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1 Introduction

It is now generally agreed that two temporally distinct neural processes contribute to the acquisition

and expression of brain functions. Transient variations of membrane potential (neuronal activity),

with a time scale of milliseconds, reflect the flow of information from neuron to neuron and define

the function of neuronal networks. These variations can result in long-lasting (and maybe perma-

nent) alterations in neuronal operations, for instance through activity-dependent changes in synaptic

transmission. There is now strong evidence for a complementary process, acting over an interme-

diate time scale (short-term memory, STM). This process is involved in performing tasks requiring

temporary storage and manipulation of information to guide appropriate actions (Goldman-Rakic

1987; Baddeley 1992). Two main issues should be addressed when studying STM: (1) How is

neural information selected for storage and temporarily stored in STM for future use in a temporal

sequence of sensorimotor events, and how is a large amount of information buffered when its future

use is not known? (2) How can a long-term memory (LTM) representation of temporal sequences of

events be constructed, and how can information selected by STM process be transferred to LTM?

Fig. 1 outlines a general scheme which allows models including short-term and long-term mem-

ory to be compared. A network of units processes spatial and temporal information, represented

by their short-term (milliseconds to a few seconds) activities (x i,yj). The units store information

by changing their synaptic weights (W ), with long-lasting effects (days, years). Information can be

stored over intermediate time scales of seconds, minutes or hours by short-term memory elements,

represented by units (zk). At the neural level (Fig. 1A), STM appears to be an intermediate step

between neuron activity and LTM within single neurons or simple circuits. At the system level

(Fig. 1B), two brain structures have been extensively studied for their role in STM processes, the

hippocampus (Squire et al. 1993) and the prefrontal cortex (Fuster 1989).

The present article discusses the relationships between neuronal activity, STM and LTM at the

neural and system levels, and then presents a neural network model, which illustrates the properties

of short-term memory in the prefrontal cortex.

2 Short-Term Memory at the Neural Level

This section focuses on the temporal patterns generated by single neurons, simple circuits or net-

works, which may be responsible for short-term memory.

2.1 Biological Neurons and Simple Circuits

From Activity to STM: A wide variety of temporal patterns of activity are actively generated by neu-

rons and local circuits of neurons, such as transforming transient inputs into long-lasting sustained

or oscillatory activity. Experimental studies in invertebrates (Harris-Warrick and Marder 1991) have

demonstrated that such temporal patterns produce motor programs and are generated both by the

molecular properties of each neuron, and the connectivity of the local network.

It is now well established that, in vertebrates, long-lasting activities are neural correlates of tran-

sient memory processes (mainly in the frontal lobe of the cerebral cortex). This pattern of activity
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allows past events to be represented and behavioral reaction to future, predictable events to be pre-

pared (Goldman-Rakic 1987; Fuster 1989).

Several models have addressed the question of how to maintain such a sustained activity. One

popular model is a network with reverberating excitatory feedback loops (Hebb 1949). A model

of reciprocally inhibitory neurons, described by a system of nonlinear differential equations, can

generate bistable activities (Kirillov et al. 1993). Such a model describes the conditions of stability

of the two states, the role of noise and the input commands for transitions between states. Zipser

et al. (1993) provided direct evidence for bistability of cortical neurons in a recurrent neural network

trained to mimic the input-output characteristics of an active memory module.

The intrinsic properties of a single neuron can also be responsible for generating bistable activ-

ities, via a set of ionic channels (for example, persistent sodium currents in the spinal cord): one

state is silent, and the other is continuous activity that can be triggered by a transient synaptic input

(Harris-Warrick and Marder 1991).

From STM to LTM A cascade of molecular events occurs in neurons after synaptic activation;

these include the activation/inactivation of the various types of sodium and potassium channels with

different time constants, a calcium influx and second messenger cascades, short-term changes in the

probability of transmitter release, and short-term potentiation (STP). These events define memory

traces which outlast the duration of synaptic events. They also constitute initial steps for the forma-

tion of longer memory traces, such as long-term potentiation (LTP) which can last for hours (T.H.

Brown, cross-reference).

2.2 STM in Neural Network Models

From a computational point of view, a simple way to implement short-term memory is to consider

that neuronal variables have an effect which outlasts their duration. This effect can concern synaptic

weights, synaptic inputs, or membrane potential as illustrated in Fig. 1A.

Short-term memory can appear to be an intermediate step in the learning process at the level of

each synapse, in the same way as STP and LTP (Fig. 1A1). The strength of the synapse is tran-

siently modulated by the successive events in a sequence. Since associative learning rules, such as

the wide classes of Hebbian rules, are based on the temporal coincidence of two events, transient

synaptic modifications allow the time overlap to be increased, and thus association between tempo-

rally separate events to be learned. Sutton and Barto (1981), proposed a model in which the time

scale of neuronal activations (milliseconds to hundred of milliseconds) is extended to the time scale

of temporal correlations between successive sensory and motor events during classical conditioning

(seconds to minutes).

Temporal sequences of events can be turned into spatial patterns ((Fig. 1A2). In Time Delay

Neural Networks (Waibel 1989), a sequence is represented by a vector in such a way that the position

in the vector corresponds to the temporal order of events. Thus, the events occurring in a pre-selected

time-window can be learned as a single spatial pattern.

Time can also be processed when units are linked by recurrent connections (Fig. 1A3). In re-

current networks, a subset of input neurons represents the trace of activity of output neurons that
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is the result of the computation performed by the network in the previous time step (J.L. Elman,

cross-reference). A new input is thus interpreted in a specific context, which can be learned from

the previous computations performed by the network. In this way, the neuronal operations at a given

time are modulated by the recent history of the network. In these models, memory results from

sequential transitions between states rather than from the buffering of specific items.

3 Short-Term Memory at the System Level

Short-term memory may also be a property of large-scale neural architecture involving cortical and

subcortical regions of the brain (Fig. 1B).

3.1 Hippocampus

The hippocampus is important for STM to LTM transfer, but it does not appear to be the substrate of

LTM (Squire et al. 1993). Monkeys with hippocampal lesions are severely impaired at remembering

recently learned objects, but perform correctly with objects learned long ago. The hippocampus is

needed for a short period of time after learning. Permanent memory develops in adjacent cortical

areas of the temporal lobe, to which the hippocampus is connected in parallel (see Fig. 1B1). The

neural correlates of the long-term memory storage of new patterns in these temporal regions are now

well documented: for example, in recognition of visual patterns, neural activities are selective for

“prototypes”, invariant in size and orientation, and sustained activities represent the temporal links

between these prototypes.

Memory processes in the hippocampus appear to be based on three different forms of plastic-

ity within a serially organized anatomical circuit that comprises the cortico-hippocampal pathways

(entorhinal cortex! dentate! CA3! CA1). Experimental data indicate that synaptic potentia-

tion can persist for hours in mossy fibers (between dentate and CA3), for several days in cortical

projections to the dentate gyrus, for several weeks in the CA1.

The hippocampus can be viewed as a control system between STM and LTM in temporal cortical

areas (Carpenter and Grossberg, cross-reference). This “search and orienting” system is able to

determine whether an input is a new example of a previously stored prototype or a new prototype. A

“resonant state” appears when low-level inputs and high-level expectancies are matched. During this

state, the input example can be stored. When there is a mismatch, the hippocampal control system

triggers a memory search for a better category by activating a new high level expectancy (a new

“hypothesis”). If the input is too different from any previously learned prototype, the hippocampal

control system selects an uncommitted population of high level neurons to store a new category.

Once a memory is formed, the hippocampus is not needed for retention or retrieval: familiar events

have a direct access to their recognition code.

3.2 Prefrontal Cortex

The prefrontal cortex is involved in integration of temporally separate events into purposive behav-

ioral structures (Goldman-Rakic 1987; Fuster 1989). This function is reflected in the performance
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of tasks using temporal delays for structuring behavioral reactions to environmental stimuli. The

paradigmatic test is the delayed response task, which requires a subject to memorize an instruction

stimulus and to wait for a go signal before responding to it. This task is typically impaired after

lesions of the prefrontal cortex (Fuster 1989).

Prefrontal neurons recorded during delayed response tasks in monkeys display patterns of sus-

tained activity which reflects the short-term mnemonic aspects related to instruction cues, the ex-

pectation of forthcoming signals and the preparation of the behavioral reaction. Sustained activities

have three important characteristics, which define their cardinal role in the learning and execution of

behavioral tasks. First, whatever the modalities used (visual or auditory cues, arm or eye movement

responses), they occur during the delay between an instruction cue and the final permission to use the

information contained therein to produce a response. Second, the duration of the activity is linked to

the duration of the delay. Increasing the delay’s length leads to a prolonging of the activity. Third,

these activities are a product of learning and there appears to be a relationship between the amount

of delay activation and the level of performance (Fuster 1989).

Goldman-Rakic (1987) has proposed that the prefrontal cortex is necessary for expression of

behaviors guided by representation or internalized models and not when the behavior is guided by

external stimuli. The mechanism of the prefrontal cortex is related to a distributed system of inter-

connected neural networks. Specific functions would thus come from dynamics of the system and

interactions between independent networks, rather than from a strictly hierarchical processing based

on the convergence through association regions (Fig. 1B2). In a such a system, the “working mem-

ory”, defined as the formation of selective memory traces of relevant events, appears as a relevant

concept which characterizes the specificity of prefrontal functions (Goldman-Rakic 1987). Short-

term memory in the prefrontal cortex appears to be subserved by sustained activities. Furthermore,

these activities may also be involved in the formation of permanent memory (Fuster 1989). Thus the

same mechanism is likely to participate to formation and retention of memories. This property is in

contrast with the hippocampus, in which different mechanisms contribute to the formation and the

retention of memories.

4 A Model of Short-Term Working Memory

We have built a computational model of prefrontal circuits to illustrate a strategy for implementing

short-term memory in a neural network (Guigon et al. 1995). Based on the principles of organization

and operations in the prefrontal cortex, this model shows that short-term memory in a neural network

can be obtained by processing units which switch between two stable states of activity (bistable

behavior) in response to synaptic inputs. The sustained activity of a given neuron represents a

temporal link between two sensory or motor events. It also shows that long-term representation

of tasks requiring short-term memory can result from activity-dependent changes in the synaptic

transmission controlling the bistable behavior. After learning, the sustained activity of a given neuron

represents both the selective memorization of a past event and the selective anticipation of a future

event.
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4.1 Description of the Model

The neural network model, designed according to the principles of organization of prefrontal con-

nections, was trained to execute a delayed response task (Fig. 2). The architecture of the network

is shown in Fig. 2A. Each sensory event is coded by the all-or-none activation of a specific unit

in the sensory layer, and movements towards the levers are coded in the motor layer. Matching

units model neurons in the associative sensory and motor areas connected to the prefrontal cortex.

These units implement sensorimotor relations, such as a direct relation between the position of the

lever and movement toward the lever. Bistable units model prefrontal neurons. Each bistable unit

is reciprocally connected to one matching unit and receives non-reciprocal projections from some

other matching units. This connectivity defines multiple interactions between matching and bistable

units, but does not correspond to an a priori representation of particular functions. Bistable units are

connected to a drive pathwayd (thirst), which is made active at the beginning of each behavior of

the network, and to a reinforcement pathwayr (receipt of liquid), which is activated when a correct

behavior is produced by the network.

The function of the network is defined by the dynamics of processing units and by the adjustable

connection coefficients between processing units. Neural processing function of matching units is

modeled by a nonlinear interaction between inputs, which reflects the modulation of sensory inputs

and motor outputs by memorized conditions. Matching units respond to the coactivation of sensory

and bistable inputs, but not to activation of either input alone. We postulate that prefrontal neurons

have two stable states of activity (bistable), and that transitions between these states are elicited

by synaptic inputs (Fig. 2B; Guigon et al. 1995. We also postulate that this bistable behavior

is controlled by learning and allows sensorimotor sequences to be built up under the control of a

reinforcement signal.

4.2 Bistable Units Implement Short-term Memory

Computer simulations of the neural network in Fig. 2 were used to train it to execute a delayed

response task in three successive stages (1: movement, reward; 2: go signal, movement, reward; 3:

instruction stimulus, go signal, movement, reward). The rationale for this protocol is that the training

protocols used with animals are progressive, stage by stage procedures. The contribution of bistable

units to the execution of the delayed response task is illustrated in Fig. 3A. Each graph displays

qualitatively the activity of three bistable units at a given training stage. During execution of the task

(stage 3), bistable units display different patterns of activity defined by the temporal relationship

between task events and peaks of activity (Fig. 3A). Each unit is active between two successive task

events. The most interesting pattern is the differential delay activity. This is a sustained activity

between the onset of the instruction stimulus and the onset of the go signal specific for right vs left

trials. All these patterns have been described in the prefrontal cortex during the delayed response

task (Fuster 1989).

At each training stage, bistable units play a complementary role in encoding the temporal struc-

ture of the task. Individual units are selective for a specific sequence of events, but the set of units

is able to bridge all the gaps between the events of the current task. Matching units displayed tran-
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sient activity that was time-locked to sensory or motor events and that was correlated with the end

of activity in bistable units. They signal the occurrence of a specific sensory or motor events in the

context of a specific behavior.

4.3 Long-term Changes in Bistable Units

Variations in the activity of bistable units are correlated with the changes in reinforcement contin-

gency, depending on variations in the reinforcement rate (Fig. 3B). Two behaviors are alternatively

performed by the network when changing from stage 1 to stage 2: one is the previously correct

behavior (self-initiated movements) and the other is the new correct behavior (stimulus-triggered

movements). The mean activity during reinforced trials increases for leftward self-initiated move-

ments during the first stage. During the transition from stage 1 to stage 2, activity first decreases

and then increases with the increase in the performance rate. The same phenomenon occurs be-

tween stage 2 and stage 3 (Fig. 3B). The experience gained at each trial in the learning period is thus

transferred to a long-term representation of the task.

5 Discussion

In most neural networks, information stored into long-term memory reflects correlation between

transient neuronal activities. This form of storage is efficient for encoding long-term memory of

objects, but less efficient for encoding temporal sequences of events (Sutton and Barto 1981). We

have described different strategies, which use short-term memory mechanisms to link temporally

separate events. In some cases, memory is an implicit consequence of neural network architecture

and neuronal dynamics. In other, an explicit neural correlate of short-term memory is observed

(theta rhythm, sustained activity). We have presented a simple model in order to illustrate a possible

mechanism of short-term working memory in the prefrontal cortex. The model has shown the dual

role of sustained activity in the short-term retention of relevant cues and in the formation of long-

term memory of simple sequential behavior. Further study of these strategies should provide initial

cues for the understanding of complex behaviors involving planning, reasoning, language.
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Figure 1: Architecture for short-term and long-term memory at two levels of brain organization.

Each network has an input pathway (xi), an output pathway (yj), a short-term memory pathway (zk),

and a set of adaptive weights (W ). A. The neural level. A1. STM units store transient variations in

synaptic weights. A2. STM units store synaptic inputs in delay lines. A3. STM units store recent

history of the activity in the network provided by recurrent connections. B. The system level. B1.

STM units in the hippocampus contribute to the transfer of information from STM to LTM. B2.

STM units in the prefrontal cortex are the temporal link between sensory and motor events.
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Figure 2: A. Architecture of the network for learning a delayed-response task. The task involves

two lights mounted above two horizontally arranged levers and a trigger light. At each trial, one

light (instruction stimulus) comes on for a short period; a few seconds later, the trigger light (go

signal) comes on and the animal touches the lever indicated by the instruction: it receives a reward.

Notations: l-left and l-right: positions of left and right levers; m-left and m-right: movements toward

the levers; gs: go signal; i-left and i-right: instruction stimuli; d and r for drive and reinforcement,

respectively. Black dots indicate synapses. B. Dynamics of bistable units. The unit has two weighted

input pathways xi (wi) and xj (wj), a reinforcement pathway r, and an output pathway y. Variables

are binary. Weights vary in [0,1]. Qualitative variations in the activity y and the synaptic weight

wi when input and reinforcement pathways are activated as shown in the tracings. Unlike classical

neural automata, which display transient responses to transient inputs, the present neuron remains

activated (state ON) for some time after the input i. The neuron then returns to rest after the second

input j (state OFF). Transition to the ON state follows a classical law used to model the stochastic

behavior of neurons (graph p(ON)): the probability of transition is proportional to the summed in-

puts. Transition to the OFF state has two components (graph p(OFF)): a spontaneous transition with

a fixed probability � (effect of noise), and an unconditional transition following subsequent inputs.

Only the transition to the ON state is controlled by a synaptic weight.
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Figure 3: Computer simulations. A. Activities in three bistable units (dark shaded pattern) and

three matching units (light shaded pattern) are qualitatively displayed for each training stage and

for left and right trials. The task events are those described in Fig. 2. Note the gradual changes in

the relationships between neuronal activity and task events and the differentiation for left vs right

trials. B. Variations in the level of activity of a bistable unit during the training period. The graph

is constructed from the activity during reinforced left trials. Each horizontal division corresponds to

a trial. Vertical dashed lines indicate the transitions between training stages. Note the combination

of increasing and decreasing activity: activity decreases at the transition between two stages and

increases after the transition.
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