas and Pandya, 1987, 1989), by the
differential effects of lesions (Petrides, 1986) and
by the gradient distributions of neuronal proper-
ties (Niki et al., 1990; di Pellegrino and Wise,
1991). The main purpose of the model is to
explain these observations by intrinsic properties
(defined by P and Q) of populations of neurons in
these areas.

Learning rule

The adaptive properties in these models are
defined by Eq. 2. This learning rule is not a
Hebbian rule as generally used in neural mod-
elling (Brown et al., 1990). Hebbian modifications
are related the conjunction of pre- and postsy-
naptic activities. In the present rule, the pre-
ferred pattern of activation is defined by a postsy-
naptic activity preceding a presynaptic activity.
The rule can be viewed as an error-correcting
rule, which allows the synaptic weights to be
adjusted in proportion to the difference between
a desired and computed value (Widrow and Hoff,
1960). However, Egs. 1 and 2 do not give a
specific role to the error signal. Any signal follow-
ing the activation of a neuron can be used as an
error. This is a fundamental difference from other
error correction rules, which rely on the uncondi-
tional influence of a desired value as a reinforc-
ing factor. This observation stresses that condi-
tioning can occur on any reafferent signal match-
ing the intended effect of an action. It has been
used to learn the visuomotor transformation for
positioning the hand on a target (Burnod et al.,
1992): the desired hand trajectory was operantly
learnt as the sensory effect (visual trajectory) of a
motor command. This property is interesting with
regard to the ability of humans to learn using the
expected effect of their action rather than an
absolute reward.
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