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Guigon E, Baraduc P, Desmurget M. Computational motor control:
redundancy and invariance. J Neurophysiol 97: 331-347, 2007. First
published September 27, 2006; doi:10.1152/jn.00290.2006. The ner-
vous system controls the behavior of complex kinematically redun-
dant biomechanical systems. How it computes appropriate commands
to generate movements is unknown. Here we propose a model based
on the assumption that the nervous system: /) processes static (e.g.,
gravitational) and dynamic (e.g., inertial) forces separately; 2) calcu-
lates appropriate dynamic controls to master the dynamic forces and
progress toward the goal according to principles of optimal feedback
control; 3) uses the size of the dynamic commands (effort) as an
optimality criterion; and 4) can specify movement duration from a
given level of effort. The model was used to control kinematic chains
with 2, 4, and 7 degrees of freedom [planar shoulder/elbow, three-
dimensional (3D) shoulder/elbow, 3D shoulder/elbow/wrist] actuated
by pairs of antagonist muscles. The muscles were modeled as second-
order nonlinear filters and received the dynamics commands as inputs.
Simulations showed that the model can quantitatively reproduce
characteristic features of pointing and grasping movements in 3D
space, i.e., trajectory, velocity profile, and final posture. Furthermore,
it accounted for amplitude/duration scaling and kinematic invariance
for distance and load. These results suggest that motor control could
be explained in terms of a limited set of computational principles.

INTRODUCTION

When we move our limbs to execute a motor task, we
generally have many more degrees of freedom (DOF) than
necessary to fulfill the requirements of the task. In a typical
situation, unconstrained point-to-point arm movements involve
7 DOF for moving in a three-dimensional (3D) space. If
movements are to occur in a plane, such as in a handwriting
task, the physical constraint of contact still leaves infinitely
many solutions to the problem of writing a letter. The coordi-
nation of kinematically redundant systems was first formulated
by Bernstein (1967) as the DOF problem. The main difficulty
of Bernstein’s problem is that the nervous system must con-
ciliate two apparently conflicting abilities. On the one hand,
each individual realization of a motor goal results from the
choice of one among an infinite number of motor patterns. On
the other hand, there is no univocal relationship between motor
goals and motor patterns, a property first noted to be central to
the functioning of motor systems by Lashley (1933), which he
called motor equivalence. For instance, the nervous system can
preserve a common kinematic pattern for executing a move-
ment while varying the moving effector, the angular patterns of
motion, or underlying muscular activations (Bernstein 1967;
Burdet et al. 2001; Gribble et al. 2003; Levin et al. 2003).
Solving Bernstein’s problem should not only help us under-

stand the origin of this flexibility, but also explain how the
flexibility coexists with constraints inherent to the functioning
of the motor system. For instance, when subjects are free to
move, they automatically scale movement duration with move-
ment amplitude and choose a trade-off between movement
speed and accuracy (Fitts” law; Fitts 1954). An open question
is how motor controllers in the brain solve Bernstein’s prob-
lem. Here, we first present a computational approach to this
problem, i.e., a solution cast in terms of principles. Our goal is
to provide a solution based on a restricted number of realistic
and well-supported hypotheses. Then we show how these
principles apply to the problem of kinematic redundancy.

COMPUTATIONAL APPROACH

Breakthroughs into the understanding of motor functions have
generally been brought about by computational studies (Bullock
and Grossberg 1988; Feldman and Levin 1995; Flash and Hogan
1985; Harris and Wolpert 1998; Hoff and Arbib 1993; Todorov
and Jordan 2002; Uno et al. 1989), i.e., studies that disclose
functioning principles independent of brain structures or neural
processes. However, since the time of Bernstein and Lashley, no
adequate principled approach to kinematic redundancy and motor
equivalence has been proposed and the way the nervous system
tackles these problems remains mysterious (Gielen et al. 1995). In
particular, the line of reasoning based on the separation between
trajectory planning and trajectory execution, which attributes
motor equivalence to the specification of a desired trajectory in
task coordinates and which proposes a solution to redundancy
using inverse kinematic transformations, has been seriously ques-
tioned (Bullock and Grossberg 1988; Cole and Abbs 1986; Sporns
and Edelman 1993; Todorov 2004; Todorov and Jordan 2002).
The main argument is that on-line movement corrections act to
favor goal achievement rather than the following of a preplanned
trajectory.

Principles

The goal of this article is to describe a principled approach
that gives a unified account of motor behavior. We propose that
motor control is governed by four principles: 1) separation: the
nervous system processes dynamic (inertial, velocity-depen-
dent) and static (elastic, gravitational) forces separately; 2)
optimal feedback control: there exists an optimal controller for
dynamic forces (dynamic controller) that is appropriate for an
on-line control of movement, i.e., it is optimal for any initial
state of the moving limb; 3) maximum efficiency: the nervous
system attempts to reach the goal of the movement defined in
the task coordinates with zero error and minimal control
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signals (these signals are inputs of central descending origin to
motoneurons; overall control magnitude is called effort; see
METHODS); 4) constant effort: all movements obeying a given
set of instructions (e.g., move at preferred speed) are executed
with the same level of effort. Maximum efficiency and constant
effort are not incompatible. The former principle associates
each movement duration to an effort level, i.e., the (minimal)
effort of the optimal solution. When duration is not specified,
the latter principle prescribes a level of effort used to determine
the appropriate duration, i.e., the unique duration associated to
this level of effort.

Below, we give a brief rationale for these principles. In the
RESULTS section, we show how they are associated to properties
of motor behavior.

SEPARATION PRINCIPLE. There is substantial experimental evi-
dence to support the idea of a separate processing of static and
dynamic forces. Previous psychophysical studies showed that
velocity profiles remain unchanged when moving in a known
constant (Mustard and Lee 1987; Welter and Bobbert 2002) or
a known elastic force field (Bock 1990; Flash and Gurevich
1992; Ghez 1979; Gottlieb 1996; Levin et al. 2003; Milner
2002; Rand et al. 2004), but that they are in general modified
by time and amplitude scaling in velocity-dependent and iner-
tial fields (Atkeson and Hollerbach 1985; Bock 1990; Gottlieb
1996; Happee 1993; Hatzitaki and McKinley 2001; Ruitenbeek
1984). This property is called kinematic invariance. These
results show that, if a separation principle holds, it does not
apply to any type of forces, but is specific to static forces. Even
if some velocity-dependent perturbations have no influence on
movement kinematics (Shadmehr and Moussavi 2000; Shad-
mehr and Mussa-Ivaldi 1994), our reasoning and conclusion
remain valid. Electromyographic (EMG) studies revealed ad-
ditive velocity-independent, tonic and velocity-dependent,
phasic components that are related to the generation of anti-
gravity torques and dynamic torques, respectively (Buneo et al.
1994; Flanders and Herrmann 1992; see also Farley and Kosh-
land 2000; Milner 2002; Welter and Bobbert 2002). A similar
additive combination between a tonic activity, related to the
compensation of an external static force, and a phasic, move-
ment-related activity was observed in neurons of primate motor
cortex (Kalaska et al. 1989). The experiment of Nishikawa et
al. (1999) showed that the terminal posture of 3D redundant
movements is independent of movement velocity. Because the
relative contribution of antigravity and dynamic torques varies
with velocity, optimization of the total torque pattern would
predict variations of terminal posture with velocity. This result
suggests that dynamic forces are optimized independent of
static forces. The study of Kurtzer et al. (2005a) provides
further support to the separation principle. These authors
showed that adaptation to a multiforce environment composed
of a velocity-dependent force and a constant force was well
described by a mechanism that processes velocity-dependent
force separately from the total applied force. We emphasize
that separation of static and dynamic forces is not separation of
posture and movement because static forces (gravity, muscular
elastic forces) are present during both posture and movement.

OPTIMAL FEEDBACK CONTROL PRINCIPLE. A solution to kine-
matic redundancy could likely be found in the framework of
optimal control theory, which states that a unique solution to an
ill-posed problem can generally be obtained as the solution that

corresponds to the minimum of a cost function. Because it is
well recognized that motor commands are continuously up-
dated by internal feedback loops (review in Desmurget and
Grafton 2000), it has been suggested that on-line control of
movement is also optimal in the theoretical sense (optimal
Sfeedback control; Bryson and Ho 1975; Hoff and Arbib 1993;
Todorov and Jordan 2002). This means that the control signals
are optimal for any boundary conditions, such as following
perturbation of the moving limb or changes in target position.
The notion that motor control can be viewed as a continuous
feedback process was first analyzed by Bullock and Grossberg
(1988) and was shown to account for trajectory formation and
kinematic invariance.

It is paradoxical that optimal control theory has been repeat-
edly and successfully used to account for many aspects of
motor control (e.g., trajectory formation, muscular redundancy,
postural control, locomotion; Anderson and Pandy 2001; Flash
and Hogan 1985; Harris and Wolpert 1998; Kuo 1995; Uno et
al. 1989), but has rarely been applied to the case of redundant
manipulators (Todorov and Jordan 2002). Todorov and Jordan
(2002) successfully applied optimal control to a kinematically
redundant system. However, this work was limited to the linear
case, i.e., a telescopic arm model rather than an articulated arm
with a nonlinear dynamics. Also, no direct comparison was
provided between experimental data and the predictions of the
model. Does this mean that no appropriate solution can be
found in this framework? In fact, the central difficulty for an
optimal control approach to redundancy is to formulate the
problem in such a way that it accounts for the simultaneous
control of posture and movement. Most studies have not
considered the case of static forces. Some studies that have
actually tackled this problem have reported difficulties in
solving optimal control problems in the presence of gravita-
tional forces (Soechting and Flanders 1998; Thoroughman and
Feller 2003). When a movement consists of a transition be-
tween two equilibrium postures, the boundary conditions of the
optimal control problem should specify terminal equilibrium
signals, e.g., muscle forces that compensate for applied static
(elastic, gravitational) forces. The idea to add to the cost
function a term that enforces given initial and final equilibrium
postures (Dornay et al. 1996; Harris and Wolpert 1998) should
lead to solutions that depend on the level and nature of the
static forces. Although this issue has not been fully addressed
in experimental studies, the results of Nishikawa et al. (1999)
clearly suggest that dynamic and static controls are unlikely to
be dealt with simultaneously. In contrast, the separation prin-
ciple allows the application of optimal feedback control to
kinematic redundancy problems with static forces because
there is no a priori specification of the final posture of the limb.

An integral component of feedback control is the presence of
a state estimator, i.e., a process that combines sensory inflow
and motor outflow to provide an estimate of the current state of
the system (Wolpert et al. 1995). A state estimator is necessary
because /) the state is in general not directly observable and
must be inferred from sensory inputs (e.g., vision, propriocep-
tion) and 2) both inflow and outflow are noisy. It has been
suggested that the nervous system acts as an optimal estimator
(Baddeley et al. 2003; Wolpert et al. 1995). The optimal
feedback control principle embeds an optimal estimator.
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MAXIMUM EFFICIENCY PRINCIPLE.  Optimal control is associated
with the choice of a cost function (which indicates a quantity to
minimize) and a constraint function (which specifies constrains
to satisfy) (Nelson 1983). Here, we consider a cost function
based on the size of centrally generated signals that eventually
generate the dynamic forces. The reason for this choice is
twofold. First, it is simple and easily measurable by the CNS,
compared with other cost functions encountered in motor
control literature that require complex calculations and mea-
surement processes (acceleration derivative, torque change,
energy, etc.). Second, related cost functions were successfully
used in recent models (Harris and Wolpert 1998; Todorov and
Jordan 2002). As a constraint function, we use the initial and
final boundary conditions. The rationale for this choice, which
differs from the mixed error/effort cost of Todorov and Jordan
(2002), is the following. The error/effort cost function contains
parameters that weight the respective contribution of state
errors (position, velocity, force, etc.) and effort in the cost
function. Because different sets of parameters lead to different
behaviors, a model based on error/effort minimization cannot
provide a univocal description of motor control. This problem
has little consequence for the study of motor variability
(Todorov and Jordan 2002), but is critical for the study of
redundancy.

CONSTANT EFFORT PRINCIPLE. The idea of motor behavior be-
ing associated with the minimum of a cost function is appro-
priate when both movement amplitude and duration are spec-
ified. Otherwise, infinitely slow/fast or infinitely short/long
movements could result. In cases where movement time is not
given (e.g., instruction is to move at preferred speed), actual
duration can be deduced by associating a desired level of effort
with the instruction and using the relationship between ampli-
tude, duration, and effort prescribed by the maximum effi-
ciency principle. In this framework, the constant effort princi-
ple states that a given set of instructions is equivalent to a level
of effort. For these instructions, movements of different am-
plitudes, directions, or against different loads are executed with
the same effort.

A simple example

To illustrate the model, we consider the control of an
inverted pendulum in the gravity field (Fig. 14). The dynamics
of the pendulum is given by

I,(d*6/dt*) + mygL, cos 6 = u (1)

where 6 defines the position of the pendulum; I, m,, and L, are
the inertia, mass, and length of the pendulum, respectively; and
u is a control (here a torque). The control problem is to find u(t)
(t in [ty; t;]) such that 6(t,) = 6, and 6(t) = 6, (Fig. 1A).
According to the separation principle, we can write

u(t) = tgyn(t) + 1t (0)

where u,(t) compensates for the effect of static forces (see
Eq. 3 below) and ug,,(t) is the solution to the control problem
in the absence of static forces. To obtain uyy,(t), we apply the
optimal feedback control principle and the maximum effi-
ciency principle. At each time t., a control uy,,(t) is computed
for the remaining duration (t in [t t;]) based on the planned
displacement from the currently estimated position of the

B Ol o
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to te ly
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g |/ N\ <
o 45 g o
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FIG. 1. A: inverted pendulum in the gravity field. B: in the presence of

noise, the estimated trajectory of the pendulum (gray) deviates from its actual
trajectory (black). Ata given time t, the control u(t.) is calculated based on the
estimated error (gray arrow) and is applied to the current state of the pendulum
(black arrow). C: application of the model to a displacement between 0 and 90°
in I s. Left: angle of the pendulum, velocity in inset. Right: dynamic (plain) and
static (dashed) control. For simplicity, we used I, = 1, my = 1, L, = 1. D:
same as C in the presence of additive Gaussian noise (o0 = 0.4). Left:
amplitude/duration scaling. Dotted lines: 90° in 1 s. A nonzero intercept (here
0.05 s) was necessary for appropriate functioning of the controller. Right: angle
of pendulum. Dotted lines: 1 s, 90°.

pendulum [6/(t.), which is generally different from 6(t.) aris-
ing from noise or perturbation] to the target position 6, (Fig.
1B). The control uyy,(t.) is applied and the process starts again
at the next time step. The mathematical solution to this prob-
lem is obtained using the Euler-Lagrange equation (e.g.,
Hogan 1984; Kirk 1970)

d*[dud,/o(d*0/de) Ydt = 0 2)

with boundary conditions 6(t,) = 6/(t.) and 6(t;) = 6. For this
problem, we have

Uga(te) = mogLg cos 07(t:) )

which reflects the fact that the state of the pendulum is not
known, but can only be estimated.

In the absence of noise and perturbations, we see that the
control calculated at t, for the whole movement duration [t; t]
(open-loop control) is the same as the control recalculated at
each time step (closed-loop control). An example of solution to
Eq. 2 in the absence of noise and perturbations is shown in Fig.
1C. An open question is whether the controller is stable in the
presence of noise. We simulated the same example in the case
where

07 (t) = 0(t) + n(t)

where n(t) is a zero-mean Gaussian noise with variance o”.
Because of noise, the pendulum will in general never reach its
target position. Thus movement duration could not be fixed in
advance and was determined by an amplitude/duration law—
i.e., at each time, the remaining duration was a function of the
residual distance to the target (Fig. 1D, left). The pendulum

J Neurophysiol « VOL 97 « JANUARY 2007 « WWW.jn.org

1002 ‘2T Areniga4 uo 6o ABojoisAyd-ul woly papeojumoq



http://jn.physiology.org

334 E. GUIGON, P. BARADUC, AND M. DESMURGET

reached the vicinity of the target and then smoothly oscillated
around it (Fig. 1D, right). This result was robustly observed
over a broad range of parameters (variance of noise, slope of
the amplitude/duration law). Thus stable control of a naturally
unstable system can be obtained with the principles of the
model in the linear case. Stability arises from the action of the
dynamic controller, which attempts to reduce the distance
between the estimated state of the pendulum and the target, but
not of the static controller, which simply compensates for
gravity.

General sketch of the model

The model is summarized in Fig. 2A. It has three compo-
nents: /) a dynamic controller, which calculates, for given
target (goal) and estimated states, the appropriate control to
master the dynamic forces and progress toward the goal
(dashed arrow on the left); 2) a static controller, which calcu-
lates for each estimated state the appropriate control that
maintains equilibrium against the static forces (dashed arrow
on the right); 3) a state estimator, which calculates a state
estimate from sensory inflow and motor outflow (gray arrows).

Scope of the article

The four principles have been proposed to address Bern-
stein’s problem. However, the present article concerns the part
of the problem related only to kinematic redundancy. The goal
of this article is to show that the dynamic controller can solve
the problem of kinematic redundancy in a way that is consis-
tent with experimental observations. Thus we focused on the
dynamic controller and we used the following simplifications
(Fig. 2B). First, because neither perturbations nor noise was
introduced, no state estimator was needed and optimal feed-
back control was strictly equivalent to open-loop optimal
control (see Fig. 1B). Thus simulations described below were
obtained using a method to solve open-loop control problems.
Second, the static controller was not modeled. We assumed
that there were no static forces or, equivalently, that the static
forces were exactly cancelled at each time step during the
movement. The complete model including static and dynamic
forces was not simulated.

METHODS

Modeling approach

The principles were cast in computational terms so they needed to
be translated into simulations for comparisons with experimental

A target ||estimated B target | | initial
state state state state
] l l l ' l l
| dynamic static ‘-‘ state dynamic
. controller controller ! estimator controller
| i . l ) sensory i .
', dynamic static - inflow dynamic
control control ! control

motor outflow

FIG. 2. A: general sketch of the model. B: focus of the present article.

observations. A central issue was the representation of the neuromus-
cular system. In fact, it is a complex machinery that contains both
intricate neural circuits and noisy nonlinear elements for action and
sensation, so an open question is the degree of biological realism that
can guarantee that a simulation is a useful reflection of biological
operations. Although there is no general answer to this question, we
addressed it using two principles: /) start with a simple model; if it
does not work, then try a more complex one; and 2) of two models that
provide similar results, the simplest is the best.

According to the first principle, we built on simple hypotheses. At
a basic level of details, we focused on four main properties of the
muscle: /) it generates forces when it is stimulated; 2) it behaves like
a linear spring; 3) it performs low-pass filtering; and 4) it is inserted
around a joint and generates a torque. We also assumed that /) a
muscle is made of a single type of fibers that are all innervated by the
same motoneuron; 2) a motoneuron receives a unique and specific
control signal (see Controlled object). Because linear springlike forces
are static forces, they were removed according to the separation
principle. The results obtained with these hypotheses were in adequate
correspondence with experimental data. For comparisons, we built
more complex models. A muscle is in fact a nonlinear spring so we
included a force/velocity relationship. A muscle can act on several
joints so we considered biarticular muscles. A muscle can be con-
trolled through muscular synergies. We first describe the results
obtained with the simplest model that best highlight the power of the
proposed principles. Then we show results obtained with biarticular
muscles (see Muscular redundancy), nonlinear muscles (see Influence
of muscle properties), and muscular synergies (see Muscular syner-
gies).

Controlled object

The controlled object was modeled as a rigid, multilink, articulated
system with N DOF. It was actuated by one pair of antagonist muscles
per DOF. Each muscle i (1 =i = 2N) was controlled by a motoneuron
and the ensemble motoneuron + muscle (neuromuscular system) was
modeled as a second-order low-pass filter (van der Helm and Ro-
zendaal 2000), which transforms a neural control signal (u;) into a
muscular force (F,) according to

v(de/dt) = —e; + u;
v(da/dt) = —a; + e 4)
F; = n(a)

where v is a time constant and m(z) = [z]" ([z]" = z if z > 0;
otherwise, [z]* = 0). This latter function was used to express the fact
that a muscle exerts only a pulling force. The terms for these
quantities e; and g; correspond to excitation and activation, respec-
tively. Electromyographic (EMG) activity was defined as [e]".
Torques were calculated at each DOF as the difference between the
forces generated by antagonist muscles scaled by a coefficient (vy; see
following text).

The dynamics of the controlled object and the neuromuscular
system was described by

dx/dt = f[x(t), u(t)] (&)

where x describes the state of the object (angular position and
velocity) and the muscles (activation, excitation). Equation 5 con-
tained Eq. 4 for each muscle and the equations for movement
dynamics (see Kinematic chains).

Optimal controller

Point-to-point trajectories of the controlled object were obtained as
solutions of an optimal control problem: find deterministic controls
u(t) = {y;()} (1 =1=2N)in [ty t;] such that x(t) is a solution to Egq.
5 with boundary conditions
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and Y[x(t)] =0 )

x(to) = X,

and the quantity

El= > j w2(1)dt )
i=1"2N ¥ [to:ty]

is minimum (we use the generic term effort for the quantity E;
Todorov and Jordan 2002). Function ¢ expresses constraints on the
final state of the system (see following text). Any kind of constraint
can be handled. For instance, ¥ was x(t;)) — X; for nonredundant
objects (X; is the desired final boundary value).

Constant effort principle

The optimal control model can be used to calculate control signals
that drive the arm from an initial position to a target position
(movement of amplitude A) in a given time (duration D = t; — t;). By
construction, the control signals are unique and their associated effort
is E (Eq. 7). We can repeat this operation for different amplitudes and
different durations and build a surface E = E(A, D). This relationship
is monotonic because it increases with A and decreases with D (larger
or faster movements require larger controls). Conversely, if A and E =
E. are given, it defines a unique duration D. The relationship between
movement amplitude and duration corresponding to a given effort (E.)
was obtained by building the surface E = E(A, D) and searching the
intersection between this surface and the plane E = E_. The surface
was obtained by interpolation between calculated points on a grid.

Kinematic chains

We considered several kinematic chains that illustrate different
aspects of redundancy (Fig. 3). A kinematically nonredundant system
was used to study kinematic invariance and muscular redundancy
(Fig. 3C). A chain is specified by a set of joint angles (¢;, 1 = 1. ..N)

A

S(h

FIG. 3. Kinematic chains. A: 4 degrees of freedom (4-DOF), 2-link chain in
3-dimensional (3D) space. B: 7-DOF, 3-link chain in 3D space. C: 2-DOF,
2-link chain in 2D space.

that define a kinematic transformation (from angular to Cartesian
coordinates). The equations for movement dynamics were derived
using the Euler-Lagrange method (Spong and Vidyasagar 1989).
Briefly, four steps were necessary: /) the rotation vector of each
segment was calculated; 2) translational and rotational kinetic ener-
gies were calculated; 3) the Lagrangian L was obtained as the sum of
kinetic energies; and 4) torques T, at each DOF were calculated using
T, = d[dL/d(dg/dt))/dt — dL/dg,

which leads to

T,= >, Aydg/dd) +C ®)

j=1N

Coefficients A;; and C; were obtained with a tool for symbolic
calculus. Equation 8 was then inverted to obtain relationships between
angular accelerations and torques, which were inserted into Eg. 5. For
illustration, the resulting equations are given below for N = 2. The
other cases involve lengthy equations that cannot be reproduced here
(e.g., for N = 7, Eq. 8 requires more than 200,000 elementary
operations [+, —, X, cos, sin]).

4-DOF, 2-LINK CHAIN IN 3D SPACE (FIG. 3A). In this case, N = 4. The
effector had two segments (upper arm, forearm) and two joints
(shoulder, elbow) with 3 DOF at the shoulder and 1 DOF at the elbow.
Arm kinematics was represented by

ry =L, sin (g;) sin (g2) + Ly{[(cos (g;) cos (g3)

— sin (g) cos (¢2) sin (g3)] sin (g4) + sin (g,) sin (g,) cos (q.)}

ry = —L; cos (¢,) sin (¢,) + Ly{[(sin (¢,) cos (g3)

+ cos (g1) cos (g2) sin (g3)] sin (g5) — cos (gy) sin (g2) cos (g4)}

ry =L, cos (g)) + Ly[sin (¢,) sin (g3) sin (g4) + cos (¢2) cos (g4)]

where (7|, ,, r3) are the endpoint coordinates; (¢q,, ¢,, ¢, q4) are the
shoulder azimuth angle, the shoulder elevation angle, the shoulder
intrinsic (humeral) rotation angle, and the elbow rotation angle,
respectively; and L, L, are the upper arm and forearm lengths. As a
result of redundancy, final arm configuration was specified indirectly
by the desired endpoint coordinates in function ¥ (Eg. 6). Initial arm
configuration was (q,, ¢, 43, q,) = (120, 140, 30, 90°).

7-DOF, 3-LINK CHAIN IN 3D SPACE (FIG. 3B). In this case, N = 7. The
effector had three segments (upper arm, forearm, hand) and three
joints (shoulder, elbow, wrist) with 3 DOF at the shoulder, 2 DOF at
the elbow, and 2 DOF at the wrist. Arm kinematics was represented
by
r1 = (([cos (g1) cos (g5) — sin (q,) cos (g2) sin (¢5)]

X [—cos (gs) sin (g,) = sin (gs) cos (ge) cos (g7)]Ls

+ [—cos (g)) sin (g3) — sin (q,) cos () cos (g3)]

X ([=cos (qu) sin (g9) sin (q5)] + [cos (@) cos (q:) cos ()

— sin (g4) sin (g)] cos (g7)}Ls — sin (g4)L,)

+ sin (gy) sin (g2) X {[—sin (g,) sin (gs) sin (¢7)

+ [sin (g4) cos (gs) cos (gs) + cos (g4) sin (g,)] cos (¢7)}Ls

+ cos (g4)L, + L)

ry = (([sin (¢1) cos (g3) + cos (¢1) cos (g2) sin (g3)]
X [—cos (gs) sin (g7) — sin (gs) cos (ge) cos (¢7)]Ls
+ [—sin (gq;) sin (g3) + cos (g;) cos (g,) cos (¢3)]
X {[—cos (g4) sin (gs) sin (g) + [cos (g4) cos (gs) cos (ge)

— sin (g4) sin (g)] cos (g4)}Ls — sin (g4)Ly)
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— cos (g) sin (q2) X {[—sin (g4) sin (gs) sin (g;)
+ [sin (g4) cos (gs) cos (ge) + cos (¢4) sin (ge)] cos (g7)}Ls
+ cos (g)L, + L))

r5 = sin (g,) sin (g3)[ —cos (¢5) sin (¢;) — sin (gs) cos (ge) cos (¢7)]Ls
+ sin (g,) cos (g3){[—cos (g,) sin (gs) sin (g;)
+ [cos (g4) cos (gs) cos (ge) — sin (qu) sin (g6)ILs
— sin (g4)L,) + cos (¢,){[—sin (g4) sin (gs) sin (g4)]
+ [sin (g4) cos (gs) cos (ge) + cos (g4) sin (ge)}Ls + cos (g,)L, + L)

where (r,, r,, r3) are the endpoint coordinates; (q,, ¢», 43» 94> G55
qe, q7) are the shoulder azimuth angle, the shoulder elevation
angle, the shoulder intrinsic (humeral) rotation angle, the elbow
rotation angle, the elbow intrinsic rotation angle, the wrist flexion/
extension angle, and the wrist pronation/supination angle, respec-
tively; and L,, L,, L; are the upper-arm, forearm, and wrist
lengths. Initial arm configuration was (¢, ¢», 93> 94> 9s> 4e» 47) =
(120, 120, 90, 90, 60, 90, 10°). As a result of redundancy, final arm
configuration was specified indirectly by the desired endpoint
coordinates and desired hand orientation in function ¢y (Eq. 6). In
fact, the target was an elongated object and the constraints were
that /) the endpoint of the arm matches the center of gravity of the
object and 2) the hand (i.e., the vector in the plane of the hand and
perpendicular to its long axis) is oriented parallel to the long axis
of the object.

2-DOF, 2-LINK CHAIN IN 2D SPACE (FIG. 3C). In this case, N = 2. The
controlled system had two segments (upper arm, forearm) and two
joints (shoulder, elbow) with 1 DOF per segment. Kinematics was
represented by

ry =1L, cos (q)) + L, cos (g, + ¢»)
r, =L, sin (41) + L, sin (lII + ‘Jz)

where (r,, r,) are the endpoint coordinates; (g,, g,) represent the
shoulder and elbow angles, respectively; and L,, L, are the upper arm
and forearm lengths. In general, initial arm configuration was (g,
G>0) = (45, 90°). Desired final configuration was (g, ¢,.). The state
vector was expressed by

x(t) = [q:(0), g2(0), v1(0), 12(1), a1 (1), ax(b), as(t), au(t), e,(t), ex(t), es(t), es(t)]

where v(t) = dg,/dt and v,(t) = dg,/dt (angular velocities). The
dynamics of the arm + muscles was expressed by the following series
of equations

dv,()/dt = [(Tg, — C)A, — (Ta — CALN(A A, — ApAy)

de(t)/dt = [(Tc] - CZ)AII - (Tsh - CI)AZI]/(AIIAZZ - A12A21)

v(da/dt) = —a; +¢; (1=1,2,3,4)
v(de/dt) = —e, +u, (1=1,2,3,4)
where
T = valn(a) —mla)] and Ty = yalnlas) — nla,)] ©

are muscular shoulder and elbow torques, respectively, and
Ay =1+ L+ mL + my[L] + L + 2L L, cos (¢,)]
Ap=1,+ my[LL + LL, cos (¢,)]
C, = —m,L,L.,3 sin (¢,) — 2m,L,L,vv, sin (¢,)
A, =Ap

Apn=1L+ mszz

C,= mlechvf sin (¢,)

with L., = c,L, and L_, = c,L, (distance from rotation axis to the
center of gravity of the segments), and where m,, m, represent the
mass of the segments, and I,, I, are the moments of inertia of the
segments. The boundary conditions were

Xo = [¢10, 420, 0,0,0,0,0,0,0,0,0,0]
and
Xp = [(Zm 4 0,0,0,0,0,0,0,0,0, 0]

(Velocities and forces were zero at the beginning and end of the
movement.) More generally, any boundary conditions can be used
(nonzero velocities or forces).

Numerical methods

The problem defined by Egs. 5, 6, and 7 is an optimization problem
that can be transformed into a differential equation problem using the
calculus of variations (Kirk 1970). The differential equation problem
is a two-point boundary-value problem, i.e., a differential system with
boundary conditions at initial and final times. Solutions to this
problem were obtained numerically using a gradient method (Bryson
1999). Function m(z) = [z] ™ is not differentiable and was replaced by
the differentiable function z — log [1.0 + exp(kz)]/k.

Parameters

General parameters were v = 0.04 s (time constant of muscle
filtering) and k = 10 (characteristic of muscle force generation). Other
parameters were specific to each kinematic chain. Each segment i (1:
upper arm; 2: forearm; 3: hand) is defined by a mass (i, in kilograms),
a length (L, in meters), a center of gravity (c; in percentage of the
length), and moments of inertia along and perpendicular to its main
axis (J; and I; in kilograms per square meter). For each DOF, there is
a coefficient y (in meters) that translates force into torque.

For N = 2, parameters were m, = 2.52, L, = 0.33,c, = 05,1, =
0.023,m, = 1.3,L, =04, ¢, =0.5,1, = 0.011, and vy, = v, = 0.04.
The choice of vy, and 7y, is somewhat arbitrary. In fact, these
parameters result from the interplay between: /) the innervation ratio
of the muscles acting at shoulder and elbow; 2) the moment arm of
these muscles; and 3) the modulation of force production by firing rate
and recruitment in pools of motoneurons. Rather than doing a com-
plex estimation based on the contribution of these factors, we explored
the influence of 7y, and vy,, on the behavior of the model. The model
was mostly insensitive to the values of vy, and vy, as long as the ratio
Yei! Ysn Was neither too small (>0.05) nor too large (<1.2).

For N = 4, parameters were as defined for N = 2 and J, = 0.0013,
v, = 10, y, = 10, y3 = 10, and y, = 5.

For N = 7, parameters were as defined for N = 4, but m, = 1.3,
L, =0.25, 1, = 0.0074 (shorter forearm), and m; = 0.49, L; = 0.15,
¢y = 0.25,1; = 0.001, J; = 0.0005, ys = 1, v = I, and y, = 1.

When a mass m, was added to a segment (length L, inertia I, mass
m, center of mass ¢) at position L, the new inertia of the segment was

I+ mc? + m,L2 — my(mc + m,L,)%(m + m,)? 10)

Comparison with experimental data

The model is a parameter-free model, i.e., all the parameters are
well defined and constant for a given individual at a given time (e.g.,
forearm inertia). As a consequence, we did not try to provide the best
fits to the experimental data because /) fitting is general associated
with arbitrary parameter adjustments and 2) fitting quality may not be
sufficient to estimate the validity of a model (e.g., see the debate
between minimum-jerk and minimum torque change models of motor
control; Flash 1990). The results reported here are meant to demon-
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strate the power of the concepts underlying the model, rather than
account for a few selected aspects of the behavior. When possible, we
indicate in the text a reference to one or more published figures that
can be used for comparisons with the model.

RESULTS

We describe implications of the proposed principles for
point-to-point movements. Except for cases dealing with kine-
matic redundancy, the 2-DOF arm was used. Except for cases
illustrating the constant effort principle, the simulated move-
ments were specified by their amplitude and duration.

Kinematic redundancy

3D POINTING MOVEMENTS. We simulated optimal point-to-
point trajectories of a 4-DOF arm in 3D space (Fig. 3A). An
example is illustrated in Fig. 4A for a forward/upward/leftward
movement. The trajectory was curved, planar, independent of
speed, and the tangential velocity had a bell-shaped profile
(Fig. 4A). Further examples of trajectories and velocity profiles
are shown for movements in a frontal (Fig. 4, B and C) and
sagittal (Fig. 4, D and E) plane (for comparison, see Fig. 3 in
Flanders et al. 1996; Fig. 1 in Gottlieb et al. 1997). Hand path
curvature varied with movement direction and went through
one cycle (Fig. 4F). We note that quantitative data on move-
ment curvature are scarce. The most complete study is for
vertical movements in a sagittal plane (Flanders et al. 1996;
Pellegrini and Flanders 1996). Curvature could be described
by: curvature = cos (direction + phase), which also holds for
the model (for comparison, see Fig. 2 in Pellegrini and
Flanders 1996). However, we cannot expect to obtain an exact
fit because the phase should depend on arm posture and the
hypothesized mechanical actions of the muscles (in the data of
Pellegrini and Flanders 1996, the phase varied across subjects).
Soechting and Flanders (1998) showed that neither minimum-
torque change nor minimum-muscle force change models can
explain the pattern of curvature for vertical movements. The
terminal posture was independent of movement velocity (Fig.
4, G and H). These observations were qualitatively similar for
all tested movements and were consistent with experimental
observations (Alexandrov et al. 1998; Atkeson and Hollerbach
1985; Flanders et al. 1999; Hermens and Gielen 2004; Klein
Breteler et al. 1998; Nishikawa et al. 1999; Pellegrini and
Flanders 1996; Soechting and Lacquaniti 1981; Torres and
Zipser 2004; Zhang and Chaffin 1999). The terminal posture
was also independent of forearm inertia (<2 deg of variations
for movements in Fig. 4, B and D) over the tested range (using
a weight of 0.6—1.6 kg attached to the forearm at 3L,/4 from
the elbow; Hermens and Gielen 2004). We verified that the
terminal posture depended on initial posture (Gielen et al.
1997; Hermens and Gielen 2004; Soechting et al. 1995).
However, a quantitative study was not pursued on this point
because these studies did not report actual initial postures of
the arm that were used. Initial hand positions are not sufficient
in this case. A quantitative analysis would require establishing
the relationship between initial and final arm angles across a
large range of movements (different initial postures, different
directions). This issue was addressed in the context of grasping
movements (see following text; Fig. 7).

According to the separation principle, trajectories should not
be influenced by gravity, which is at variance with experimen-
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FIG. 4. Optimal control for a redundant arm. A: 2 views of a simulated
trajectory for a forward/leftward/upward movement (20 cm, 600 ms). Inset:
tangential velocity profile. B: movements in 8 directions (15 cm, 600 ms) in the
frontal plane projected on this plane (/eft), on a sagittal plane (right), and on a
dorsal plane (bottom). U, up; F, forward; D, down; B, backward. C: tangential
velocity profiles for the movements in B. D: movements in 8 directions in a
sagittal plane projected on this plane (/eft), on a frontal plane (right), and on a
dorsal plane (bottom). R, right; L, left. E: tangential velocity profiles for the
movements in D. F: hand path curvature (in millimeters) measured as the mean
deviation from straight line (counterclockwise deviation >0) for data in B (left)
and D (right). G: final angular positions (circle: g,; box: ¢,; down triangle: g;
up triangle: g,) for the movements in B at 3 velocities (600, 800, 1,000 ms).
Offsets have been used to reveal superimposed points. H: same as G for data
in D.

tal observations (Atkeson and Hollerbach 1985; Papaxanthis et
al. 2003). However, results on up—down and down—up move-
ments are ambiguous because movement trajectories may de-
pend not only on gravity, but also on initial and terminal
positions. Thus direction-dependent hand paths can be ex-
pected in an optimal control model in the absence of gravity.
This was found in the model (Fig. 5). In particular, we
observed differences between upward and downward trajecto-
ries (Fig. 5A) and between the corresponding velocity profiles
(Fig. 5B) (for a comparison, see Fig. 2 in Papaxanthis et al.
2003). These results indicate that the observed differences
between upward and downward movements are not incompat-
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FIG. 5. Upward/downward movements. Simulation of the 4-DOF arm
(same model as in Fig. 4) for 400- to 1,200-ms, 30-cm upward and downward
movements. Initial posture for upward movement was as in Fig. 4. Initial
posture for downward movements was the final posture of upward movements.
A: trajectories (black: upward; gray: downward) projected on a frontal plane
(as viewed when facing the subject). B: normalized velocity profiles for
upward (black) and downward (gray) movements (solid: 600 ms; dashed: 400
ms).

ible with the separation principle. More behavioral data, in-
cluding systematic variations of movement kinematics with
initial and final position, would be necessary to distinguish
between gravity and position effects.

Grasping movements

An additional source of redundancy arises for the control of
a distal segment, such as a hand that grasps an object. Addi-
tional degrees of freedom are related to hand orientation and
aperture and additional constraints are provided by the shape of
the object. We addressed the control of hand orientation with a
7-DOF arm (Fig. 3B). We simulated movements toward an
elongated object at different locations (see METHODS).

The trajectories were similar to those observed with a
4-DOF arm (Fig. 6A). The model exhibited coarticulation of
hand transport and rotation along the path (Fig. 6B). There was
a linear relationship between movement direction and hand
azimuth (Fig. 6C). These results are consistent with experi-
mental observations (Bennis and Roby-Brami 2002; Cuijpers
et al. 2004; Desmurget et al. 1996; Roby-Brami et al. 2000;
Torres and Zipser 2004).

To assess how final posture depends on initial posture, we
reproduced the experiment of Desmurget et al. (1998). Move-

ments from two initial postures (high and low) toward three
targets (sagittal, close, lateral) were simulated. Final shoulder
and elbow angles were generally different for movements
toward the same target, but starting from different postures
(Fig. 7). The variations were quantitatively similar to those
observed experimentally (see Fig. 2 in Desmurget et al. 1998).
A difference was found with respect to the variations of
forearm rotation angle that could be explained by differences in
initial hand orientation. This result was not self-evident a
priori. Indeed, not all optimal control models are able to
explain the effects of initial posture on final posture (Admiraal
et al. 2004).
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FIG. 6. Grasping movements with a 7-DOF arm. A: sample trajectory and
velocity profile for a 20-cm, 600-ms movement (270 deg = toward the body).
Target is indicated by a vertical cylinder. B: normalized time course of
orientation error vs. time course of target distance error along the movement
(coarticulation) for the movement in A. C: variations of hand azimuth with
hand-centered movement direction (20-cm, 600-ms movements in the hori-
zontal plane toward a vertical cylinder; movement direction is 0 deg right-
ward).
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FIG. 7. Variations of final posture as the function of movement starting
point (high, open circle; down, closed circle) and object position (Sa, sagittal;
Cl, close; La, lateral) for a 7-DOF arm. Initial posture was (100, 105, 115, 80,
60, 90, 10) for high and (80, 160, 60, 80, 60, 90, 10) for down. Movement
amplitude (in centimeters) and final hand orientation (two angles, in deg) were
53.5, 105.4, 74.2 (down—Sa), 52, —29.3, 82.2 (down—Cl), 55.8, 41.1, 67.4
(down—La), 31.3, 1769, —11.1 (high—Sa), 26.7, —142.4, —13.0
(high—Cl), 12.3, 171.3, —29.3 (high—La). Movement duration was 600 ms.

Kinematic invariance

The proposed principles also have consequences that are not
directly related to redundancy. These consequences were ex-
plored for a 2-DOF arm (Fig. 3C). When subjects perform
movements of different amplitudes or against different inertial
loads, they tend to use a single velocity profile that is scaled in
time and amplitude (Atkeson and Hollerbach 1985; Bock 1990;
Gordon et al. 1994; Kaminski and Gentile 1989). Invariant
velocity profiles were observed as a consequence of the con-
stant effort principle, i.e., for movements of different ampli-
tudes when movement time was chosen to obtain a given effort
level (Fig. 8A; for comparison see Fig. 3 in Gordon et al. 1994).
In fact, the assumption that all movements are executed with
the same effort leads to an implicit relationship between
amplitude and duration, illustrated in Fig. 8B. For the eight
directions tested, movement duration and peak velocity were
linearly related to amplitude (Fig. 8, C and D; for comparison,
see Fig. 4 in Gordon et al. 1994). The separation principle
predicts that amplitude/duration scaling should be similar for
upward and downward movements, previously observed ex-
perimentally (Virji-Babul et al. 1994). Moreover, movement
duration and peak velocity varied with movement direction. As
observed experimentally (Gordon et al. 1994; Turner et al.
1995), the duration was longer and peak velocity smaller for

directions parallel to the forearm (Fig. 8, E and F) in which the
inertial load to be moved was larger (for comparison, see Fig.
6 in Gordon et al. 1994; Fig. 9 in Sober and Sabes 2003; see
also Pellegrini and Flanders 1996, Fig. 3 and for vertical
movements, Fig. 5 in Murata and Iwase 2001; see also Fer-
nandez and Bootsma 2004; Jagacinski and Monk 1985; Smyr-
nis et al. 2000). The shape of velocity profiles was described by
the ratio ¢ between peak and average velocity (Ostry et al.
1987). This factor varied with the level of effort (Fig. 8G,
inset), but was almost constant across amplitudes (Fig. 8G).
Exceptions were observed in directions of larger curvature
(Fig. 8, E and G). We tested the hypothesis that kinematic
invariance is actually related to movement curvature. We
simulated straight movements in the 135° direction by forcing
the curvature to be as small as possible. We determined the
amplitude/duration relationship and found that it was still
linear and the velocity profile was strictly invariant. It should
be noted that, in fact, kinematic invariance is an emergent
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FIG. 8. A: kinematic invariance under constant effort (E> = 10) for a planar
arm. Actual (/eft) and normalized (right) velocity profiles for 10, 15, and 20 cm
rightward movements. B: movement duration vs. amplitude for rightward
movements (circles correspond to profiles in A). Inset: correspondence be-
tween colors and directions; thick (thin) black line: minimum (maximum)
inertia. 0° is rightward. C: movement duration vs. amplitude for 8 directions.
D: peak velocity vs. amplitude. E: plain line: duration vs. direction for a given
amplitude (15 cm). Dotted line: curvature vs. direction. Curvature was mea-
sured as the mean deviation (in millimeters) from straight line (positive for
counterclockwise deviation). F: peak velocity vs. direction for a given ampli-
tude (15 cm). G: ¢ = Vieq/Vay, VS amplitude. Inset: distribution of ¢ for 100
movements (5-20 cm, 200-500 ms, direction 0°). See METHODS for construc-
tion of this figure.
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FIG. 9. A: kinematic invariance for added mass under constant effort (E =
10) for a planar arm. Actual (left) and normalized (right) velocity profiles for
a 15-cm rightward movement with 0, 1, and 2 kg added mass (m). Mass was
a punctual mass at the arm endpoint. B: scaling factor in time: k(m) =
MT(m)/MT(m = 0), where MT is movement time. C: peak velocity vs. added
mass (black line). Relation predicted by v, (m) = v u(m = 0)/k(m) (gray
line). D, top: normalized shoulder EMG for the 3 movements in A (flexor:
black; extensor: gray). Bottom: normalized elbow EMG for the 3 movements
in A.

property, given that no desired trajectory or velocity profile
was specified for the simulated movements.

Constant effort also predicts invariance for inertial loads
(Fig. 9A). These results were obtained by /) adding a mass at
the arm endpoint and 2) calculating optimal control solution for
the system arm + mass (new inertia was calculated with Eq.
10). In this case, larger loads lead to slower movements.
Interestingly, the timescaling factor (Fig. 9B) was very close to
the amplitude-scaling factor (Fig. 9C) as observed experimen-
tally (Figs. 2, 3, and 4 in Bock 1990; see also Hatzitaki and
McKinley 2001). We note that scaling in time and amplitude
occurred in the model in the absence of scaling at the level of
joint torques, EMGs (Fig. 9D), and control signals (Gentner
1987; Zelaznik et al. 1986).

Muscular redundancy

Motor control systems master not only kinematic redun-
dancy, but also muscular redundancy, e.g., because of the
presence of biarticular muscles. An open question is how
muscular redundancy would affect the preceding results
obtained with a minimal agonist/antagonist organization.
We first note that optimal control can actually tackle mus-
cular redundancy (e.g., Dornay et al. 1996). Two biarticular
muscles were introduced in the 2-DOF model: a shoulder/
elbow flexor and a shoulder/elbow extensor. Joint torques
were (see Eq. 9)

. GUIGON, P. BARADUC, AND M. DESMURGET

Tow = yal[h(a)) — h(ay) + ah(as) — ah(ag)]
Ta = yalh(as) — h(ay) + ah(as) — ah(ag)]

where as and a4 are excitations for the biarticular flexor and
extensor, respectively, and the « parameter specifies the con-
tribution of the biarticular muscles relative to the monoarticular
muscles. We chose @ = 1. On the one hand, the presence of
biarticular muscles had little influence on movement kinemat-
ics (Fig. 10, A and B). On the other hand, the contribution of
monarticular shoulder and elbow muscles was dramatically
modified (Fig. 10, C and D). Part of their original contribution
was now subserved by the biarticular muscles (Fig. 10E).
These observations were graded with respect to «. These
results indicate that the covariations reported in preceding
sections should be qualitatively immune to the presence of
muscular redundancy. This does not mean that biarticular
muscles are useless. In fact, from the perspective of a control-
ler, mono- and biarticular muscles are not different—that is,
they are exploited at best to satisfy the required constraints.

Influence of muscle properties

The preceding results were obtained using muscles modeled
as force-generating elements. We assessed the influence of the
force/length and force/velocity (called viscosity for simplicity)
relationship in muscles (Hill model). Briefly, the force F
generated by a muscle (Eq. 4) was used to calculate the
maximal isometric force

F* =[1+4+ KA\ — A)JF

where A is muscle length and K is a parameter. The actual
velocity-modulated muscle force was

F*' = [bF* + a(d\/dt))/[b — (dA/dt)]  if dM/dt < O (shortening muscle)

F = [b'F* — (a' + 2F*)dA/dt]/[b’ — (dM/dt)]

if dA/dt > 0 (lengthening muscle)

where dA/dt is muscle velocity, a’ = —04F*°,b" = —b(a’ +
F*9)/(a + F*°), a = 250, b = 0.5, K = 0.1 (Fig. 11D, inset).
For simplicity, we assumed that muscle length was propor-
tional to joint angle. As shown in Fig. 11, viscosity had a
dramatic effect on EMGs (Fig. 11, C and D), but little influence
on movement kinematics (Fig. 11, A and B). This result was
confirmed over a broad range of movements. We did not find
any remarkable properties related specifically to the presence
of viscosity, i.e., properties that would be absent in the absence
of viscosity. In fact, optimal control builds an internal model of
the neuromuscular system. The muscular properties are ex-
ploited by the controller to reach its goal (for related ideas, see
Todorov 2000). For instance, if a muscle generates less force
because it is shortening, the controller could increase the
control (change in EMQG) or, if it is too costly, use another DOF
(change in kinematics).

Muscular synergies

We assumed that /) the number n of control signals was
larger than the number of muscles; 2) each control was defined
by a fixed synergy of muscles; and 3) the s synergies were
uniformly distributed in muscular space. Formally, the problem
was similar to the problem defined by Egs. 5, 6, and 7 with the
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following change. The goal was to find minimum controls
U@ = {Uj(t)} (1 = j = s) such that the controls {u;(t)} (1 =
i = 2N), defined by

ui(t) = E B,Ui(H)

j=1s

where B;; are random coefficients drawn from a uniform
distribution in [—1; 1] are appropriate to displace the articu-
lated segments between given initial and final positions. Sim-
ulations did not reveal any qualitative differences between
synergistic (s = 500) and direct (s = 2N) control.

DISCUSSION

A proper solution to the degrees of freedom problem should
be able to explain /) how a unique solution is chosen for each
realization of a motor act and 2) why this solution is different
each time. The central idea implicit in the proposal of Bern-
stein and explicitly formulated by Todorov and Jordan (2002)
is that the nervous system continuously and efficiently tracks a
goal rather than a desired trajectory. This idea was expressed
here by two principles (optimal feedback control and maximum
efficiency). We have shown that these two principles combined
with a separation principle for static and dynamic forces lead

FIG. 11. Influence of force/velocity relationship in
muscles for movements of a planar 2-link arm. A: simu-
~ lation of a 30-cm, leftward, 500-ms movement (inset).

0 125 250 375 500 0 125 250

Time (ms)

Time (ms)

250 375 500 Normalized velocity profiles are shown. Plain line: model
Time (ms) with nonlinear muscles. Dashed line: model with linear
muscles. B: angular trajectories (thick: shoulder angle;

1500 thin: elbow angle). C: EMG in shoulder flexor (thick) and

shoulder extensor (thin). D: EMG in elbow flexor (thick)
and elbow extensor (thin). /nset: velocity-modulated mus-
cle force (F*°") as a function of the rate of change of
muscle length (dl/dt) for different levels of maximal
isometric for (F**°).

375 500
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to a realistic solution to redundancy. A fourth principle was
added (constant effort), which is not directly related to redun-
dancy, to obtain a complete framework.

Limitations

The model has been used to reproduce a wide range of data
and we have not found critical discrepancies between experi-
mental observations and predictions of the model—neverthe-
less, some data cannot be reproduced with the model. Some
studies reported nonsymmetric velocity profiles (Brown and
Cooke 1990; Gielen et al. 1985) that are not fully explained by
the model. Cooke (1980) showed that the slope of amplitude/
duration scaling depends on instructions given to the subjects
(see also Brown et al. 1990). There is no explanation for this
effect in the model. More generally, a weakness of the model
is related to its application to highly simplified biomechanical
structures. By construction, the biomechanical models are
invariant by rotation around the shoulder axis and cannot
address the possible influence of position of the arm relative to
the body. Furthermore, joints’ excursion limits are not repre-
sented in the model and it is unclear how movements could be
programmed taking these limits into account. An open question
is whether the minimum effort principle can be sufficient to
penalize movements involving extreme joint configurations. It
would render the model much less general if a specific princi-
ple was necessary to handle the excursion limits.

Remarks on Bernstein’s problem

An important contention of Bernstein is the fact that muscles
are not ideal force generators and thus there is no fixed relation
between muscle afferent signals and generated muscle force. It
might seem paradoxical that we addressed Bernstein’s problem
by using pure force generators. However, the fact that many
factors (such as length, velocity, fatigue, history of activation,
etc.) influence the generation of muscle force has no incidence
on the proposed solution to kinematic redundancy. We illus-
trated this issue for velocity-dependent modulation of muscle
force in the case where the controller takes this modulation into
account. A complementary case is when unpredictable modu-
lations occur (e.g., arising from noise). This condition should
be appropriately handled through feedback control (Todorov
and Jordan 2002).

Optimal control approach to redundancy

The central tenet of optimal control is that a unique solution
to a problem with infinitely many solutions can be obtained in
a principled way (Todorov 2004). It is thus not really surpris-
ing that kinematic redundancy can be solved in this framework
(e.g., Anderson and Pandy 2001). However, the fact that
properties of the solution match experimental results for sev-
eral kinematic chains is not trivial and was not demonstrated
before. The main difficulty of the optimal control approach to
motor control is that many different models (i.e., many differ-
ent cost functions) can account for properties of movements
and it has proven a difficult problem to decide which model is
superior to others. In fact, a majority of these models were
limited to the explanation of invariant kinematic and dynamic
features of movements (e.g., bell-shaped velocity profiles,
triphasic EMG). Because of their restricted scope, they could

neither be falsified nor improved based on more integrated
characteristics of motor behavior. To evolve from this situa-
tion, Harris and Wolpert (1998) and later Todorov and Jordan
(2002) proposed that models that encompass a broader range of
motor functions should be considered. They introduced behav-
iorally based cost functions such as the variance of final
movement position (Harris and Wolpert 1998) and the trade-
off between effort and error (Todorov and Jordan 2002), which
account not only for invariant properties of motor control, but
also for speed—accuracy trade-off and the structure of motor
variability. Our model was designed in this framework and is
on the surface similar to these models. The present results
extend the relevance of these cost functions to the control of
nonlinear kinematically redundant systems.

The model has been applied to several redundant kinematic
chains involving the arm. Although the work remains to be
done, the model should likely apply to other kinematic chains
(e.g., trunk, whole body, orofacial system, digits; Cole and
Abbs 1986; Kaminski et al. 1995; Kelso et al. 1985; Pozzo et
al. 2002). In fact, the model is consistent with the idea that
characteristics of motor behavior (e.g., invariance, covaria-
tions, etc.) are related to task constraints and not to specific
control parameters (Cole and Abbs 1986).

Other approaches to kinematic redundancy were previously
proposed in the literature. Quantitative analyses of redundant
movements revealed constraints in movement execution that
could contribute to reduce the apparent number of degrees of
freedom to be managed by the nervous system (Gielen et al.
1997; Marotta et al. 2003; Medendorp et al. 2000). Yet they
have not disclosed origins of these constraints and thus the way
redundancy is solved is by the nervous system. Models that
addressed kinematic redundancy were customarily concerned
with inverse kinematics (Rosenbaum et al. 1995; Torres and
Zipser 2002) and thus failed to consider the entire problem
encountered by the nervous system.

Separation principle

Several separation principles were proposed in the motor
control literature. In the framework of equilibrium-point mod-
els, reciprocal (R) activation and coactivation (C) of antagonist
muscles operate simultaneously and independently (Feldman
and Levin 1995). The R command specifies terminal equilib-
rium position and the rate of shift toward this equilibrium; the
C command sets the level of cocontraction between the mus-
cles. Both commands contribute to posture and movement
(Flanagan et al. 1993). Thus separation in this framework is not
related to separate static/dynamic control. Separation of in-
verse dynamics and impedance control was proposed in the
framework of internal models (Franklin et al. 2003; Osu et al.
2002, 2003; Takahashi et al. 2001). Accordingly, the motor
command would be the sum of ) a feedforward command that
creates appropriate joint torques to displace the limb along the
desired trajectory and 2) a feedback command that exploits
viscoelastic properties of muscles to maintain the correct tra-
jectory despite perturbations. For instance, in an unstable force
field, the feedback command is modified to account for the
structure of the instability, whereas the feedforward command
remains unchanged (Burdet et al. 2001; Franklin et al. 2003).
The main limitation of this idea is the tuning of motor com-
mands to a desired trajectory (Todorov and Jordan 2002).
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Our separation principle is neither a separation of feedfor-
ward and feedback commands nor a separation of reciprocal
activation and coactivation. The dynamic command contains
both feedforward and feedback components because it results
from optimal feedback control. Furthermore, as the dynamic
command tracks the goal of the movement, it is not attached to
a precomputed trajectory. The function of the static command
is to compensate for static forces, i.e., to specify the mainte-
nance of static equilibrium. However, because this controller is
a simple mapping between states and forces (see Eq. 3), it
cannot directly contribute to the stability of the equilibrium.
Two ideas have been proposed to explain how the nervous
system tackles equilibrium and stability. The first is the notion
of impedance controller, i.e., a controller that exploits vis-
coelastic properties of muscles to maintain stable equilibrium
despite perturbations (Burdet et al. 2001; Darainy et al. 2004;
Franklin et al. 2003). However, the viscoelastic properties of
muscles may not be appropriate to guarantee stability (Dornay
et al. 1993; Loram and Lakie 2002; Morasso and Schieppati
1999; Shadmehr and Arbib 1992). The second idea is based on
the notion that postural maintenance would be an active state
subject to anticipatory control rather than a passive state
subject to reactive control (Loram et al. 2001; Morasso and
Sanguineti 2002; Morasso and Schieppati 1999). In this case, a
basic static controller (state/force mapping) could be sufficient,
postural maintenance being subserved by the dynamic control-
ler (Loram et al. 2005). This scenario has been found to be
efficient in the linear case (Fig. 1D) and would need to be
extended to the nonlinear case.

The neural bases for a separation principle are still elusive.
We first note that our separation principle is consistent with,
but more general than, a separation of reciprocal activation and
coactivation (De Luca and Mambrito 1987; Humphrey and
Reed 1983). At the cortical level, putative correlates of static
and dynamic controls were previously described in primate
primary motor cortex as tonic and phasic-tonic patterns of
discharge (Kalaska et al. 1989; Sergio and Kalaska 1998;
Sergio et al. 2005). However, other types of discharge have
been reported that could be considered to contradict the sepa-
ration principle (Cheney and Fetz 1980; Kalaska et al. 1989;
Kurtzer et al. 2005b). At the spinal level, it is expected that the
two commands are additive, i.e., the force generated in a
muscle by the sum of the commands is the sum of the forces
generated by each command. Although additivity has been
observed in some circumstances (Farley and Koshland 2000;
Rimmer et al. 1995; Sergio and Ostry 1994, 1995), it may not
be a general case because of the threshold behavior in mo-
toneurons.

Constant effort principle

This principle was introduced to translate verbal instructions
into motor operations. It specifies the level of effort necessary
to build the dynamic forces required to execute a movement of
a given amplitude. In this way, movement time is implicitly
determined by a scaling law (Fig. 8B). A consequence of this
principle is kinematic invariance, which refers to the use of a
single velocity profile scaled in time and amplitude when
movements of different amplitudes or against different inertial
loads are performed. Scaling in time and amplitude results
from adjustments in movement time required to match the

desired level of effort. There is no principled explanation of
this property in current models of motor control. In particular,
the idea that kinematic invariance would result from movement
specification at a kinematic level has been challenged (Todorov
and Jordan 2002). The constant effort principle also explains
directional variations in movement time, peak velocity, and
peak accelerations as variations resulting from the shape of the
inertia matrix of the moving limb (Gordon et al. 1994; Pelle-
grini and Flanders 1996; Turner et al. 1995). This interpretation
competes with the proposal that the nervous system fails to
compensate for the inertial anisotropy of the arm (Gordon et al.
1994; for a model see Todorov 1998) and is more compatible
with data showing that inertial properties of the limb are taken
into account for trajectory formation (Flanagan and Lolley
2001; Gentili et al. 2004; Sabes et al. 1998).

The constant effort principle applies to dynamic forces. It is
unclear whether a similar principle applies to static forces
(Klein Breteler et al. 2003; Nishikawa et al. 1999). The model
gives no rules with which to specify a “natural” static effort
level (e.g., level of cocontraction) associated with a given
movement. It is possible that there is a coupling between static
and dynamic efforts, i.e., the nervous system simultaneously
allots effort for static and dynamic forces. This issue could be
addressed by measuring cocontraction levels (e.g., Gribble et
al. 2003) during movements of increasing amplitude. It was
previously shown that cocontraction increases with velocity
(Gribble and Ostry 1998; Suzuki et al. 2001).

A question is why the nervous system would specify a level
of effort rather than a duration. It is clear that the nervous
system can finely manipulate the timing of motor actions
(Schoner 2002). However, amplitude-, load-, and direction-
dependent variations in movement duration are not easily
explained in this framework. Effort is an interesting parameter
because it somewhat reflects physical energy consumption.
Thus the choice of an effort level can be dictated by available
resources (such as level of fatigue) and required/expected
expenditures (such as number of movements to execute).

Finally, we note that, even if one does not adhere to the
constant effort principle, the results related to kinematic redun-
dancy remain valid.

Neural bases of the model

Although the model was described at a computational level,
it can be related to neural components of motor control. The
muscles were represented by a second-order nonlinear filter
(Eq. 4) and their excitation level can be related to electromyo-
graphic signals. As expected, excitation exhibited a triphasic
agonist/antagonist pattern (see Fig. 9D) as classically reported
in the literature for fast movements. The control signals can be
considered as inputs to motoneurons (Eq. 4) and could thus
correspond to activities in subsets of cortical and spinal neu-
rons. Because the control signals are completely responsible
for the temporal profile of excitation, they should exhibit an
early phasic component followed by a depression for move-
ments in a given direction and a delayed phasic component for
movements in the opposite direction. In fact, they should
resemble the discharge pattern of EMG-like neurons found in
primate motor cortex (Sergio and Kalaska 1998; Sergio et al.
2005). If we accept this idea, the model suggests that the motor
cortex contains an inverse model of the neuromuscular appa-
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ratus. This view concurs with a recent computational model
showing that many correlations between kinematic quantities
and neural discharges in motor cortex can be explained by the
hypothesis that motor cortical neurons calculate muscular ac-
tivation patterns (Todorov 2000). In this framework, the model
further suggests that computation at the muscular level in
motor cortex could be directly responsible for the production of
kinematically realistic movements. More generally the model
contributes to the hotly debated issue of the neural represen-
tation of movement in motor cortical regions (Georgopoulos
and Ashe 2000; Graziano 2006; Moran and Schwartz 2000;
Todorov 2000, 2003).

Can this model be of interest for experimentalists?

It is interesting to ask whether this model can be useful to
researchers involved in the study of motor control. We strongly
believe that it should be the case, in particular to put constraints
on the interpretation of experimental observations. We provide
two examples. The first is a general issue related to the nature
and origin of motor invariants. The existence of motor invari-
ants is generally thought to reflect a requirement elaborated by
the nervous system; e.g., hand velocity has a bell-shaped
profile because it corresponds to a kind of desired or desirable
profile. The model suggests an alternative interpretation be-
cause invariants can also be found in the absence of reference
trajectory. Thus conclusions based on the observation of motor
invariants should be made cautiously with due consideration to
different proposals. The second is a specific example related to
the interpretation of an experimental result. Sober and Sabes
(2003) observed that initial movement directions of planar
pointing movements deviated systematically from target direc-
tion when vision and proprioception were dissociated, i.e.,
subjects received a wrong visual feedback of the position of
their hand. These authors provided an explanation of the
pattern of error based on the idea that both proprioception and
vision contribute to the estimation of hand position, i.e., the
hand is felt to be somewhere between its visual image and its
true proprioceptive location. Errors arise because motor com-
mands are computed using the felt rather than the true position.
The present model can be used to simulate the experiment of
Sober and Sabes (2003). We simulated movements toward
eight targets arrayed on a circle under three conditions (Fig.
12A): 1) initial hand position is at the center of the circle and
is actually seen at this position (baseline); 2) visual feedback of
the hand is shifted to the left; and 3) visual feedback of the
hand is shifted to the right. We assumed that the movement
vector is the vector from the visual hand to the target (Fig.
12A). We measured initial movement directions for the three
conditions and we calculated errors resulting from shift in
visual feedback by subtracting errors in the baseline condition
(Fig. 12B). Then we fitted the velocity command model of
Sober and Sabes (2003) to our data, i.e., we searched for the
estimated hand position that best explains the pattern of errors
(Fig. 12B). We found that (see Fig. 12A for notations)

Xegimaed = 0.35xy;5 + 0'65xpr0p

which is close to the fit obtained by Sober and Sabes (2003).
Thus a possible interpretation of this experiment is that
initial direction errors result from an imperfect control
applied at the true hand position (our model) rather than
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FIG. 12.  Simulation of the experiment of Sober and Sabes (2003). A:
experimental paradigm. Initial hand position is represented by an open square
and targets by circles (distance is 18 cm). Gray squares: shifted visual feedback
of initial hand position (to left or to the right). Dashed arrow: desired
movement vector for a target at 90° when hand is visually shifted to the left.
Plain arrow: actual movement vector. Movement duration was 500 ms. B:
shift-induced errors in initial movement direction (after subtraction of errors in
the unshifted condition) as a function of target direction for a left shift (black
solid line) and a right shift (gray solid line). Dashed lines: best fit to the data
(see text).

180

from a correct control applied to a wrong hand position
(Sober and Sabes’ model). These two examples show that
the model can provide interesting alternative insights into
experimental data.

The model can also generate predictions that could be
tested in future experiments (e.g., variations of movement
curvature with initial posture and direction, relationship
between variations of movement duration for movements in
3D space and arm inertia) and used as further tests of the
model.

In conclusion, we have proposed a description of motor
behavior, based on four overarching principles, that provides a
unique framework to explain behavioral characteristics of
point-to-point movements with a parameter-free model. The
model provides a quantitative solution to kinematic redun-
dancy and accounts for kinematic invariance.
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