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The nervous system controls motor behavior in a simultaneously constrained and flexible manner. On
the one hand, when subjects are free to move, they automatically choose a trade-off between movement
speed and accuracy, and execute longer movements in longer times (Fitts’ law; 1; 2). On the other hand,
they can be instructed to execute movements of prescribed amplitude, duration and accuracy (3).

Three principles are generally invoked to explain the properties of motor behavior: 1. the motor
system operates according to an optimality principle. Models that select movements minimizing a cri-
terion related to some relevant quantities reproduce many features of actual motor acts (4; 5; 6; 7; 8);
2. the motor commands are updated continuously by internal feedback loops (8; 9); 3. the motor system
acts in the presence of neuromotor noise (7; 8; 10). Two models clearly illustrate the power of these
principles (7; 8). Harris and Wolpert (7) proposed that the motor system chooses movements of min-
imal terminal variance under conditions of signal-dependent noise. The model reproduced kinematic
and electromyographic properties of movements and explained the origin of Fitts’ law. Todorov and
Jordan (8) proposed a principled approach which states that motor behavior arises from the simultaneous
minimization of an error cost (e.g. distance to the goal) and an effort cost (e.g. energy expenditure).
This proposal considered cost components which can be readily measurable quantities and define a nat-
ural speed/accuracy trade-off (10), and explained the coordination of redundant degrees of freedom (8).
Although successful in many aspects, these models fail to account appropriately for the control of move-
ment accuracy. As movement accuracy covaries directly with movement cost, there is no way to explain
why increased cocontraction could lead to increased stability and accuracy (3; 11) and more generally
how accuracy can be controlled independent of kinematics (3).

To overcome these difficulties, we propose a five-stage description of motor control: 1. the motor
system is an optimal feedback controller acting under state estimation noise (SEN; 12); 2. in this system,
cocontraction level can be adjusted as an independent parameter; 3. the SEN reflects inaccuracy in es-
timation of position and velocity (13), is assumed to increase with movement velocity (12) and decrease
with cocontraction (fusimotor control; 14); 4. all movements in a series (given instructions and cocon-
traction level) are performed at the same effort cost (constant effort principle); 5. for a given cost, the
movement produced has the smallest control signal that guarantees zero estimated terminal error when
compared to movements of same amplitude, duration and cocontraction level (optimality principle).

We show in a model of the neuromuscular system (nonlinear, multijoint version of 10; cocontraction
is modeled by reciprocal inhibition between antagonist motoneurons) that these latter principles predict:
1. typical kinematic and electromyographic properties of multijoint movements (Fig. 1ABCD); 2. linear
relationship between amplitude and movement time, peak velocity and peak acceleration, kinematic
invariance, and directional variations in movement time and peak velocity (Fig. 1EFGH); 3. increased
accuracy with cocontraction level (Fig. 1IJK).

Three key points must be emphasized. First, as accuracy under SEN depends on kinematics and
cocontraction, the constant effort principle allows neural cost and accuracy to be dissociated. In particu-
lar, reducing the cost will not always allow to reduce movement variability. Second, the constant effort
principle defines an implicit relationship between task parameters (amplitude, duration) which is modu-
lated by cocontraction. Different costs define different amplitude/duration laws. Last, the constant effort
of the constant effort principle has an ecological interpretation as the largest cost that can be alloted to a
single motor act in a series (e.g. experimental session, day, race, ...) given limited total resources (e.g.
energy) and expected rewards (motivation).
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Figure 1: A. Simulated trajectories (20 cm, 300 ms) at two positions [(45,90) and (90,90)]. B. Tangential velocity profiles for

the 16 movements at (45,90). C. Electromyographic activity for simulated movements. EMG in the shoulder flexor (thick line)

and extensor (thin line) for two movement directions (black line: 0 deg; gray line: 180 deg). Antagonist activity is inverted and

represented in the negative direction. D. Same as C for elbow muscles. E. Movement duration vs amplitude. F. Peak velocity

vs amplitude. G. Peak velocity vs direction for a given amplitude (15 cm). H. c = vpeak/vavg vs amplitude. I. Shoulder EMG

for a 20 cm long, rightward movement (velocity is indicated by a thin line). J. Same as I for a larger cocontraction signal. K.

Relationship between terminal variability (determinant of the covariance matrix) and measured cocontraction (black areas in

I,J) for shoulder (circle) and elbow (square). SEN was multiplicative Gaussian noise on velocity.
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