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Abstract Recent theories of motor control have pro-
posed that the nervous system acts as a stochastically
optimal controller, i.e. it plans and executes motor
behaviors taking into account the nature and statistics
of noise. Detrimental effects of noise are converted into
a principled way of controlling movements. Attractive
aspects of such theories are their ability to explain not
only characteristic features of single motor acts, but
also statistical properties of repeated actions. Here, we
present a critical analysis of stochastic optimality in
motor control which reveals several difficulties with this
hypothesis. We show that stochastic control may not
be necessary to explain the stochastic nature of motor
behavior, and we propose an alternative framework,
based on the action of a deterministic controller cou-
pled with an optimal state estimator, which relieves
drawbacks of stochastic optimality and appropriately
explains movement variability.
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1 Introduction

Despite multiple levels of redundancy, noisy sensors
and actuators, and the complexity of biomechanical el-
ements to be controlled, the nervous system elaborates
well-coordinated movements with disconcerting ease
(Bernstein 1967). In fact, Bernstein (1967) observed
that a motor goal can be successfully reached although
each attempt to reach this goal has unique, nonrepeti-
tive characteristics. To succeed in this daunting control
task, powerful mechanisms should be at work in brain
circuits. Their properties should encompass the capac-
ity: 1. to reach a goal with little error and small energy
expenditure, i.e. to choose an appropriate set of mo-
tor commands among an infinite number of solutions
(degrees-of-freedom problem); 2. to face deterministic
(e.g. change in goal, force applied on the moving limb)
and stochastic (e.g. noise in motor commands) pertur-
bations (variability problem).

The Bernstein problem which encompasses both the
degrees-of-freedom and variability problems, is illus-
trated in Fig. 1 for a reaching movement. In this ex-
ample, the moving arm has three degrees of freedom
[Fig. 1(a); shoulder, elbow, wrist], and moves in a
two-dimensional space to reach a target [Fig. 1(b)].
Thus there exists an infinite number of articular dis-
placements which are appropriate to capture the target
[Fig. 1(c)]. In the presence of noise, the reaching move-
ments are successful, but have different characteristics
[Fig. 1(d)]. Since movements can be realized with or
without visual feedback [Fig. 1(e,f)], processes related
to state estimation and multimodal integration are nec-
essary for accurate motor control.

Elements of the Bernstein problem have been syn-
thesized in part in a theory of motor control based
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Fig. 1 Illustration of the Bernstein problem. (a) Planar reaching
movement with a redundant arm (3 DOF). (b) A successful
movement reaches the target region (central gray circle). (c) Two
successful movements with different final postures. (d) Several
successful movements with different spatiotemporal characteris-
tics. Inset: velocity profiles. (e) Movement with visual feedback
(from the target and the moving arm) and proprioceptive feed-
back (from the muscles). (f) Movement without visual feedback
from the moving arm

on the engineering tool of stochastic optimal con-
trol (Harris and Wolpert 1998). In this framework,
motor controllers in the brain would choose opti-
mal command signals that minimize the influence
of noise on the achievement of motor goals (MV,
minimum-variance model; Hamilton and Wolpert 2002;
Harris and Wolpert 1998; van Beers et al. 2004).
By construction, such a theory represents a radical
departure from most previous optimal control mod-
els in the sense that characteristics of motor behav-
ior emerge from a general principle rather than from
a level-specific (e.g. kinematic, dynamic, muscular),
effector-specific (e.g. arm, eye) or task-specific (e.g.
posture, locomotion, ...) criterion (see Todorov 2004,
for a review). Furthermore, it accounts not only for
level-specific (e.g. typical bell-shaped velocity profiles,
triphasic electromyographic signals), effector-specific

(arm movements, saccades) and task-specific (point-
to-point movements, drawing movements, obstacle
avoidance) properties, but also for amplitude/duration
scaling and speed-accuracy trade-off (Fitts’ law) inher-
ent to the functioning of motor systems.

Despite these striking successes, it appears difficult
to hypothesize that motor control is purely an open-
loop process (Desmurget and Grafton 2000). This ob-
servation led Todorov and Jordan (2002) to propose
that motor behavior results from the action of a stochas-
tic optimal feedback controller (SOFC), i.e. a controller
which elaborates online motor commands taking into
account actual or estimated state of the motor appara-
tus and the statistics of noise. Optimality arises from the
simultaneous minimization of error (e.g. distance to the
goal) and effort (e.g. size of the commands). Although
MV and SOFC can be considered to be similar on
the surface, the presence of feedback processes renders
SOFC much more versatile. In particular, it can account
for the emergence of uncontrolled manifolds (Scholz
and Schöner 1999; Scholz et al. 2000), i.e. the fact that
variability is preferentially reduced along dimensions
that interfere with task requirements (a phenomenon
called structured variability; Todorov 2004). For in-
stance, if a subject is asked to point on a line, movement
endpoints are scattered along the target line (Scholz
et al. 2000). More generally, it provides a principled ap-
proach to the construction of motor acts in the presence
of noise and perturbations which closely corresponds to
experimental observations (Todorov and Jordan 2002).

Although attractive, stochastic feedback optimal-
ity is a complex theoretical construct, and should
not be considered as a default hypothesis. In fact,
due to its central role in models of motor control
(Chhabra and Jacobs 2006a; Saunders and Knill 2004;
Todorov and Jordan 2002), it merits to be questioned
(Schaal and Schweighofer 2005). In particular, SOFC
has been mostly used for the control of linear sys-
tems, and although results have also been obtained in
a nonlinear case (shoulder/elbow arm with nonlinear
muscles; Li 2006; Todorov and Li 2005), the general
problem of kinematic redundancy, which is a central
issue for Bernstein, has not been addressed in this
framework. In this article, we present a critical analysis
of stochastic feedback optimality to assess whether this
hypothesis is appropriate to explain characteristics of
motor control. This analysis led us to show that SOFC
does not provide a satisfactory solution to the degrees-
of-freedom problem, and to propose an alternative
approach to motor control. This approach is based
on a model (a terminal optimal feedback controller,
TOFC) which provides a quantitative account of the
degrees-of-freedom problem (Guigon et al. 2007) (see
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Section 3 for more details). Our purpose here is to
show that TOFC is also able to master stochastic con-
trol problems, and can thus be considered as a unified
model of motor control.

2 Stochastic optimal feedback control

SOFC is an approach to motor control which combines
stochastic optimality and feedback control. The reader
is referred to Todorov (2005) for a thorough introduc-
tion to SOFC (see also Appendix A for a brief survey).
A central idea of SOFC is the emergence of optimal
behaviors through minimization of stochastic quantities
related to states and controls (error/effort cost func-
tion). However, this form of optimization cannot in
general guarantee that kinematic goals are appropri-
ately reached, i.e. the actual final state of a simulated
movement will not necessarily be equal to the desired
final state representing the goal of the movement. The
problem arises from the minimization of the mixed er-
ror/effort cost. Such a minimization requires the setting
of parameters which weight the contribution of state
errors (velocity, force, ...; parameters wv , w f in Todorov
2005) and effort (r) in the cost function. Each setting
will lead to a particular time course of states along the
movement, and a particular pattern of constant and
variable terminal errors. To illustrate, we consider the
shape of velocity profiles for point-to-point movements
simulated as described in Todorov and Jordan (2002).
Different profiles were found for different values of
r, wv , and w f (Fig. 2). Although differences between
the profiles could be considered as insignificant, this
result raises the question of what is the setting of these
parameters which defines a “normal” velocity profile

Fig. 2 Mean normalized velocity profiles for 10 cm, 300 ms
movements simulated with SOFC. Mean was calculated over 500
trials (σSDNm = 0.1). Parameters were r = 1, wv = 4, w f = 4 (1st
profile), r = 1, wv = 0.04, w f = 0.04 (2nd profile), r = 10, wv =
0.4, w f = 0.04 (3rd profile)

to be compared with experimental observations? SOFC
offers no answer to this question. Todorov and
Jordan (2002) recognized that these parameters
must be adjusted to each task at hand (their sup-
plementary information). Todorov (2005) proposed
to set the position and velocity weights accord-
ing to movement amplitude and movement time.
This issue is crucial to address kinematic invari-
ance (i.e. the invariant shape of velocity profiles; e.g.
Atkeson and Hollerbach 1967; Gordon et al. 1994b).
We consider a second example. Programming a grasp-
ing movement with SOFC requires to simultaneously
minimize the distance between the hand and the object,
and angular difference between hand and object ori-
entation. The parameter which weights the two errors
should influence the time course of error reduction
along a movement. Coarticulation (i.e. the concurrent
reduction of distance and orientation errors; Torres and
Zipser 2004) may or may not be observed depending on
the value of this parameter. In fact, there is no uniquely
defined emergent kinematic property in SOFC. Thus,
although SOFC can eliminate redundant degrees of
freedom, it cannot do it in a principled way.

Despite this problem, we cannot easily abandon a
model which has proven highly efficient in other re-
spects (Todorov and Jordan 2002). In particular, the
minimal intervention principle, which predicates that
variability is preferentially reduced along dimensions
that interfere with task goal (Todorov and Jordan
2002), is a central concept to explain the structure
of motor variability (Scholz and Schöner 1999; Scholz
et al. 2000; Todorov and Jordan 2002). To resolve this
difficulty, we addressed the origin of the minimal inter-
vention principle in SOFC. Todorov and Jordan (2002)
proposed that this principle derives from optimal com-
pensation for signal-dependent motor noise (SDNm;
for definition, see Harris and Wolpert 1998; Todorov
and Jordan 2002, in Appendix, Eq. (2), process noise).
However, a SOFC is a complex mathematical object,
which contains cost-, task-, and noise-related terms
[Eqs. (5) and (6)], and the specific importance of the
different terms has not been assessed. In particular,
the contribution of noise-related terms, which provide
knowledge on the structure (e.g. statistics, correlations)
of noise is unclear.

In their line-pointing simulation, Todorov and
Jordan (2002) illustrated the emergence of an uncon-
trolled manifold (UM; Scholz et al. 2000): variability
was preferentially oriented along the target line, i.e per-
pendicularly to the task-error dimension. We explored
the origin of the UM in SOFC. We observed that no
UM was found in the absence of SDNm [for definition,
see Eq. (2) and text below in Appendix A]. We found
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Fig. 3 Conditions for the formation of an uncontrolled mani-
fold in SOFC. (a) Variation in the aspect ratio of the terminal
variability ellipse as a function of σSDNm. The task was a line-
pointing task. Movement duration was T = 500 ms and distance
to the line was 30 cm. The aspect ratio was calculated as the
ratio between major and minor axis length of the 95% equal fre-
quency ellipse calculated over 5,000 trials. Symbols: circle (SDNm
known in the controller and estimator, SINm unknown); square
(SDNmknown in the estimator only, SINm unknown); diamond
(SDNm unknown, SINm unknown); up triangle (SDNm unknown,
SINm known). In each case, SINs was present (σSINs = 0.3) and
known. (b) Example of an uncontrolled manifold (circle in (a);
σSDNm = 0.4). The 95% equal frequency ellipse, 50 endpoints and
10 trajectories are shown. Inset: sample trajectory and velocity
profile (black solid: actual; gray dashed: estimated by the Kalman
filter). (c) Absence of UM (diamond in (a); σSDNm = 0.4)

that the UM arose in the presence of SDNm in any of
the following conditions [Fig. 3(a,b)]: (1) the statistics
of SDNm are known to the controller and estimator
[presence of terms with [C1...Cc] in Eqs. (5) and (6)];

(2) the statistics of SDNm are known only to the esti-
mator [presence of terms with [C1...Cc] only in Eq. (6)];
(3) the statistics of SDNm are unknown [no terms
with [C1...Cc] in Eqs. (5) and (6)], but the statistics of
other noises are known [e.g. SINm; presence of �ξ in
Eq. (6)]. Alternatively, no UM was found when the
statistics of SDNm were known only to the controller
or completely unknown and no other types of noise
were known (absence of terms with �ξ , �ω and �ε). In
fact, a common qualitative characteristic of appropriate
(inappropriate) conditions is the efficient (deficient)
functioning of the state estimator, i.e. the fact that the
estimator provides an accurate (inaccurate) estimate of
the true state [Fig. 3(b,c)]. To understand this result, we
have rewritten the equation of the state estimator (6) in
the absence of signal-dependent noises (absence of �ε

and �ε)

{
Kt = A�e

t HT(H�e
t HT + �ω)−1

�e
t+δ = �ξ + (A − KtH)�e

t AT

If we assume that �e
0 = 0 (in fact, the null matrix), i.e.

there is no uncertainty on the initial state of the system,
the above equation will lead to zero Kt when �ξ = 0,
or undefined K0 when �ω = 0. A similar reasoning can
be done for the terms involving the signal-dependent
noises.

This observation was confirmed in a series of sim-
ulations in which the different types of noise (SINm,
SINs, SDNs) and knowledge of initial state statistics
were varied. We also simulated the via-point task of
Todorov and Jordan (2002). As expected (Fig. 4), struc-
tured variability was observed when the estimator was
efficient even if the statistics of SDNm were unknown,
and unstructured variability was found when the state
estimator was inefficient. These results support the con-
tention of Todorov and Jordan (2002) that structured
variability results from optimal feedback control in the
presence of SDNm. However, they question the idea
that the controller and estimator need to know the
statistics of this noise. These observations are restricted
to the framework of SOFC, and do not preclude the
emergence of uncontrolled manifolds in the absence of
signal-dependent noise in other frameworks.

Taken together, these results indicate that SOFC is
efficient due to its optimal feedback component, but
deficient due to its cost function. A solution to this
difficulty can be found in Nelson (1983). According to
Nelson, skilled movements are built to satisfy both spe-
cific task-oriented objectives (measured, e.g., by errors)
and a general “effort” objective. However, unlike in
SOFC, task objectives can be considered as constraints
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Fig. 4 Structure of variability in a via-point task. (a) The task was
to go from P0 = (0, 0) to P4 = (a, 0) going through three points:
P1 = (a/4, b), P2 = (a/2, 0), P3 = (3a/4, b). The passage times
are (0, t1, t2, t3, T ). Parameters were: a = 20 cm, b = 5 cm, T =
1.6 s, t1 = T /4, t2 = T /2, t1 = 3T /4. (b) Plain line (SDNm known
in the controller and estimator); dashed line (SDNm known in the
estimator only); dotted line (SDNm known in the controller only).
In each case, σSDNm = 0.4, SINs was present (σSINs = 0.1) and
known, and SINm was known. The gray line shows the absence of
structured variability when both SDNm and SINm were unknown
(σSDNm = 0.02). Variability has arbitrary units

(“hard” constraints) and not exclusively as costs, i.e.
the effort objective is minimized only for cases when
the constraints are satisfied (error is zero). In technical
terms, we can consider a terminal optimal feedback
controller (TOFC) rather than an optimal regulator
(Bryson and Ho 1975). An open question is whether a
terminal controller can appropriately master a stochas-
tic problem.

3 Terminal optimal feedback control

We define a terminal optimal feedback controller in
the presence of noise as a controller which plans op-
timal trajectories from ongoing estimated state to the
target. Each trajectory is optimal in the sense that it
is a series of optimally planned submovements. Since

optimization operates on each single trajectory, but
not across trajectories, the model is not optimal in a
stochastic sense. We note that a TOFC is not a new
type of controller, but in fact a classical controller in
the engineering literature (Bryson and Ho 1975, see
also Hoff and Arbib 1993 for a related model applied
to motor control). The theory of TOFC is in fact the
theory of optimal control with terminal constraints
which is explained formally in Appendix B and for
practical applications in the linear case in Appendix C.
The theory was described with a general cost function
(8). Actually, a quadratic function of controls, similar
to the effort term of the cost function in SOFC (3), was
used in the simulations, i.e.

L [x(t), u(t)] = ||u(t)||2 .

We first note that SOFC and TOFC have a qualitatively
similar behavior at the level of individual movements.
For instance, for point-to-point movements, they gen-
erate straight trajectories with bell-shaped velocity pro-
files. The main difference is that results obtained with
TOFC do not depend on parameters (such as r, wv ,
w f in SOFC). We have shown previously that TOFC
is appropriate to provide uniquely defined emergent
kinematic properties for kinematically redundant prob-
lems (Guigon et al. 2007). Briefly, the model gives a
quantitative account of trajectories (e.g. curvature), ve-
locity profiles, and final postures of pointing and grasp-
ing movements, and explains kinematic invariance for
amplitude and load.

We replicated the preceding simulations on the
structure of variability with TOFC. There is no dif-
ficulty for the line-pointing task. Emergence of the
uncontrolled manifold is shown in Fig. 5(a,b). The tests
described in Fig. 5 gave similar results with TOFC.
The case of the via-point task is more problematic.
There are two ways to force a movement through via-
points. On the one hand, distance to these points can
be introduced in the cost function of the problem. This
solution is similar to the mixed error/effort function
of SOFC and is not satisfactory. On the other hand,
the via-points can be entered as constraints similar to
initial and final positions. Again, this method is not
fully convincing as, in the presence of noise, we need
to know at each time which via-points remain to be
considered. To circumvent this difficulty, we assumed
that the trajectory successfully passes through a via-
point if the estimated position passes close enough to
the via-point (i.e. in an arbitrary region around the
via-point; see figure caption for details). On this basis,
we replicated the structured variability in the via-point
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Fig. 5 (a) Variation in the aspect ratio of the terminal vari-
ability ellipse as a function of σSDNm in the line-pointing task
with TOFC. (b) Example of an uncontrolled manifold [same
movement as in Fig. 3(b)]. σSDNm = 0.4, σSINs = 0.8 (known). (c)
Same as in Fig. 4 for TOFC (σSDNm = 0.4, σSINs = 0.4). The task
was solved in the following way. We decided that a via-point
was reached when the estimate position of the system enters a
5 mm-radius circle around the via-point. Starting from P0 at t = 0,
we computed the optimal trajectory which goes through P1 at
t1 and through P2 at t2. The trajectory evolved and approached
P1. Once P1 was reached (according to the preceding criterion),
we computed the optimal trajectory which goes through P2 at t2
and through P3 at t3. The procedure was repeated until P4 was
reached

task in Fig. 5(c). Yet, the question remains how such a
task can be appropriately modeled in SOFC or TOFC
framework.

These results provide further support to the analysis
of the preceding section. Structured variability can be
obtained with an optimal feedback controller which is
unaware of noise.

4 Amplitude/duration scaling

An important issue is the possible origin of am-
plitude/duration scaling in stochastic optimal control
models. Scaling can result from time minimization to
match a given level of terminal variability (Harris and
Wolpert 1998; Meyer et al. 1988). However, this so-
lution predicts that scaling is associated with constant
terminal variability. Experimental observations show
that variability can increase with movement amplitude
for series of movements obeying an amplitude/duration
scaling law (Gordon et al. 1994a). Here, we explore
an alternative (but not mutually exclusive) solution
to scaling in the framework of TOFC, based on time
minimization to match a given level of effort.

We first consider control in the absence of noise.
In this case, there exists a monotonic (and thus in-
vertible) relationship between the effort associated
to a movement and its duration for a given ampli-
tude [Fig. 6(a)]. Thus a movement can be univocally
specified by its effort level. This property is formally
stated as follows. The ongoing effort can be used as
an additional state variable (z; Appendix B). Speci-
fication of movement duration (T ) can be replaced
by specification of total effort (z(T ) = zT ) which
is a classical boundary condition. Movement dura-
tion emerges from an optimal control problem with
open final time (Bryson and Ho 1975). This open fi-
nal time terminal controller is also an optimal feed-
back controller if the effort-to-go at each processing
step (calculated as the difference between the total
effort zT and the already spent effort) is used as an
initial condition and by the way as an implicit indica-
tion of the remaining time. In this framework, ampli-
tude/duration scaling occurs when an amplitude/effort
relationship is chosen. The simplest relationship is
a constant effort (although other relationships could
be used; see Section 5). We applied this relation-
ship to movements of different amplitudes and online
corrections of these movements [Fig. 6(b); Pélisson
et al. 1986]. It predicted amplitude/duration scaling for
the unperturbed movements and a linear change in
durations for the corrected movements [Fig. 6(c)].

In the presence of noise, amplitude and total effort
level are deterministic quantities which are used ini-
tially as boundary conditions. In each single trial, the
effort-to-go is a well defined quantity which is used to
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Fig. 6 Movements and on-line movement corrections at constant
effort in TOFC. (a) Movement effort as a function of movement
duration for different amplitudes (from bottom to top: 30, 40, 50,
60 cm). The horizontal gray line indicates the effort level used
in (b), and (c). (b) Velocity profiles of a normal (gray) and a
perturbed (black) movement. Amplitude was 30 cm and direction
was 45◦. At t = 50 ms, the target was displaced by 4 cm in the di-
rection of movement. (c). Variations in movement duration with
amplitude for normal (◦) and perturbed (square) movements (an
arrow indicates the direction of the perturbation). Movements
of 30, 40 and 50 cm were simulated (45◦). Same perturbation
as in (b)

determine the remaining time at each step. Thus the
functioning of the open final time TOFC is similar in
noise-free and noisy conditions. The sole difference is
that, across trials, the effort-to-go is a random vari-
able in the latter condition, and so is the movement
time. We simulated the open final time TOFC in the
presence of noise. The constant effort condition led
to the expected amplitude/duration scaling [Fig. 7(a)]
and amplitude/peak velocity scaling [Fig. 7(b)]. Here,
the duration and peak velocity are mean quantities.
We observed that terminal variability (s.d.) varied lin-
early with peak velocity [Fig. 7(c)] as was observed
experimentally (Burdet and Milner 1998; Meyer et al.
1988; Novak et al. 2000). For comparison, we repli-
cated these simulations for nonconstant effort condi-
tions [Fig. 7(a), inset]. These conditions also produced
amplitude/duration and amplitude/peak velocity scal-
ing [Fig. 7(a,b)], but nonlinear changes in terminal
variability with peak velocity [Fig. 7(c)].

We also observed that scaling was not associated
with a specific pattern of terminal variability [Fig. 7(d)).
In one simulation (black lines), variability increased
with movement amplitude, but other patterns can be
found in other noise conditions (gray lines). We note
that the goal here was not to account for a particular
pattern of variability (e.g. Gordon et al. 1994a; van
Beers et al. 2004), but simply to illustrate the dissoci-
ation between scaling and variability.

5 Discussion

Influence of noise is central to current approaches
of motor control (Harris and Wolpert 1998; Saunders
and Knill 2004; Todorov and Jordan 2002). A critical
issue is the role of noise in the emergence of motor
behaviors. Todorov and Jordan (2002) proposed that
motor controllers in the brain act as stochastic opti-
mal feedback controllers (SOFCs), and provided strong
theoretical and experimental arguments that support
this idea. The main difficulty with this proposal is that
a SOFC has no kinematic competency. Historically,
optimality principles have been used in the framework
of motor control to identify unique solutions to re-
dundant problems (trajectory formation, muscle force
repartition, ...). Since SOFC optimizes a parameter-
dependent cost function, it generates an infinite number
of reasonable solutions to redundancy. A supplemen-
tary principle is needed to choose among these solu-
tions. Todorov (2005) proposed to scale the parameters
of the cost function with movement amplitude and
duration. Although this scaling is probably efficient, it
means that the model should contain some knowledge
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Fig. 7 Open final time TOFC
in the presence of noise
(σSDNm = 0.5, σSINs = 0.15,
σSDNs = 0.5). (a) Amplitude/
mean duration scaling
for constant effort (circle)
and nonconstant effort
(open and closed square)
conditions. Inset: amplitude/
effort forthethree conditions.
(b) Amplitude/mean peak
velocity scaling for the data in
(a). (c) Changes in terminal
accuracy (measured as the
square root of the surface of
the variability ellipse) with
peak velocity for the data in
(a). (d) Pattern of variability
for unperturbed movements
in Fig. 6(c) in different
noise conditions (black:
σSDNm = 0.2, σSINs = 0.5,
σSDNs = 1; gray: σSDNm = 0.2,
σSINs = 0.05, σSDNs = 1)
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of its functioning (i.e. how biases, trajectories, velocity
profiles depend on the parameters), or some criterion
to evaluate its functioning (what is a normal bias, a
normal trajectory or a normal velocity profile?). This
point contradicts a major premise of the SOFC model
that motor behavior arises from the specification of a
behavioral goal.

To circumvent this difficulty, we tested the idea that
a different type of controller (TOFC), which treats
errors and effort separately, could be used to obtain
both kinematic and stochastic competencies. On the
one hand, TOFC generates unique kinematic behaviors
since its cost function has no parameters (Guigon et al.
2007). It should be noted here that satisfying a hard
constraint (zero terminal error) does not preclude the
existence of a terminal bias. In fact, errors are measured
relative to the estimated state of the system which need
not in general be similar to the real state. On the other
hand, our results show that structured variability (as
defined by Todorov and Jordan 2002) could result from
the action of a deterministic controller coupled with an
optimal state estimator. These results are not sufficient
to conclude that TOFC has a real stochastic compe-

tency. It is possible that a truly stochastic controller
is necessary to account for motor variability in some
experimental conditions. Although we cannot reject
this possibility, our analysis shows that a critical com-
ponent which allows a stochastic controller to master a
stochastic system, i.e. an efficient state estimator, is also
present in TOFC. For the time being, we can conclude
that TOFC has more kinematic competency, but not
less stochastic competency than SOFC.

A critical issue for models of motor control is to
explain the scaling between amplitude and duration.
In TOFC, scaling occurs for movements which have
the same effort. This idea is closely related to the
emergence of scaling for movements of identical termi-
nal variance in the MV model of Harris and Wolpert
(1998). The main difference between effort and ter-
minal variance is the variability pattern prescribed by
the scaling law. In the latter case, variability is, by
construction, constant. In the former case, variability
changes with movement amplitude with a pattern which
depends on the structure of noise. Constant variance
and constant effort are the same criterion in MV in the
presence of SDNm. In this case, the optimal command
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is the smaller command since noise increases with the
size of the command. In TOFC, constant variance and
constant effort are different criteria, which suggests that
this framework could be more appropriate than MV to
explain amplitude/duration scaling.

The proposal that scaling is associated with constant
effort (or constant variability in the MV model) was
made for simplicity. However, many different relation-
ships between amplitude and effort lead to scaling. The
main interest of the constant effort is its ecological
interpretation: it can be considered as the largest effort
that can be allotted to a single motor act in a series (e.g.
experimental session, day, race, ...) given the number of
repetitions of this act and the available resources (con-
trol, energy, ...). Furthermore, constant effort predicts
that variability increases linearly with peak velocity
(Burdet and Milner 1998; Meyer et al. 1988; Novak
et al. 2000). This relationship is in general nonlinear
when the effort is not constant. An interesting alterna-
tive to explain scaling is simultaneous minimization of
time and effort (Hoff 1994) using

T + ρ

∫ T

0
u(t)Tu(t) dt (1)

as a cost function. Here, ρ is a parameter which sets
the trade-off between time and effort, and defines an
amplitude/duration relationship. The two approaches
lead to quite similar results. Yet, the specification of
effort appears more principled than the specification of
a hidden parameter (ρ).

Our results show that TOFC is an interesting alter-
native to SOFC. On the one hand, the separation of
constraints (error) and objectives (effort) relieves the
difficulties of the mixed error/effort cost. On the other
hand, although it is not stochastically optimal, TOFC
can account for the structure of motor variability much
like SOFC. Thus TOFC could be an appropriate frame-
work for a unified approach to motor control which
would simultaneously account for mean characteristics
of motor behavior (e.g. kinematic invariants; Guigon
et al. 2007) and structure of motor variability. More
generally, TOFC provides a principled solution to the
Bernstein problem. Interestingly, this problem raises
fundamental questions in the framework of compu-
tational neuroscience: How does the nervous system
tackle redundancy (Wolpert and Ghahramani 2000)?
What is the nature and influence of noise on sensory
and motor information processing (Harris and Wolpert
1998; Meyer et al. 1988; Stein et al. 2005; van Beers
et al. 2004)? How does the nervous system control
motor behavior in the presence of noise (Chhabra and
Jacobs 2006b; Harris and Wolpert 1998; Meyer et al.
1988; Todorov 2004; Trommershäuser et al. 2005)?

How does the nervous system perform state estimation
and multimodal integration on noisy information (Knill
and Pouget 2004; van Beers et al. 1999; Wolpert et al.
1995)? Thus the Bernstein problem is a fundamental
computational problem that goes far beyond motor
control. The present results should be of interest in a
broad framework which encompasses experimental and
theoretical studies of behavioral variability.

Appendix

A SOFC

Derivation of the following results is found in Todorov
(2005). We consider the stochastic optimal feedback
control problem defined by the noisy dynamics⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xt+δ = Axt + But + np
t (process)

yt = Hxt + no
t (observation)

x̂t+δ = Ax̂t + But

+Kt(yt − Hx̂t) (estimation)

np
t = ξt +∑c

i=1 εi
tCiut (process noise)

no
t = ωt +∑d

i=1 εi
t Dixt (estimation noise)

(2)

where xt ∈ R
n is the state of the controlled system,

ut ∈ R
m a control signal, A the n × n process ma-

trix, B the n × m control matrix, t = (0, δ, ..., Nδ=T ),
δ the discretization timestep, N the number of time
steps, T the duration of process simulation, yt ∈ R

p

the observation vector, H the p × n observation ma-
trix, x̂t the state estimate, Kt the Kalman gain, ξt a n-
dimensional zero-mean Gaussian random vector with
covariance matrix �ξ (signal-independent motor noise;
SINm), εt = [ε1

t ...ε
c
t ] a zero-mean Gaussian random vec-

tor with covariance matrix �ε (signal-dependent motor
noise; SDNm), [C1...Cc] a set of n × m matrices, ωt

a p-dimensional zero-mean Gaussian random vector
with covariance matrix �ω (signal-independent sen-
sory noise; SINs), εt = [ε1

t ...ε
d
t ] a zero-mean Gaussian

random vector with covariance matrix �ε (signal-
dependent sensory noise; SDNs), [D1...Dd] a set of
p × n matrices, and the cost function

E
[ T∑

t=0

xT
t Qtxt

︸ ︷︷ ︸
error

+
T∑

t=0

uT
t Rut

︸ ︷︷ ︸
effort

]
, (3)

where E is the expectation over noise (SINm, SDNm,
SINs, SDNs), Qt a task-specific error matrix and R
an effort penalty matrix. The symbol (T) denotes the
transpose of a vector or a matrix.

The controller is

ut = −Ltx̂t, (4)
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where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lt = (R + BT Sx
t+δB+∑

i CT
i �εT(Sx

t+δ + Se
t+δ)�

εCi
)−1 BT Sx

t+δA
Sx

t = Qt + AT Sx
t+δ(A − BLt)

+∑i DT
i �ε T KT Se

t+δ Kt�
ε Di

Se
t = AT Sx

t+δBLt + (A − KtH)T Se
t+δ(A − KtH)

(5)

with Sx
N = QT and Se

N = On×n (null n × n matrix). The
Kalman filter was
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kt = A�e
t HT(H�e

t HT + �ω

+∑i�
εDi(�

e
t +�x̂

t
+�x̂e

t +�ex̂
t )DT

i �ε T)−1

�e
t+δ = �ξ + (A − KtH)�e

t AT

+∑i �
εCi Lt�

x̂
t LT

t CT
i �εT

�x̂
t+δ = KtH�e

t AT + (A − BLt)�
x̂
t (A − BLt)

T

+ (A−BLt)�
x̂e
t HT KT

t
+ KtH�ex̂

t (A−BLt)
T

�x̂e
t+δ = (A − BLt)�

x̂e
t (A − KtH)T

(6)

with �e
0 = �0, �x̂

0 = x̂0x̂T
0 , and �x̂e

0 = On×n. See
Todorov (2005) for the iterative solution to Eqs. (5)
and (6).

B Optimal control with terminal constraints: formal

Here, we briefly recall some textbook notions on opti-
mal control problems with terminal constraints in the
general nonlinear case (Bryson 1999) and nonlinear
state estimation (Goodwin and Sin 1984).

Formulation of the problem

We consider a dynamical system

ẋ(t) = f [x(t), u(t)] (7)

where x ∈ R
n is the state of the system and u ∈ R

m

a control vector. An optimal control problem for this
system is to find the control vector u(t) for t ∈ [t0; t f ] to
minimize a performance index

J = φ
[
x(t f )

]+
∫ t f

t0
L [x(t), u(t)] dt (8)

subject to Eq. (7), with boundary conditions

x(t0) = x0 ψ
[
x(t f )

] = 0. (9)

We consider the optimal control problem defined by
Eqs. (7), (8) and (9). We consider the supplementary
state variable z defined by

ż(t) = L [x(t), u(t)]

and z(t0) = 0. Thus z(t f ) is the second part of the per-
formance index (8). We define the new state variable

x̃(t) =
(

z(t)
x(t)

)
.

We can reformulate the optimal control problem in the
following way: find the control vector u(t) to minimize

J̃ = φ̄
[
x̃(t f )

] =
(

z(t f )

φ
[
x(t f )

]
)

(10)

subject to

˙̃x(t) = f̃
[
x̃(t), u(t)

] =
(

L [x(t), u(t)]
f [x(t), u(t)]

)
(11)

and

x̃(t0) = x̃0 =
(

0
x0

)
ψ̃
[
x̃(t f )

] =
(

0
ψ
[
x(t f )

]
)

= 0. (12)

Thus we can remove the integral term in the perfor-
mance index. This formulation (Mayer formulation) is
simpler for numerical methods.

Solution

Here, we consider the optimal control problem defined
by Eqs. (10), (11) and (12). For simplicity, we remove
the tilde sign. We adjoin the constraints to the perfor-
mance index with Lagrange multipliers ν and λ(t)

J̄ = φ + νTψ +
∫ t f

t0
λT(t) { f [x(t), u(t)] − ẋ(t)} dt.

The Hamiltonian function is

H [x(t), u(t), λ(t)] = H(t) = λT(t) f [x(t), u(t)].

The generalized performance index can be written

J̄ = [x(t f )] − λT(t f )x(t f )

+λT(t0)x(t0) +
∫ t f

t0

{
H(t) + λ̇

T
(t)x(t)

}
dt

following integration of the λT ẋ by parts, where
 = φ + νTψ .

A variation of J̄ writes

δJ̄ = [(x − λT)δx
]

t=t f
+ [λTδx

]
t=t0

+
∫ t f

t0

[(
Hx + λ̇

T
)

δx + Huδu
]

dt
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for variations δx(t) and δu(t). The Lagrange multipliers
are chosen so that the coefficients of δx(t) and δx(t f )

vanish

λ̇
T = −Hx = −λT fx, (13)

with boundary conditions

λT(t f ) = φx(t f ) + νTψx(t f ). (14)

For a stationary solution, δJ̄ = 0 for arbitrary δu(t),
which implies

Hu = λT fu = 0 t0 ≤ t ≤ t f . (15)

The problem defined by Eqs. (7), (13), (14) and (15)
is a two-point boundary value problem which can be
solved by classical integration methods (Bryson 1999).

Terminal feedback control and Extended Kalman filter

In the stochastic case, Eq. (7) becomes

ẋ(t) = f
[
x(t), u(t), ξ(t), ε(t)

]
(16)

and observation follows from

y(t) = h [x(t), ω(t), ε(t)] , (17)

To obtain a state estimator for Eqs. (16) and (17), we
need an extended Kalman filter (EKF), which is an
extension of the Kalman filtering principle for opti-
mal nonlinear estimation. The EKF retains the linear
calculation of the covariance and gain matrices of the
Kalman filter, and updates the state estimate using a
linear function of a filter residual. State propagation is
done using the original nonlinear equation. Evolution
of the covariance matrix P(t) (n × n) is governed by

Ṗ(t) = F(t)P(t) + P(t)F(t)T + �ξ + G�εGT

−K(t)H P(t) P(t0) = P0 (18)

where

F(t) = ∂ f
[
x(t), u(t), ξ(t), ε(t)

]
∂x

,

G(t) = ∂ f
[
x(t), u(t), ξ(t), ε(t)

]
∂ε

=

⎛
⎜⎜⎜⎜⎝

...

...[
Ciu(t)

]T
...

...

⎞
⎟⎟⎟⎟⎠ .

and K(t) is the Kalman gain

K(t) = P(t)HT [�ω + J(t)�ε J(t)T] −1,

with

J(t) = ∂h [x(t), ω(t), ε(t)]
∂ε

=

⎛
⎜⎜⎜⎜⎝

...

...[
Dix̂(t)

]T
...

...

⎞
⎟⎟⎟⎟⎠ .

State propagation was governed by

˙̂x(t) = f
[
x̂(t), u(t)

]+ K(t)
[
y(t) − Hx̂(t)

]
with

˙̂x(t0) = x̂0.

C Optimal control with terminal constraints: practical

In the linear case, the problem defined by Eqs. (13),
(14) and (15) is a first-order linear dynamical system
which can be solved explicitly. The solution consists in
a 2n × 2n matrix �(t) such that(

x(t)
λ(t)

)
= �(t)C (19)

is the solution at time t, where C ∈ R
2n is a vector deter-

mined by the boundary conditions (9). To simplify we
use ψ

[
x(t f )

] = x(t f ) − x f , but more complex boundary
conditions can be handled as well. To obtain C, we write(

x0

λ(t0)

)
= �(t0)C =

(
�11(t0) �12(t0)
�21(t0) �22(t0)

)(
C1

C2

)

and(
x f

λ(t f )

)
= �(t f )C =

(
�11(t f ) �12(t f )

�21(t f ) �22(t f )

)(
C1

C2

)
.

Thus(
�11(t0) �12(t0)
�11(t f ) �12(t f )

)(
C1

C2

)
=
(

x0

x f

)
,

which gives

C =
(

�11(t0) �12(t0)
�11(t f ) �12(t f )

)−1 (
x0

x f

)
. (20)

A discretized version of the EKF was used with

Kt = Ft Pt HT(H Pt HT + �ω + Jt�
ε JT

t )−1, (21)

and

Pt+1 = Ft Pt FT
t +�ξ +Gt�

εGT
t −Kt(H Pt HT)KT

t . (22)
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