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Abstract

Coordinated movements result from descending commands transmitted by central motor systems to the muscles. Although the
resulting effect of the commands has the dimension of a muscular force, it is unclear whether the information transmitted by the
commands concerns movement kinematics (e.g. position, velocity) or movement dynamics (e.g. force, torque). To address this issue,
we used an optimal control model of movement production that calculates inputs to motoneurons that are appropriate to drive an
articulated limb toward a goal. The model quantitatively accounted for kinematic, kinetic and muscular properties of planar,
shoulder ⁄ elbow arm-reaching movements of monkeys, and reproduced detailed features of neuronal correlates of these movements
in primate motor cortex. The model also reproduced qualitative spatio-temporal characteristics of movement- and force-related single
neuron discharges in non-planar reaching and isometric force production tasks. The results suggest that the nervous system of the
primate controls movements through a muscle-based controller that could be located in the motor cortex.

Introduction

Motor control is central to executive functions of the nervous system.
It guarantees that planned actions are efficiently translated into
appropriate limb displacements. A striking feature of this translation
from ‘ideas of motion’ to ‘mechanical motion’ is the paradoxical
contrast between the apparent easiness with which movements are
performed on the one hand, and the complexity of Newtonian
dynamics and the existence of multiple levels of redundancy on the
other (Bernstein, 1967). Since the time of Bernstein, this paradox has
been copiously documented and solutions have been proposed to
explain how the nervous system can solve such a challenging problem
(Bullock & Grossberg, 1988; Uno et al., 1989; Kalaska & Crammond,
1992; Harris & Wolpert, 1998; Todorov & Jordan, 2002; Guigon
et al., 2007). Yet the central issue of the nature of neural control
signals (NCSs) that flow from central motor systems to the periphery
during coordinated movements remains open and hotly debated
(Kalaska et al., 1989; Caminiti et al., 1991; Fetz, 1992; Feldman &
Levin, 1995; Georgopoulos, 1996; Kakei et al., 1999; Georgopoulos
& Ashe, 2000; Moran & Schwartz, 2000; Todorov, 2000, 2003; Scott,
2005; Aflalo & Graziano, 2006).
A common method to address this issue is to record NCSs in vivo,

e.g. using single-unit recordings in the primary motor cortex (M1) and
spinal cord of behaving animals (monkeys), and to perform a
correlation analysis in order to reveal preferential relationships
between discharge rates and parameters of motor behaviour (e.g.
direction of movement, velocity, joint torques; Evarts, 1968; Georg-
opoulos et al., 1982; Kalaska et al., 1989; Moran & Schwartz, 1999).
This method has revealed a large repertoire of discharge patterns as
well as a large repertoire of correlations that were thought to reflect

sometimes kinematic (direction, velocity), sometimes dynamic (for-
ces) representations of motor acts. However, these correlations were
time-varying and complex (Ashe & Georgopoulos, 1994; Fu et al.,
1995), and were in general contaminated by real or apparent co-
variations among parameters (Mussa-Ivaldi, 1988; Todorov, 2000;
Scott, 2005). Furthermore, as correlations do not imply causality,
neurophysiological data are not sufficient to draw firm conclusions on
this issue.
A complementary approach is to define the requisite characteristics

of NCSs based on a model of motor control, and to compare requisite
and actual properties of these signals (Lan, 1997; Bullock et al., 1998;
Todorov, 2000; Haruno & Wolpert, 2005). Here we exploit an optimal
control model that quantitatively accounts for kinematic and dynamic
properties of redundant manipulators (Guigon et al., 2007) to address
the nature of NCSs generated by the nervous system to control arm-
reaching movements.

Materials and methods

Scope of the model

To properly ascertain the contribution of neural activities to movement
control, it is necessary to consider neural and movement data
simultaneously. An appropriate animal (monkey) model of this
situation is obtained using a mechanical exoskeleton that puts
constraints on the degrees of freedom (DOF) involved in the
movement (Scott et al., 2001; Graham et al., 2003; Kurtzer et al.,
2006). In this case, the mechanical apparatus can be represented by a
planar two-joint arm. In other studies of interest (Caminiti et al., 1991;
Sergio & Kalaska, 1998; Kakei et al., 1999; Sergio et al., 2005), the
movements involved more than 2 DOF. In theory, the model could be
used to address these experiments (Guigon et al., 2007). However, not
enough kinematic and kinetic data are available in these studies for a
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thorough comparison between experimental observations and predic-
tions of the model. Accordingly, we thoroughly and quantitatively
addressed the neural control of planar two-joint arm movements. In
this framework, we also reproduced qualitative aspects of motor
cortical discharge related to non-planar arm-reaching movements
(Sergio & Kalaska, 1998; Sergio et al., 2005).

The model described in this article is formally identical to the model
used in Guigon et al. (2007). Yet the two articles address comple-
mentary issues. In the previous article, we described predicted
kinematic and dynamic characteristics of upper limb movements.
Here, we focus on the nature of the predicted control signals (CSs) that
are responsible for these movements. For clarity, we give below a brief
overview of the model, but a thorough presentation can be found in
Guigon et al. (2007).

Overview of the model

In a schematic view of motor control, a cortical motor centre sends a
command to a neuromuscular apparatus (motoneuron + muscle),
which generates a force to displace a set of articulated segments.
Formally, this series of events can be represented by the action of a
‘controller’ upon a ‘controlled object’. Mathematically, the behaviour
of the controlled object can be described by a state-dependent
dynamics:

dx=dt ¼ f ðxðtÞ; uðtÞÞ; ð1Þ

where x is the state vector of the object (position, velocity, muscle
state, …), and u ¼ {ui} (1 £ i £ M, M number of muscles) the control
vector (or CS) transmitted by the controller. A control problem
corresponds to the mastering of the controlled object, i.e. find a time
series of control u(t) (t in [t0; tf]) in order to satisfy to constraints of a
task, e.g.

xðt0Þ ¼ x0 and wðxðtf ÞÞ ¼ 0; ð2Þ

where function w expresses constraints on the final state of the object.
Once the control problem is solved, the quantities x(t) and u(t)

can be analysed and compared with corresponding quantities
obtained in experimental studies: position ⁄ velocity to movement
kinematics; force ⁄ torque to movement dynamics; control to cortical
activity.

In the framework of this study, an appropriate controller should
meet the following requirements: (i) to provide a unique solution
in the face of spatial, temporal, kinematic and muscular redundancy;
(ii) to provide a solution that has realistic kinematic characteristics. We
have shown previously that a controller that chooses, among solutions
to Eqns (1) and (2), the unique solution that minimizes overall control
magnitude (E, effort):

E2 ¼
Z
½t0 ;tf �
jjuðtÞjj2dt; ð3Þ

where ||u(t)|| is the norm of vector u, complies with these requirements
(Guigon et al., 2007). Technically, u is the solution of an optimal
control problem. Because the focus of this article is the issue of the
nature of NCSs that are elaborated by the nervous system to produce
coordinated movements, we do not intend here to show that this
controller is more realistic or efficient than other controllers. The fact
that results described below could be obtained with other controllers is
not at all detrimental to our purpose.

In general, Eqn (1) includes both dynamic (inertial, velocity-
dependent) and static (elastic, gravitational) forces. A series of
arguments (reviewed in Guigon et al., 2007) suggests that the nervous
systems process the two types of force separately (separation
principle), i.e.

uðtÞ ¼ udynðtÞ þ ustatðtÞ;

where udyn(t) is the solution to the optimal control problem without
static forces, and ustat(t) compensates for applied static forces. In the
following, we only address the nature of dynamic CSs, in the absence
of static forces, and u corresponds to udyn.
The controller is described here as an open-loop controller.

However, it should be noted that the model is affiliated with a
principled approach to motor control that states that feedback is a
necessary component of an appropriate neural controller (Guigon
et al., 2007). Thus, the controller can be considered as an optimal
feedback controller, i.e. a controller that calculates the appropriate
command to reach a goal for any estimate of the state of the controlled
system (see also Scott, 2004; Todorov, 2004). Such a model can work
properly in the presence of noise in sensory and motor pathways, and
perturbations on limb or target position (Todorov & Jordan, 2002;
Guigon et al., 2007). In practice, the feedback component remains
hidden, as neither perturbations nor noise were introduced in the
simulations. The results described below can be considered as mean
data over noise distributions.

Controlled object

The controlled object was a planar, two-joint (shoulder, elbow) arm
actuated by two pairs of monoarticular muscles and one pair of
biarticular muscles (Fig. 1A). For each muscle, the actual force F
was calculated following Zajac (1989) and Brown et al. (1996). We
used:

F ¼ C� PCSA� FaðuÞ � ðFV � FL þ FPÞ; ð4Þ

where: u is a control input (component of vector u for the
corresponding muscle); G is a tension scaling factor; PCSA is the
physiological cross-sectional area; Fa is a unitless quantity derived
from muscle input:

Fa ¼ gðaÞ;

t da=dt ¼ �aþ e

t de=dt ¼ �eþ u ð5Þ

where a and e are muscle activation and excitation, g(z) ¼ [z]+

([z]+ ¼ z if z > 0, otherwise [z]+ ¼ 0), t is a parameter; FP reflects
passive forces:

FP ¼ c2fexp½k2ðL� Lr2Þ� � 1g

where L is the normalized muscle length (the normalization factor is
the length L0 at which maximal isometric force is generated), c2, k2,
Lr2 are parameters; FL and FV are related to force–length and force–
velocity curves of the muscle,

FL ¼ expf�½ðLb � 1Þ=x�qg

FV ¼ ðb1 � a1V Þ=ðV þ b1Þ if V < 0 ðshortening muscleÞ
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FV ¼ ðb2 � a2V Þ=ðV þ b2Þ if V > 0 ðlengthening muscleÞ

where V is the normalized muscle velocity (in units of L0 ⁄ s); b, x,
q, a1, b1, a2, b2 are parameters. The quantity FV · FL + FP is
plotted as a function of L and V in Fig. 1B (fig. 11B in Brown et al.,
1996).
The muscle forces were translated into joint torques according to:

Tsh ¼ ðcshFL � Fsh
FLÞ � ðcshEX � Fsh

EXÞ þ ðcbishFL � Fbi
FLÞ

� ðcbishEX � Fbi
EXÞ

Tel ¼ ðcelFL � Fel
FLÞ � ðcelEX � Fel

EXÞ þ ðcbielFL � Fbi
FLÞ

� ðcbielEX � Fbi
EXÞ

where c xx
YY are the moment arms of the muscle, with xx ¼ {sh, el,

bi, bish, biel} and YY ¼ {FL, EX}; sh ¼ shoulder, el ¼ elbow,
bi ¼ biarticular, FL ¼ flexor, EX ¼ extensor.

The controlled object contains two elements that are thought to play
an important role in motor control: (i) force–length and force–velocity
relationships in muscles (Todorov, 2000); (ii) biarticular muscles (van
Bolhuis et al., 1998). To address the influence of these elements in the
framework of this study, we considered two modified versions of the
model: (i) a model (NOLV) without force–length and force–velocity
relationships in the muscles [i.e. F ¼ G · PCSA · Fa in Eqn (4)]; (ii)
a model (NOBI) without biarticular muscles (cbi** ¼ 0).

NCSs

The control problem [Eqns (1–3)] was modified to account for the
fact that there are many more neurons potentially involved in motor
commands than muscles. We assumed that: (i) the number s of CSs
was larger than the number M of muscles; (ii) each CS was defined
by a fixed synergy of muscles [Eqn (7)]; (iii) the s synergies
were uniformly distributed in muscular space [Eqn (7)]. Formally,
the problem was similar to the problem defined by Eqns (1–3),
with the following change. The goal was to find minimum
control U(t) ¼ {Uj(t)} (1 £ j £ s), i.e. the unique solution that
minimizes:

E2 ¼
Z
½t0;tf �
jj UðtÞjj2dt; ð6Þ

and is appropriate to displace the articulated segments between given
initial and final positions, the muscular control vector u(t) ¼ {ui(t)}
(1 £ i £ M) being defined by:

uiðtÞ ¼
X

j¼1 ... s

bijUjðtÞ; ð7Þ

where bij are random coefficients drawn from a uniform distribution in
[)1; 1]. The CSs {Uj(t)} are called NCSs.

Tasks

To simulate arm movements, the torques (Tsh, Tel) were translated
into displacements using the dynamics of the articulated
segments (Newtonian dynamics; Guigon et al., 2007). The control
vector was:

uðtÞ ¼ ½u1; u2; u3; u4; u5; u6�

i.e. the control for the shoulder flexor, shoulder extensor, elbow flexor,
elbow extensor, biarticular flexor, biarticular extensor, in this order.
For a ‘movement’ task, the state vector was:

xðtÞ¼ ½q1;q2;dq1=dt;dq2=dt;a1;a2;a3;a4;a5;a6;e1;e2;e3;e4;e5;e6�;

where q1 and q2 are the shoulder and elbow angles, dq1 ⁄ dt and dq2 ⁄ dt
the shoulder and elbow velocities. The boundary conditions [Eqn (2)]
were the initial and final arm postures with zero initial and final velocity,
activation and excitation [i.e. x(t0) ¼ x0 and w¼ x(tf) ) (xf), where

x0 ¼ ½q10; q20; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0�

and

xf ¼ ½q1f ; q2f ; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0�

To simulate isometric force production, the torques were translated
into endpoint force (F) using:

Fig. 1. (A) Model of a planar, two-joint arm equipped with two pairs of
monoarticular antagonist muscles, and one pair of biarticular muscles. Muscle
names are indicated for correspondence with the study of Kurtzer et al. (2006).
(B) Length–velocity force curve. (C) Moment arms at shoulder (left) and
elbow (right) for the monoarticular (thin black line) and biarticular (thick grey
lines) muscles (positive for flexors; negative for extensors).
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T ¼ JðqÞT U;

where T ¼ [Tsh Tel]
T, and J(q) is the Jacobian matrix of the kinematic

transformation at position q ¼ [q1 q2]
T. The state vector was

x(t) ¼ [a1, a2, a3, a4, a5, a6, e1, e2, e3, e4, e5, e6].
A force trajectory was specified by initial and final forces (F0 and

Ff). The boundary conditions were:

x0 ¼ ½a10; a20; a30; a40; a50; a60; e10; e20; e30; e40; e50; e60�

and

wðxðtf ÞÞ ¼ Tðtf Þ � Tf ;

where Tf ¼ J(q)T Ff. For simulations, (q1, q2) ¼ (q10, q20).

Solution to the optimal control problem

The problem defined by Eqns (1–3) or Eqns (1), (2), (6) and (7) was
solved numerically using a gradient method (Bryson, 1999; Guigon
et al., 2007). The results were obtained as:

xðtkÞ; uðtkÞ½or UðtkÞ�for tk ¼ t0 þ ðtf � t0Þk=n; ð8Þ

with k ¼ 0, …, n, and n ¼ 50.

Data analysis

The CSs and NCSs can be considered as inputs to motoneurons
[Eqn (4)], and could correspond to activities in subsets of cortical and
spinal neurons. They were analysed as if they were the discharge of
motor cortical neurons, i.e. by quantifying their directional tuning
using regression analysis (Georgopoulos et al., 1982). For each NCS,
preferred directions (PDs) were calculated at each time step tk
(0 £ k £ n). The main PD was defined as PD(t ¼ t0). Population
vectors were calculated following classical techniques. Bimodal
distributions were frequently encountered, and were quantified by
a preferred axis as defined by principal component analysis.
Electromyographic (EMG) activity was defined as [e]+ [e, excitation;
Eqn (5)].

Parameters and comparison with experimental data

The model was built for a direct comparison with experimental data in
monkeys (Scott et al., 2001; Graham et al., 2003; Kurtzer et al., 2006).
Thus, a number of parameters were directly taken monkey data.
Biomechanical parameters (segment inertia I in kg ⁄ m2, mass m in kg,
centre of mass cof in percentage of the length, length L in m) were
taken from Cheng & Scott (2000) for Macaca mulatta. Indexes 1 and
2 are used for upper arm and forearm, respectively. We used
I1 ¼ 0.00126, m1 ¼ 0.699, cof1 ¼ 0.5, L1 ¼ 0.144, I2 ¼ 0.00621,
m2 ¼ 0.781, cof2 ¼ 0.375, L2 ¼ 0.257. Muscular parameters were
taken from Brown et al. (1996): c2 ¼ )0.02, k2 ¼ )18.7, Lr2 ¼ 0.79,
b¼ 2.3, x¼ 1.26, q¼ 1.62, a1 ¼ 0.17, b1 ¼ )0.69, b2 ¼ 1.8,
a2 ¼ pL2 + qL + r, p ¼ )5.34, q ¼ 8.41, r ¼ )4.7. The muscle time
constant was t¼ 0.05 s (van der Helm & Rozendaal, 2000). The
moment arms (Graham & Scott, 2003) are shown in Fig. 1C.

Parameters that are less well defined are the tension scaling factor G
(Buchanan, 1995), and the PCSAs that depend on the muscles that are
actually involved at a given articulation. We chose G ¼ 35 N ⁄ cm2, and
the PCSAs were used as free parameters and were adjusted according to

the following criteria: (i) eachPCSA is in a reasonable range (1–15 cm2);
(ii) movement trajectories have a direction-dependent curvature (fig. 1 in
Graham et al., 2003); (iii) spatial selectivity of the muscles is as close as
possible to that described by Kurtzer et al. (2006). Yet, as the model
entails a number of simplifications, we thought that the search of an exact
fit of the data would be meaningless. Thus, we used a set of PCSAs that
provide a good description of experimental observations. The PCSAs (in
cm2) were (for shFL, shEX, elFL, elEX, biFL, biEX): 10, 10, 11, 11, 9.9,
9.9.
For comparison between outcomes of the model and experimental

data, we either reproduce an original figure or indicate in the text a
reference to one or more published figures.

Results

Properties of planar, 2-DOF reaching movements

Mechanical, muscular and neural characteristics of planar, 2-DOF
reaching movements have been thoroughly studied by Scott et al.
(2001), Graham et al. (2003) and Kurtzer et al. (2006) (noted Scott,
Graham and Kurtzer below). In these experiments, monkeys per-
formed radial reaching movements toward 16 targets. The movement
amplitude was 6 cm, and the movement duration was � 600 ms
(576 ms in Scott; figs 1 and 2 in Graham; figs 1 and 2 in Kurtzer). The
initial posture was approximately (30�, 90�) in Graham and Kurtzer
(fig. 2C in Graham; p. 3221 in Kurtzer), but was not reported in Scott.
In this latter case, we used (30�, 80�), which provides a good fit to the
data. We simulated similar movements with the model, and we
obtained movement kinematics (trajectories), movement kinetics
(torques, power), muscular activities and NCSs.

Kinematics and kinetics

Trajectories are shown in Fig. 2A, and fig. 1A–C in Graham for
comparison. Note that the model accounted for directional variations
in movement curvature (see also Guigon et al., 2007). The model
also reproduced the anisotropy in motion at shoulder and elbow
joints (Figs 2B–F; figs 3A, C–F in Graham; fig. 2C in Kurtzer). The
kinetic data reported by Graham concerned active torques, i.e. the
combination of passive torques generated at shoulder and elbow, and
voluntary muscular torques. Active torques were obtained with the
model by subtracting modelled passive torques (from fig. 3C and D
in Graham) from actual torques generated by the controller. The
results are shown in Fig. 3. The model reproduced directional
variations in peak active torque (Figs 3A–C; figs 5A–C in Graham;
fig. 2C in Kurtzer) and peak joint power (Figs 3D–F; figs 8A–C in
Graham). A difference between the experiment and the model was
found for the spatio-temporal profile of active shoulder torques
(Fig. 3B; fig. 5B in Graham). A possible reason for this difference is
related to approximations in the representation of the passive torques.
Similar results were obtained with the modified models (NOLV and
NOBI).

Muscular activity

Peak muscular activities varied with movement direction (Fig. 4A;
fig. 6 in Kurtzer). The monoarticular muscles behave as found
experimentally [130–309� (model) vs 130–319� (Kurtzer) axis for
the shoulder muscles; 271–73� (model) vs 275–70� (Kurtzer) axis
for the elbow muscles]. We could not reproduce the observations of
Kurtzer on the activities of the biarticular muscles. The origin of
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this discrepancy is unclear. We first note that the search over
PCSAs has never lead to activities of the biarticular muscles as
predicted by Kurtzer. Furthermore, similar results were reported by
Li (2006) with a closely related model (her fig. 5.7; see also
Todorov & Li, 2005). Thus, our results could hardly be ascribed to
some errors in the simulations of the model. To deepen this issue,
we have plotted the preferred axis of the six muscular types
obtained by Kurtzer in monkeys, by Li (2006) and by us in an
optimal control model, and by Welter & Bobbert (2002) in humans
(Fig. 4D). We observed that the tuning of the monoarticular
muscles is consistent across the studies, but there is a noteworthy
discrepancy between Kurtzer and the other studies for the
biarticular muscles (* in Fig. 4D). We also note that the model
proposed by Kurtzer to explain their data does not reproduce the
tuning of the biarticular muscles (their fig. 11C). The discrepancy
between the model and the data does not prevent the model
explaining the characteristics of NCSs (see below).

NCSs

We analysed the NCSs (s ¼ 500) corresponding to movements from
initial posture (30�, 80�). We calculated the main PD of each NCS (see
Materials and methods), and the distribution of main PDs over the

Fig. 2. (A) Trajectories and velocity profiles for movements in 16 directions. R, right; A, away; L, left; T, toward. The initial posture was (30�, 90�). (B) Polar plot
of peak shoulder (black line) and elbow (green line) velocity. Arrows indicate the mean bimodal distribution (dashed lines from Graham, fig. 2C). (C) Spatial map of
instantaneous angular velocity at shoulder at each location in space along the movement. (D) Same as (C) for elbow velocity. (E) Change in joint angle coordinates.
Colours are used to indicate the four cardinal directions. (F) Change in joint velocity in joint angle coordinates.

Fig. 3. (A) Polar plot of peak shoulder (black line) and elbow (green line)
torque. Arrows indicate the mean bimodal distribution (dashed lines from
Graham, fig. 5A). (B) Spatial map of instantaneous shoulder torque at each
location in space along the movement. (C) Same as (B) for elbow torque. (D)
Same as (A) for peak shoulder and elbow joint power (dashed lines from
Graham, fig. 8). (E) Same as (B) for shoulder joint power. (F) Same as (E) for
elbow joint power.
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NCSs. This distribution was anisotropic with a preferred axis along
123–303� (Fig. 5A; 118–298�, fig. 3 in Scott). The population vector
systematically deviated from movement direction (Fig. 5B; fig. 2A in
Scott). We explored the relationship between PD distribution and
direction-dependent variations in peak angular velocity, peak joint
torque and peak joint power. The best correlation was found with peak
joint power (Fig. 5D; fig. 4 in Scott).

The PD distribution remained anisotropic for different orientations
of the arm and the forearm, and its orientation rotated with both
shoulder and elbow angles (Fig. 6A and B). These results can be
considered as predictions, as the corresponding experiment has not
been performed with a mechanical exoskeleton. Yet, they are
consistent with results obtained with other kinematic chains (Caminiti
et al., 1991; Kakei et al., 1999).

Similar results were obtained with the modified models (NOLV and
NOBI). However, the correlations with peak joint power were weaker
(not shown), and the PD distribution rotated more steeply with elbow
angle (Fig. 6B).

Other movements

Complementary information on the nature of NCSs can be found in
other studies that analysed the temporal structure of motor cortical
discharges during reaching movements and isometric force production

(Sergio & Kalaska, 1998; Sergio et al., 2005). However, as neither
kinematics nor kinetics were quantitatively described in these studies,
we only addressed qualitative features of neural discharges. Further-
more, as we found that all the NCSs were qualitatively similar, we
only analysed the six CSs (one per muscle).
The raw temporal profile of the shoulder extensor control is shown in

Fig. 7 for movements in eight directions (Fig. 7, centre). The control
had: (i) an early phasic component followed by a depression for the
rightward ⁄ downward movements; (ii) a delayed phasic component for
a movement in the opposite directions. We note that quantitatively
similar results were obtained with the NOLV model (Fig. 7, grey lines).
Similar temporal profiles were found for the other muscles, each with
its PD tuning (not shown). For comparison with experimental data, we
have replotted the control for the shoulder extensor in a different format
that can be read as a mean discharge frequency (Fig. 8A). Data from
single-unit recording in the primate M1 are reproduced (fig. 1 in Sergio
& Kalaska, 1998; Fig. 8B). Visual inspection revealed a close
correspondence between real and simulated profiles, although a
difference was visible at the end of the movement (see Discussion).
We note that the large phasic transient near the end of the movement
(Figs 7 and 8A) is due to a strict boundary condition [Eqn (2)]: the
movement must finish at a given time and position. This type of
boundary condition was chosen for simplicity, but requires large
controls to guarantee the exact fulfilment of spatial and temporal
constraints. Yet real movements do not in general terminate abruptly,

Fig. 4. (A) (Top) Polar plot of peak shoulder muscle flexor (black) and extensor (grey) activity. Arrows indicate the preferred axis of the distribution (dashed lines
from Kurtzer, fig. 6). The dashed line for the shoulder flexor is exactly behind the arrow. (Middle) Same as (Top) for the elbow flexor and extensor. (Bottom) Same as
(Top) for the biarticular flexor and extensor. (B) Same as (A) for the model NOLV. (C) Same as (A) for the model NOBI. (D) Orientation of the preferred axis of
muscles obtained from four sources. For each muscle, four results are given (black: experiment; grey: model). (1) Data of Kurtzer (their fig. 6). (2) Model of Li
(2006) (her fig. 5.7c). As the initial posture was (45�, 90�), we subtracted 15� to the reported orientations; (3) Our results (A). (4) Data of Welter & Bobbert (2002)
(their fig. 5). As the initial posture was (0�, 90�), we added 30� to the reported orientations. * indicates a noteworthy discrepancy.
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but end up smoothly, e.g. with oscillations. A more realistic movement
could be obtained in the presence of noise. In this case, estimated limb
position is in general different from actual limb position, so a non-zero
residual error should always be present to drive movement corrections.
This case is illustrated in fig. 1D of Guigon et al. (2007).
For comparison, we applied the model to the production of isometric

forces in different directions. Because the calculated CSs are related to
dynamic forces, they are not responsible for static force exertion after
the dynamic period. To obtain more realistic CSs, we added a static
component necessary for the maintenance of a steady final force. For a
150-ms force increase from 0 to 1.5 N, the temporal profile of the
shoulder extensor CS had a phasic excitation for a rightward-directed
force (Fig. 9A, right) and a phasic inhibition for a leftward force
(Fig. 9A, left). Data from single-unit recording in the primate M1 are
reproduced (fig. 1 in Sergio & Kalaska, 1998; Fig. 9B).
PDs of the CSs were calculated every 10 ms and displayed in a

circular plot (Fig. 10). In the movement task (Fig. 10A; from top to
bottom, sh, el, bi; black circle: flexor; grey circle: extensor), the PD
reverted during the movement. In contrast, the isometric controls did
not revert their PDs (Fig. 10B). For comparison, data from Sergio &
Kalaska (1998) are reproduced in Fig. 10C.

Discussion

The present article describes a model-based approach to the nature of
NCSs generated by the nervous system of monkeys to control arm
movements. The model reproduces detailed features of movement
kinematics and kinetics, and quantitative characteristics of single
neuron and population discharges in the primate M1. The results
support the idea that: (i) the motor system controls movement using a
muscle-based controller; (ii) this controller could be located in the
motor cortex.

Nature of the model

The model is an optimal controller, i.e. a controller that calculates
appropriate CSs to displace a controlled object using a complete
knowledge of the properties of the object (here, the dynamics of the
arm and the characteristics of the muscles), and an optimality criterion.
Recent reviews have thoroughly advocated this type of model
to address behavioural and neural characteristics of goal-directed
movements (Scott, 2004; Todorov, 2004). We refer the reader to these
reviews for a detailed discussion of optimal control models.

Fig. 5. (A) Frequency distribution of the PDs of the NCS (s ¼ 500; mean
R2 ¼ 0.91). The radial axis is the number of NCSs in a bin (16 bins, bin size is
22.5�). Solid arrow is the preferred axis of the distribution. Dashed arrow from
Scott. (B) Population vector (arrow) vs movement direction (grey) for the 16
directions. (C) Difference between the direction of the population vector and
the movement direction as a function of movement direction. (D) Relationship
between NCSs count and peak joint velocity (top), peak joint torque (middle)
and peak joint power (bottom) for data in (A). The regression line is shown.
From top to bottom: R2 ¼ 0.46, 0.07, 0.75.

Fig. 7. Temporal profile of the shoulder extensor NCS for movements in eight
directions. The NCS is depicted with a black surface, and takes both positive
(above the grey surface) and negative (within the grey surface) values. The grey
lines are the results obtained with the model NOLV. The time scale is in ms.
The trajectories are shown in the middle.

Fig. 6. (A) Preferred axis of the PD distribution as a function of the
shoulder angle (10–50�). The elbow angle was 90�. The slope was 0.98
(R2 ¼ 1). Grey lines: results obtained with the model NOLV (square) and the
model NOBI (diamond). Inset: initial arm postures. (B) Preferred axis of the
PD distribution as a function of the elbow angle (70–130�). The shoulder
angle was 30�. The slope was 0.61 (R2 ¼ 0.98). Grey lines: see (A). Inset:
initial arm postures.

256 E. Guigon et al.

ª The Authors (2007). Journal Compilation ª Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 26, 250–260



The present model is not fundamentally different from previous
models that applied optimal control techniques to determine the spatio-
temporal nature of command signals that should enter a neuromuscular
system to drive a limb toward a goal (Happee, 1992; Lan & Crago,
1994; Lan, 1997; Harris & Wolpert, 1998; Haruno & Wolpert, 2005;
Todorov & Li, 2005; Li, 2006). A common result of these models is
that optimal control of a low-pass filtering force-generating system
leads to reasonably realistic EMG and NCSs. The originality of this
work is not to describe a new, more efficient model, but to deepen our
understanding of neural information processing in the motor cortex
using a model-based approach, which proves that observed discharge
characteristics of single neurons and populations recorded during
movements in M1 can be quantitatively explained by observed
characteristics of the movements. In fact, previous models have
addressed properties of neurons, but not properties of limb movements
(Lan, 1997; Bullock et al., 1998; Todorov, 2000; Haruno & Wolpert,
2005; Trainin et al., 2007).

Limitations

There are at least three limitations to the present model. First, although
the model appropriately produces the expected results, the issue of its
validity in a broader framework remains open. The model was actually
tested in various conditions, and was found to be consistent with

experimental observations (Guigon et al., 2007). Yet some data, e.g.
highly non-symmetric velocity profiles, cannot be explained by the
model. Second, the way optimal feedback control can be computed by
brain circuits remains elusive. A third and related limitation is the
absence of a relationship between the computational processes
advocated by the model and organizational features of the motor
cortex (connectivity, intrinsic properties, …). The two latter issues
raise the problem of neural information processing subserving motor
control. This problem has been addressed for initial directional
commands of reaching movements (Baraduc et al., 2001), but remains
open for the whole spatio-temporal commands.

Motor cortical physiology

Single-cell recordings in M1 have revealed a large repertoire of
discharge patterns. In fact, the greater part of movement parameters,
ranging from exerted force (low-level muscle control) to serial order of
stimuli (cognitive motor control) have been found to influence the
discharge of motor cortical neurons (Ashe, 1997; Georgopoulos,
2000). This paradox is hotly debated (Georgopoulos & Ashe, 2000;
Moran & Schwartz, 2000; Todorov, 2000). A central issue of the
debate is the interpretation of correlation analyses that are used to
quantify neuronal activities. For instance, Todorov (2000) defends the
view that M1 neurons calculate muscular activation patterns, and

Fig. 8. (A) Temporal profile of the shoulder extensor NCS for a leftward (left) and a rightward (right) movement. Same data as in Fig. 7, but in a different format.
Grey line: endpoint force (shifted in time by 100 ms for correspondence with experimental data). (B) Reproduced from Sergio & Kalaska (1998), fig. 1, used with
permission.

Fig. 9. (A) Same as Fig. 8A for an isometric force production (0–1.5 N in 150 ms). The time course of force variation is shown in grey. Inset: force trajectory
(open square: origin; open circle: extremity). (B) Reproduced from Sergio & Kalaska (1998), fig. 1, used with permission.
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suggests that many correlations between kinematic quantities and
neural discharges in M1 can be explained by this hypothesis (i.e. they
are artefacts). In this framework, a series of studies by Scott and
collaborators have attempted to circumvent the weakness of correla-
tion analysis (Scott et al., 2001; Graham et al., 2003; Kurtzer et al.,
2006). They reported a systematic description of planar two-joint arm
movements and neural correlates of their execution. They found that
anisotropic characteristics of movement dynamics and muscular
selectivities were associated with a similar anisotropy in neural
selectivities. Our model reproduces a similar relationship between
mechanical, muscular and neural quantities, and supports the conten-
tion of Scott of a tight link between neural populations in M1 and the
motor apparatus. The model further shows that the spatio-temporal

profile of the NCSs is qualitatively similar to the activity in a
subpopulation of motor cortical neurons (located primarily in caudal
M1) whose discharge tightly follows the time course of required task
dynamics (Sergio & Kalaska, 1998; Sergio et al., 2005). Taken
together, these results suggest that a subset of M1 neurons could
actively participate to a muscle-based representation of movements
(Todorov, 2000, 2003; Sergio et al., 2005). Although a number of
arguments concur to this conclusion (Scott, 1997; Todorov, 2000,
2003), our model provides the first realistic demonstration that
muscle-based coding can account simultaneously for movement
kinematics, movement kinetics, EMGs and cortical discharges.
If our conclusions are correct, the origin and function of other types

of neuron (e.g. those related to visuospatial and kinematic represen-
tations of movements) remain to be explained. There are at least two
hypotheses. The first is related to the idea of sensorimotor transfor-
mations (Kalaska & Crammond, 1992; Scott, 2005). The assumption
is that the nervous system performs sequential operations that
progressively translate spatial information on the goal of the
movement into appropriate commands, going through kinematic,
dynamic and muscular stages. In this case, quantities related to desired
movement kinematics, in particular desired movement velocity, should
be found in M1 (Moran & Schwartz, 1999). This explanation relies on
the questionable idea that motor control is based on trajectory tracking
(Todorov & Jordan, 2002; Guigon et al., 2007). The second
hypothesis ensues from the model. As discussed in the Materials
and methods, the controller can be considered as an optimal feedback
controller, i.e. an optimal controller coupled with a state estimator. We
have described properties of the signals elaborated by the controller.
Yet other signals should be available to indicate the goal and the
estimated state. This latter signal should convey information related to
predicted position, velocity, force, etc. Such a predictive (rather than
desired) signal could be a source of kinematic information in the motor
cortex. For instance, cortical velocity signals have been described in
M1 that lead actual velocity by 120–150 ms (Moran & Schwartz,
1999; Wang et al., 2007). As the CSs reported in other studies lead
movement onset by 100–200 ms (Kalaska et al., 1989; Sergio &
Kalaska, 1998; Sergio et al., 2005), it is possible that the velocity
signals derive from the CSs through a forward model. However, these
data could also be interpreted to support the presence of a desired
velocity signal.
Todorov (2000) has proposed that the dependence of muscle force

on length and velocity has a substantial influence on neural
information processing in the motor cortex. Kurtzer et al. (2006)
have suggested that these intrinsic muscular properties are necessary
to account for the directional tuning of muscular activities. Our model
does not concur with these ideas. First, the temporal profile of our CSs
did not resemble a velocity profile (Fig. 2; fig. 7 in Todorov, 2000). In
fact, low-pass filtering renders the CSs much more ‘phasic’ than
velocity, even in the presence of a force–velocity relationship in the
muscles. Second, muscular tuning was only weakly influenced by
force–length and force–velocity relationships (Fig. 4).
According to the separation principle (Guigon et al., 2007), a

complete motor command involves both a static and a dynamic
component. Although such components have been observed experi-
mentally in M1 (Cheney & Fetz, 1980; Kalaska et al., 1989; Kurtzer
et al., 2005), the discharge of many motor cortical neurons appears to
carry simultaneously static and dynamic commands (Cheney & Fetz,
1980; Kalaska et al., 1989; Sergio & Kalaska, 1998; Kurtzer et al.,
2005; Sergio et al., 2005). For instance, phasic–tonic neurons recorded
by Sergio & Kalaska (1998) have an early component that could be
related to the control of dynamic forces (compare Fig. 8A and B), and
a late component that could be related to the maintenance of posture

Fig. 10. (A) Time course of PDs of CSs in the reaching task. The time is
indicated by the distance from the centre ()300 ms) to the external circle
(900 ms). PD is indicated by an angular position. (Top) Shoulder flexor (black),
shoulder extensor (grey). (Middle) Elbow flexor (black), elbow extensor (grey).
(Bottom) Biarticular flexor (black), biarticular extensor (grey). (B) Same as
(A) for the isometric force production task. The two insets indicate the timing
for (A) (top inset) and (B) (middle inset). (C) Reproduced from Sergio &
Kalaska (1998), fig. 2, used with permission.
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against a steady force. In fact, Sergio & Kalaska (1998) have found
phasic, tonic and phasic–tonic neurons in equal proportions (� 30%),
and it is possible that their phasic neurons (not described in detail) are
closer to our NCSs than the phasic–tonic neurons. In this case, the
phasic and tonic neurons would represent the actual dynamic and
static commands as defined by the model. This issue remains to be
tested experimentally.

Models of motor control

The debate on the nature of motor cortical representations of
movement is part of a more general debate on the nature of motor
controllers in the brain (Kawato, 1999; Ostry & Feldman, 2003;
Todorov, 2003). On the one hand, position control models exploit
viscoelastic properties of muscles and peripheral reflex loops to define
limb movements as a series of stable equilibrium postures (Bizzi et al.,
1992; Feldman & Levin, 1995). The corresponding descending
commands can be viewed as kinematic signals as they need not take
into account biomechanical or muscular characteristics of the moving
limb (Flanagan et al., 1993; Georgopoulos, 1996). By construction,
the temporal profile of these commands is monotonic. Computer
simulations have shown that triphasic EMG patterns can be obtained
from monotonic commands that act to modify the recruitment
threshold of muscles rather than the force developed by the muscles
(St-Onge et al., 1997; Suzuki & Yamazaki, 2005). On the other hand,
force control models have been developed, based on the idea that the
nervous system explicitly computes time-varying CSs to achieve a
desired movement (Kawato et al., 1987; Uno et al., 1989; Todorov,
2000; Franklin et al., 2003). Although this type of model has been
questioned based on the posture ⁄ movement paradox (Ostry &
Feldman, 2003), it has proven highly efficient to account for a large
range of characteristics of motor control (trajectory formation, EMG).
The force control models predict that the NCSs should have non-
monotonic (acceleration-like, torque-like, EMG-like) profiles. The
present model, which is affiliated to the force control models (in the
sense that the CSs are directly transmitted to a force-generating
system), shows that the predicted non-monotonic NCSs are quanti-
tatively related to the spatio-temporal characteristics of a population of
motor cortical neurons. There is no corresponding study of the CSs
predicted by position control models and their relationship to cortical
physiology. In particular, the origin and role of non-monotonic
discharge patterns in the framework of position control models remain
unclear (Todorov, 2003). Although our model cannot directly settle the
controversy between force and position control, it gives a physiolo-
gical basis to the force control models, and contributes to a series of
arguments that support these models (Kawato, 1999; Todorov, 2000,
2003; Guigon et al., 2007).
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