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Neural nétwork models of cortical functions
based on the computational properties of the cerebral cortex
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Summary -~ We describe a biologically plausible modelling framework based on the architectural and processing characteristics
of the cerebral cortex. Its key feature is a multicellular processing unit (cortical column) reflecting the modular nature of cortical
organization and function. In this framework, we describe a neural network model of the neuronal circuits of the cerébral cortex
that learn different functions associated with different parts of the cortex: 1) visual integration for invariant pattern recognition,
performed by a cooperation between temporal and parietal areas; 2) visual-to-motor transformation for 3D arm reaching movements,
performed by parietal -and motor areas; and 3) temporal integration and storage of sensorimotor programs, performed by networks
linking the prefrontal cortex to associative sensory and motor areas. The architecture of the network is inspired from the features
of the architecture of cortical pathways involved in these functions. We propose two rules which describe neural processing and
plasticity in the network. The first rule (adaptive tuning if gating) is an analog of operant conditioning and permits to learn to
anticipate an action. The second rule (adaptive timing) is based on a bistable state of activity and permits to learn temporally

separate’ events forming a behavioral sequence.

neural modelling / cerebral cortex / cortical column / learning / sensorimotor programs

Introduction

When facing a complex system, a valuable ap-
proach is to attempt to approximate its organiza-
tion and its function by a model. In recent years,
numerous information-processing models have at-
tempted to address issues on brain functions. A
classical approach in brain modelling is to study
the computational problems that must be solved,
independently of underlying biological constraints
(Marr, 1982). Emphasis is on representation of in-
formation, algorithms, symbolic description. For
example, Artificial Intelligence models assume
that brain circuits manipulate symbolic informa-
tion according to production rules (Pylyshyn,
1984).

Churchland and Sejnowski (1988) have
stressed the limitation of Marr’s approach for un-
derstanding complex information processing sys-
tems (in particular brain systems). Dissociation
between hardware and software may be mislead-
ing since neurobiological data provide: essential
constraints on computational theories.

* Connectionist models provide implementation
of biological functions in terms of synaptic inter-

actions (McCulloch and Pitts, 1943; Hebb, 1949)

and are thus likely to solve the software/hardware

dissociation. Furthermore, they are susceptible to
learn through the modification of synaptic efficacy.
This property has greatly contributed to the popu-
larity of these models. Recently, Rumelhart and
McClelland (1986) have described techniques to
build connectionist models, including a powerful al-
gorithm to train neural networks (back-propagation
of error). Subsequently, back-propagation-based
models were shown to capture biological (Zipser
and Andersen, 1988) as well as psychological
(Cohen and Servan-Schreiber, 1992) features of in-
formation processing in the brain.

Great care has been taken to justify the validity
of models based on the back-propagation algo-
rithm, and to assess their predictive value (Ru-
melhart: and McClelland, 1986). However, Crick
(1989) has stressed' mhat thesé models can merely
be considered as demdnstratlons (models demon-
strate that it is not 1mposs1ble to find a neural
network which performs.a given function. How-
ever, they do not prove that brain circuits perfor-
ming the same function have a similar structure
or similar internal mechamsms) since they result
from an optimization-based training process
which is not likely to be 1mplementqd in brain
circuits.
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At least four properties should characterize a
reasonable model of how brain circuits learn and
execute a given task (Reeke and Sporns, 1993).
First, the model must rely on simple and plausible
neural architectures and mechanisms, which are
consistent with experimental data. Second, learn-
ing must occur through natural interactions, corre-
sponding either to a conditioning protocol or to
a developmental stage. Third, outcomes of the
model must be consistent with experimental re-
sults available at the level(s) of representation
used in the model (neuronal activity, behavior).
Fourth, the model must make testable predictions.

We describe a biologically plausible modelling
framework based on the architectural and process-
ing characteristics of the cerebral cortex (Burnod,
1988). Its key feature is a multicellular processing

unit (cortical column) reflecting the modular na- -

ture of cortical organization and function. In this
framework, we describe a neural network model
of the neuronal circuits of the cerebral cortex that
learn different functions associated with different
parts of the cortex: 1) visual integration for in-
variant pattern recognition, performed by a co-
operation between temporal and parietal areas
(Otto et al, 1992); 2) visual-to-motor transforma-
tion for 3D arm reaching movements, performed
by parietal and motor areas (Burnod et al, 1992);
and 3) temporal integration and storage of sen-
sorimotor programs, performed by networks link-
ing the prefrontal cortex to associative sensory
and motor areas (Guigon ‘et al, in press). The
architecture of the network is inspired from the
features of the architecture of cortical pathways

involved in these functions (Ungerleider and

Mishkin, 1982; Fuster, 1988; Johnson, 1992). We
propose two rules which describe neural process-
ing and plasticity in the network. The first rule
(adaptive tuning if gating) is an analog of operant

conditioning. and permits te learn to anticipate an.

action. The second rule (adaptive timing) is based
on a bistable state of activity and permits to learn
temporally separate events forming a behavioral
sequence. .

Computational principles

The cerebral cortex has been subdivided into a
number of functionally specific areas (Brodmann,
1909). However, in spite of this functional diver-
sity, the cortex is made of repetitive neuronal cir-
cuits (cortical columns) which share common
features in sensory, motor and associative areas

(Mountcastle, 1978). This modular organization
of the neocortex is now referred as an organizing
principle for cortical functions (Szentdgothai,
1975; Mountcastle, 1978; Eccles, 1981).

The basic columnar operation common’to ail

cortical areas can produce a large range of beha-

vioral adaptations, depending on: 1) the sources
and terminations of connections of columns,
which define the sensorimotor repertoire of cor-
tical -units; and 2) regionally specific integrative
and registering properties of cortical neurons. Re-
gional variations in anatomy have been described
in relation to the nature and organization of af-
ferent and efferent flows of information. Charac-
teristics have been derived in terms of
feedforward, feedback, or lateral information

flows, of primary and secondary indices, of topo-

graphic ' or non-topographic mapping (Ballard,
1986). Regional variations in columnar properties
are related to dendritic and somatic properties
defined by the distribution of ionic channels neu-
rotransmitter and neuromodulator  receptors
(Shepherd, 1989)..

The columnar organization of the cerebral cortex

The cortical maps are not made of a uniform lat-
tice of neurons, but of local circuits with different
neurons (pyramidal neurons and interneurons) ar-
ranged throughout the depth of the six cortical
layers (for review see Mountcastle,. 1978). These
local . multi-neuronal  circuits form cortical col-
umns which have been described as functional
units in the different cortical areas (Szentdgothai,
1975; Hubel and Wiesel,- 1977; Mountcastle,
1978).

The cortical layers correspond to a differential
distribution of neuronal types in local circuits. as
well as subsets of inputs and outputs. The inter-
mediate layer. IV (which contains granular cells)
divides two subsets of pyramidal neurons, the
upper division (supragranular cortical layers I, I
and III) and the lower division (infragranular cor-
tical layers V and VI). These divisions process
different types of information. The granular layer.
receives the main sensory inputs, either directly.
from the thalamus or from columns of cortical
areas involved in earlier stages .of sensory pro-
cessing (feedforward connections). The supragra-
nular layers are mainly specializéd in
cortico-cortical connections, toward adjacent cor-
tical zones or toward more distant cortical areas
(Szentdgothai, 1975; Jones, 1981). The 1nfragra-
nular layers pro;ect outside the cortex toward



other néural structures such as the superior col-
liculus or control the ascending information flow,
through feedback connections (van Essen and
Maunsell, 1983).

Therefore, -a processing unit should better
model a prototypic local circuit of neurons rather
than a prototypic neuron. The processing unit
must have several input-output layers' modelling
these cortical layers, each layer corresponding to
a specialized integration of subsets of inputs shar-
ing a common origin (Burnhod, 1988; Alexandre
et al, 1991): 1) a feedforward layer receives in-
formation from a sensory channel via previous
processing steps; 2) a lateral layer represents re-
ciprocal connections with other units of the same
map or with similar units in other maps; and 3) a
feedback layer receives a copy of the output per-
formed at a further step.

Neuronal processing

Tuning properties

Neuronal activities in the cerebral cortex can be
described by their optimal tuning (vector of sy-
naptic weight). It corresponds to the tuning of the
sensitivity of neurons to a particular combination
of afferent signals that depicts a stimulus attribute
not specifically éncoded by any single set of pri-
mary afferent fibers, but which is reconstructed
from combinations: These operations have been
well characterized in thalamic-receiving neurons
in sensory areas (visual, somatosensory, auditory).
Typical examples are orientation columns in V1
(Hubel and Wiesel, 1977), axis of motion columns
in the middle temporal area (Albright et al, 1984).
Studies on neuronal activity within the motor cor-
tex (Georgopoulos et al, 1986) have shown that
the activity of individual arm-related neurons is
broadly tuned to a preferred direction of arm
movement in the 3D space.

Gating properties

A major property of cortical neurons is that they
are tuned for more than one sensory or motor mo-
dality. For example, retinal (eg disparity) and
extra-retinal (eg vergence) signals are combined
in neuronal responses in the primary visual cortex
(Trotter et al, 1992). When two different sets of
inputs converge on a cortical circuit, tuning
curves in response to the first type of inputs are
modulated by the second type as a gain factor.
Multiplicative combinations have been observed
between eye position and retinal position in the

293

primary visual cortex (Trotter et al, 1992) and in
the posterior parietal cortex (Andersen et al,

'1985), between vision and memory in the infero-

temporal cortex (Eskandar et al, '1992a,b), be-
tween arm position- and visual trajectory in the
motor and premotor cortex (Caminiti et al, 1991;
Burnod et al, 1992).

The biological basis for neuronal multiplica-
tion may be related to: i) the integrative proper-
ties of dendritic trees which generate non-linear
dendritic operations (Shepherd and Koch, 1989;
Mel, 1993); ii) the voltage properties of NMDA
receptors which provide a multiplicative gain con-
trol mechanism (Nowak et al, 1984); and iii) the
suppression of inhibition which may enhance
neuronal activity by revealing subthreshold exci-
tatory inputs. ‘

Timing properties

Neuronal responses are generally described as
transient variations of membrane potential, with
a time scale of milliseconds, reflecting selective
response to some event. There is now strong evi-
dence for a complementary process, acting over
the time scale of seconds, involved in performing
tasks requiring temporary storage and manipula-
tion of information to guide appropriate actions
(Goldman-Rakic, 1987; Fuster, 1988; Baddeley,
1992). Neural correlates -of this process are long-
lasting activities recorded during delayed tasks in
many parts of the cerebral cortex: prefrontal cor-
tex (Fuster, 1973), premotor cortex (di Pellegrino

-and Wise, 1991), parietal cortex (Andersen et al,

1990) and inferotemporal cortex (Miyashita,
1993). These activities have been shown to reflect
short-term memorization of instruction cues, ex-
pectation of forthcoming signals and preparation
of a behavioral reaction.

The origin of these sustained activities is a
major question. Recurrent circuits of excitatory
and inhibitory neurons are likely to produce a sus-
tained ' activity (recurrent excitatory pathways)
and to stop it (inhibitory pathways) (Dehaene and

“Changeux, 1991). Zipser et al'(1993) provided di-

rect evidence for bistability of cortical neurons in
a recurrent neural network trained to mimic the
input-output characteristics of an active- memory
module. Such circuits: are likely to exist in the
brain. Reciprocal connections between the dorso-
lateral prefrontal cortex and the mediodorsal nu-
cleus of the thalamus: are a possible pathway
(Fuster, 1988), as well as the multiple cortico-
basal ganglia loops (Alexander et al, 1986).
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Alternatively, sustained activity may be con-
trolled at the single cell level, via the properties
of specific ionic channels. Integration of synaptic
inputs over a long time, exceeding the time span
of classical temporal summation, has been dem-
onstrated in hippocampus (Storm, 1988) and the
prefrontal cortex (Hammond and Crépel, 1992).
This membrane behavior is due to a slowly inac-
tivating potassium current (Ip in the hippocampus, Ixs
in the prefrontal cortex). Prolonged near-threshold
depolarizing stimuli activate these currents, which
initially inhibit spike firing: since they overwhelm in-
ward currents. Delayed firing is then observed
which can last for several seconds (Storm, 1988).
Inactivation allows sodium-mediated inward cur-
rents to be unmasked and thus the discharge of
the neuron. Since these currents are partly inac-
tivated, a steady-state potential, hyperpolarizing
or depolarizing the neuron, changes the availa-
bility of the channel and allows the firing mode
of the neuron to be controlled (Hammond and
Crépel, 1992). Repetitive long depolarizing pulses
induce a progressive reduction of the delayed ac-
tivation and can favor spontaneous plateau depo-
larization lasting for several seconds.

Adaptive properties

There is now a great deal of evidence that neo-
cortical neurons can express long lasting modifi-
cations of synaptic transmission such as:long-term
potentiation (LTP) and long-term depression
(LTD) (Tsumoto, -1992). These phenomena have
been observed in the visual cortex (Artola et al,
1990), in the motor cortex (Baranyi and Féher,
1981) and in the prefrontal cortex (Hirsch and
Crépel, 1990).

An hypothesis about the mechanism of plas-
ticity is that experience-dependent synaptic
changes depend on correlations between pre- and
post-synaptic activity (Hebbian rule; for review
see Brown et al, 1990). However, all forms of
plasticity may not actually follow. the same rule.
For example, Artola er al (1990) have observed
that induction of LTP and LTD in the visual cortex
depends on different voltage-dependent thresholds.
Stimulations occurring at different levels of post-
synaptic depolarization are likely to have differ-
ent actions (LTP or LTD).

Furthermore, theoretical studies have stressed
that the Hebbian paradigm may not be appropriate
for all adaptations. Sutton and Barto (1981) have
shown that computational capabilities provided by
a plasticity rule based on temporal contiguity

should not extend beyond spatial correlations. As
a consequence, a network of Hebbian adaptive
elements is not likely to learn problems including
temporal dependencies. Bienenstock et .al (1982)
have shown in a model that Hebbian modifica-
tions combined with a time-varying threshold be-
tween increase and decrease produce a temporal
competition rather than a spatial one. This the-
oretical prediction has received support from re-
cent experimental studies which have shown that
the direction of synaptic modification can be con-
trolled in the temporal domain (Huang et al,
1992).

Architecture: processing pathways and
processing steps

Neuronal operations performed by different popu-
lations of neurons are integrated together by a set
of cortico-cortical connections between temporal,
parietal and frontal regions relating the different
sensory, motor and internal reference frames with
processing pathways. Following anatomical con-
nections, cortical networks can be schematically
described by a circular representation (Burnod,
1988; Morel and Bullier, 1990; Young, 1992).
Figure 1 provides a view of the circular network,
with four input-output poles and reference frames.
Functionally important branches are shown: 1) a
parietal branch which relates the retinal frame
(primary visual area) to the somatomotor frame
(primary motor and somesthetic areas; Johnson,
1992); 2) a temporal branch which relates the re-
tinal frame to regions which can store knowledge
in an object-centered reference frame (Ungerleider
and Mishkin, 1982); and 3) a frontal br’anéh which
can relate somatomotor and object reference frames
by taking into account internal signals on reinforce-
ment contingencies (Goldman-Rakic, 1987). Each
branch can be further divided in several sub-bran-
ches (for example, the MT-MST-FST pathway for
motion processing).

Within each processing pathway, neurens are
connected through feedforward and feedback con-
nections, and show a gradient of properties along
the pathway (Johnson et al, 1993; Tandka, 1993).
For example, in the temporal branch, cortical neu-
rons are selective (Tanaka, 1993): i) to simple
features like oriented edges, color, direction of
movement of moving patterns in the first steps;
ii) to complex patterns (or prototypes) in the hig-
hest steps (and not to their component features);
and iii) to both in intermediate associative levels.
In the frontal and parietal branch, a gradient of
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JFig 1. Circular multilayered network for sensorimotor trans-
formations with reference frames and corresponding cortical
areas. Four input-output poles are shown: (right) external sen-
sory inputs such as visual inputs$-in a retinal centered reference
frame; (top) sensory -interoceptive inputs and -motor com-
mands: for example, this input represents the position of the
arm in a body-centered reference frame; (bottom) information
relative to the objects, stored in an object centered reference
frame, with an input specifying their significance; (left) in-
ternal coding of senserimofor programs.

properties is also observed during visually-guided
reaching movements. with neurons more related to
the signal in the rostral part of premotor cortex,
and neurons more related to movement in the cau-
dal part of the motor cortex, with.similar distribu-
tions -in the parietal region, symmetrical with
respect to the central sulcus (Johnson et al, 1993).

A unit for cortical processing

We have stressed that cortical columns are multi-
cellular circuits organized around a small set of py-
ramidal cells and local-circuit interneurons. Several
circuits have been proposed as a model of the cor-
tical column (Szentdgothai, 1975; Eccles, 1981).
These models provide a description of the intrinsic
organization of the column in relation to cell types.
We focus here on the functional aspect of columnar
operations (Burnod, 1988). The main components
of a plausible column-like unit must be the follow-
ing: i) a layered organization corresponding to the
selective processing of different types of inputs; ii) a
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set of intra-laminar -interactions corresponding to
the filtering operation performed on columnar in-
puts; iii) a set of inter-laminar interactions corre-
sponding to the vertical integrative role of
pyramidal cells within a column; and iv) a set of
registration coefficients deflmng the adaptive
properties of the column.

These components .are summarlzed in flgure 2.
The laminar organization of the column is repre-

-sented by a set of input/output layers. A layer re-

ceives a subset of inputs sharing a common origin
or a common modality. Each layer provides a spe-
cific output, computed from the contribution of
each layer, to a particular target. Adaptive proper-
ties are provided by a set a modifiable columnar
registration coefficients, both within a layer and
between layers.

According to the architecture of the column
(fig 2), processing is performed in two steps, first
within each layer (feature extraction), and then
between layers (vertical integration). The mathe-
matical description is given in the Appendix.

Feature extraction within a layer

This operation reflects the properties of cortical
neurons receiving thalamic inputs. Distributed in-
coming signals are integrated through a weighted
convolution-like operation (equation 1 in the Ap-
pendix). Note that the processing within a layer
is similar to-that ‘'of neural units in most neural
network models. The set of coefficients is defined

layer i

Fig 2. The column-like processing unit. The unit is made up
of several input/output layers (separated by horizontal hatched
lines). Each layer has two parts separated by the vertical
hatched line. It corresponds to the two processing steps of the
unit: 1) each layer receives a subset of inputs (x); which are
integrated independently, and provides a global layer input (x);
2) the second step is a vertical integration of global layer in-
puts. It produces an output per layer (y). Each symbol refers
to a particular type of coefficient (e, intra-layer; &, layer; W,
inter-layer).
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as intra-layer coefficients and. corresponds to the
receptive field of the layer.

Vertical integration between layers

The output activity of a layer depends upon the
combination of two terms, based on the results
of feature extraction within each layer: the first
term expresses the influence of each layer inde-
pendently, with a layer coefficient, and the second
one expresses the non-linear interaction between
pairs of layers, with an inter-layer coefficient.
Two different processes are introduced related to
inter-layer and layer coefficients, which are con-
sistent with neuronal processing- and adaptive
properties of cortical circuits described above:
gating and timing.

Gating and adaptive tuning if gating

Pure non-linear interactions between layers occur
when inter-layer coefficients are non-zero and
layer coefficients are zero. In this case, each layer
acts as an adjustable gain on other layers. There
are two ways to adjust this gain, either by chang-
ing directly the inter-layer coefficient, or by
changing the intra-layer coefficients (receptive
field) of the gating layer.

In the first case, it is possible to learn which
of the gating effect (inter-layer) and of the simple
linear influence (layer) is best adapted to a given
behavior. For example, several models of coordi-
nate transformations consist of a two-layer net-
work which executes an And operation over
inputs in the first layer and a Or operation in the
output layer (Burnod er al, 1992; Groh and Spark,
1992). The processing units in these two layers
should thus be able to learn the appropriate linear
or non-linear operation. The rules can be found
in Burnod et al (1992) and Guigon and Burnod
(in press).

In the second case, the inter-layer coefficients
are 1, the layer coefficients are zero, and the
intra-layer coefficients are adjusted to produce
the appropriate behavior. We propose a rule
named adaptive tuning if gating (equation 3 in
the Appendix) which enables the processing units
to measure the consequence of their activations
in relation to the expected goal, in order to learn
to reach that goal. Equation 3 can be described
intuitively in the following way. For a given state
of a unit, defined by an input in one layer (relator
input), the output activity of this unit (action) pro-
duces a geafferent input in a different layer, which
can be viewed as the sensory consequence of the

action. A 'photography’ of this reafferent input is
stored in the intra-layer coefficients of the layer.
Typically, the relator input can be the position of
the arm, the action a command of an arm move-
ment, and the reafferent visual input the visual
effect of the movement. The processing unit
learns the consistent relationship between a posi-
tion, a movement and a target. In this way, for a
given arm position, an input in the visual layer
corresponding to a target predicts the appropriate
command to reach this target.

A neural correlate of adaptive tuning if gating
has been described in the cat visual cortex by
Frégnac er al (1988). They showed that the orien-
tation selectivity of a visual cortical neuron can
be modified by pairing an increase in postsynaptic
activity with a new stimulus.

Timing and adaptive timing
Linear contributions within a column can be used
to learn to correlate events that are not contiguous
in time (Guigon et al, in press). Within each layer,
a transient input can elicit a long-lasting activity
which represents a short-term memory for this
input (equation 4 in the Appendix). The prob-
ability of eliciting a sustained activity is defined
by the layer coefficient. The sustained activity is
stopped by a transient input in an other layer. This
bistable behavior performs a "temporal And’ oper-
ation upon pairs of non-simultaneous inputs.
The probability of eliciting a sustained activity
can be adjusted by learning, by relating suc-
cessive inputs which form a behavioral sequence
to a reinforcement sighal indicating the correct-
ness of the behavior (equation 5-in the Appendix).
The layer coefficient, which controls the transi-
tion to the On state of the bistable behavior, first
undergoes a decrease at the transition to the Off
state, and then a greater increase after the rein-
forcement signal. This rule results in a global in-
crease for reinforced sequences and a global
decrease for non-reinforced sequences. Before
learning, the layer coefficients are assumed to
have low values, and thus units are unlikely to
become activated (sustained activity). Repeated
presentations of a reinforced sequence lead to in-
creased weight. Thus, after learning, the unit will
become activated when the first event of the se-
quence is presented, predicting the occurrence of
a reinforcement. This rule relates the quantity of
sustained activity to the predictability of rein-
forcement.



Learning functions in different cortical

regions

In this section, we describe the properties of three
neural networks made of column-like processing
units, corresponding to different architectures and
different columnar operations. Each network is in-
spired by the architecture of a known cortical net-
work and reproduces its function. '

Learning invariant recognition

Two important transformations are performed by
the visual system: 1) a low level transformation
resulting in the perceptual grouping of textured
surfaces; and 2) a higher level transformation re-
sulting in invariant recognition of objects. Neuro-
biological data give some insights in the nature
of these transformations. Low-level processing is
probably performed at early stages of the visual
system. Visual information is then processed at
least in two parallel streams (fig 3A), the dorsal
stream to the parietal lobe for target location (the
Where pathway) and the ventral stream to tem-
poral lobe for target identification (the What path-
way) (Ungerleider and Mishkin, 1982). The more
anterior portions of the temporal lobe tend to be
critical for storing prototypes of visual objects in a
form that is accessible even with large variations
in texture, position, orientation and size.. The pos-
terior regions are more concerned with addressing
transforms of the retinal images to the stored
prototypes (Weizkrantz and Saunders, 1984) and
receive projections from the parietal stream which
can be involved in geometrical transformations
necessary to match the incoming signal with the
stored prototypes. The main constraint of visual
processing is. to capture. the diversity in the flow

of visual information and to form invariant inter-

nal representations.

The network model of the visual system has a
Y-like double-branched multilayered architecture
(fig 3B), with one input (the retina) and two par-
allel outputs, which mode] the parietal and tem-
poral pathways (Otto et al, 1992). Several steps
transform the retinal information into a prototype
in an object-centered reference frame in the tem-
poral branch, and into an oculomotor command
in the parietal branch: i) primary areas perform
low-level processing, such as elementary feature
extraction, on the retinal information; ii) second-
ary areas perform more elaborated processing
using larger receptive fields, but still with a re-
tinal reference frame; iii) associative intermediate
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Fig 3. A. Cortical network for invariant recognition. Visual
information is first processed by V1 and V2-and then by two
major pathways: a ventral pathway toward the infetotemporal
lobe rather involved in object recognition and the dorsal path-
way toward the parietal lobe rather involved in localization
and motion detection. The figure shows some important func-
tional steps in each stream: V4 and IT subdivisions (TEO,
TEp, TEa) in the ventral pathway, PO and PP (including 7a
and LIP) in the dorso-medial pathway and MT and MST in
the dorso-lateral pathway. B. Architecture for invariant pattern
recognition. The global architecture of the network is Y-like
shaped with a What pathway performing pattern recognition
and a Where pathway encoding the location of the pattern.
PSA, primary sensory area; SSA, secondary sensory; tAA,
temporal associative; tSA, temporal semantic; pAA,’ parietal
associative; pSA, parietal sernantic.
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Fig 4. A. Performances of the temporal pathway: effect of
changing size only. The network is trained to recognize 28
patterns of fixed size (size 12, 24 x 24 pixels) presented in
the central position. During the recognition session, the pat-
terns are presented, in the central position, but with varying
sizes: from a size 13 (26 x 26 pixels) down to a size 3 (9 X
9 pixels). Note that the recognition rate remains above 70%
despite decreases from the learned size of up to 33%. B. Co-
operation between temporal and parietal pathways. A pattern
is presented during the recognition session with varying sizes
and position shifts on the retina of up to 10 + 10 ’pixels’.
This figure shows the behavior of the double-branched net-
work for a prototype (here the capital letter "X’) presented
with one size (size 10, 20 x 20 pixels) in all the positions
(in the upper quarter of the retina, the other quarters can be
deduced by symmetry). The dark region represents the posi-
tions where the pattern is directly recognized by the What
branch. Lines (black circles indicate the direction) represent
the vectorial population coding of an ocular movement per-
formed in the Where branch when the What branch fails to
recognize the pattern. Notice that these vectors contain the
directional information needed to reset the pattern closer to
the positions where it is directly recognized (dark squares).
Furthermore, the amplitude of the vector increases with the
distance of the pattern from the center.

areas learn to relate the resulting pattern of ac-
tivity with the iv) highest-level steps which store
the learned prototypes. The temporal and parietal
branches differ by the size of the receptive fields
in associative and semantic maps. Receptive
fields in the parietal branch become very large.
Global information about the direction and the
distance of the retinal stimulus from the center
of the retina is extracted and helps to produce an
oculomotor command. Receptive fields in the
temporal branch remain smaller and precise in-
formation on the shape of the retinal stimulus is
extracted) and helps for recognizing the stimulus.

Within each map, the processing units are
three-layered cortical columns which combine
three types of inputs: i) feedforward inputs, pro-
viding sensory information from the outside world
that has already been subject to selective filtering
through previous processing steps; ii) feedback
inputs from higher stage units, which control the
ascending flow of information; and iii) lateral in-
puts provided by similar units in the other flow
(in the associative and semantic maps).

Cooperation of parietal and temporal pathways
for recognition (external shift) ‘
Patterns are learned in the central part of the re-
tina. Each pattern is presented on the retina while
the units corresponding to the prototype of this
pattern are activated on the semantic maps. Learn-
ing occurs through adaptive tuning if gating when
inputs from feedforward and feedback flows are
in register in the associative maps. Receptive
fields of associative units are ’photographies’ of
the pattern (after transformation in primary and
secondary areas) taken when gating from proto-
type units occurs.

After learning, the temporal and parietal bran-
ches cooperate for recognition (Otto et al, 1992):
1) if the pattern is presented in the central zone
of the retina, the temporal branch of the network
succeeds in immediate recognition, for sizes and
positions within a limited range of variation
(fig 4A); 2) when variations in size and location
are increased, the pattern is not directly recog-
nized by the temporal branch, but the population
activity in the parietal branch provides informa-
tion on the direction and amplitude of the eye
movement which can reset the pattern in the cen-
ter of the visual field where it can be recognized
by the temporal branch (fig 4B).
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Fig 5. A. Cortical network for visually-guided arm move-
ments. Cortical areas involved in the ¢ontrol of reaching be-
havior in the primate are the primary motor cortex (M1), the
premotor cortex (PM), and the posterior parigtal cortex areas
(SPL, IPL, PO). B. Architecture of the neural network mod-
elling the operations performed by the cerebral cortex for vi-
suomotor transformations. The processing units ‘model the
cortical column, with inputs and outputs organized in layers.
A set of synergy units and a set of matching units are reci-
procally connected. Each synergy unit addresses a motor com-
mand to a subset of motor units, whose contraction produces
a vectorial effect on the hand position. A matching unit re-
ceives sensory information from two sources: a somatic input
(on its somatic layer-division) which encodes the initial arm
position, a visual input (on the visual layer-division) which
codes for the desired trajectory and feedback information (on
the feedback layer-division) from active synergy units. Each
matching unit projects to synergy units. Synergy units receive
a feedforward input from matching units a lateral input from
other synergy units. Input connections to synergy and match-
ing units are adaptive and are tuned by the feedback loop pro-
duced by spontaneous movements.
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Cooperation by dirq:qt temporo-parietal interac-
tions (internal shift) “° .

Direct anatomical relations“have been described
between the temporal and the parietal pathways
(Morel and Bullier, 1990). An important contribu-
tion of the parietal lobe areas to recognition could
be to provide the positional information directly
to the temporal areas. This information could be
used. to shift the ascending input pattern, when
displayed in perifoveal zone, within the temporal
pathway, in order to match it with the previously
stored information (Boutkhil and Burnod, 1992;
Otto er al, 1992). This intracortical shift could be
sufficient to efficiently perform the recognition
process without ocular movement (Olshausen et
al, 1993). An additional interesting property of
such a process would be the possibility that such
partial shifts could be used to correct local de-
formations.

The operation for invariant object recognition
in the temporal branch which is modelled by
sigma-pi networks (Gliinder, 1987; Boutkhil and
Burnod, 1992; Olshausen et al, 1993) is quite
similar to the visuomotor transformation per-
formed in the parietal branch (Burnod et al, 1992;
see below). This operation transforms retinotopic
information into an object centered reference by
using positional information, exactly as the oper-
ation in the parietal branch for visually-guided
reaching movement which transforms the retinal
information in a motor reference frame by using
a positional information on gaze and arm position.
This can be modelled by the interactions between
the three layers of the units in the associative map
of the temporal pathway (modelling. the posterior
inferotemporal area): 1) the feedforward layer
which gives the information content on the re-
stricted zones extracted by lower-level maps;
2) the lateral layer which provides positional in-
formation from the parietal associative map, and
and 3) the feedback layer which signals for suc-
cess or failure of recognition (Boutkhil and Bur-
nod, 1992).

Learning visual-to-motor coordinate
transformation

Following integration through the visual system,
visual information arising from retinal stimulation
can be used to guide visual reaching movement
toward targets in space. The neural network which
computes visually-guided movements in the 3D
space is related to the neuronal properties in
premotor, motor and parietal areas (fig 5A; Bur-



computed arm position

Fig 6. Invariant properties of cortical command for reaching movements. Right. Three different movements are shown, with the
target position, the initial position and the direction ‘of the movement. Left. The vectorial contributions of synergy units and the

resulting population vector (outlined hatched vector) are shown.
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Fig 7. A. Cortical network for learning sensorimotor se-
quences. The prefrontal cortex (PFC) combines visual infor-
mation related to discrimination and recognition provided by
the higher processing steps of the temporal lobe (IT), infor-

mation relative to spatial location which originates in the pos-’

terior parietal areas (PP), and interacts with structures
involved in motor control (M1, PM). B. Architecture of the
network for learning a delayed-response task. The matching
layer is made of eight units. The bistable layer is made of
eight groups of four units. Notations for the task events are
the following: i) I-left and I-right, positions of left and right
levers; ii) m-left and m-right, movements toward the levers;
iii) gs, go signal; iv) i-left and i-right, instruction stimuli; v) d
and r for drive and reinforcement, respectively, We have made
the following assumptions: i) a redundant representation is
used when the same event occurs in different situations (go
signal); ii) all the units in-a given bistable group have the
same relationships with matching units; iii) there are no in-
terfering events, except during the first training stage, where
four movements (m-left, m-right, m-up, m-down). toward four
different levers (/- left, l-right, l-up, l-down) are possible (but
only two are correct). During this stage, the network learns
to suppress the responses m-up and m-down when presented
with [-up and l-down, respectively: It illustrates the ability of
the network to deal with environmental interferences. Inter-
fering events could be added at other training stages in a simi-
lar way.

301

nod et al, 1992; Johnson, 1992). In parietal areas,
neurons can be tuned to visual, oculomotor, motor
and somatosensory imput, with combinatorial
properties: they can be activated by retinal stimu-
lation and eye position (Andersen et al, 1985),
arm position and arm- movement direction (Lac-
quaniti et al, in press), direction of visual and tac-
tile stimuli (Colby ez al, 1993). Studies of the
neuronal activity in the motor and premotor cor-
tices of behaving monkeys have shown that the
activity . of - individual arm-related: neurons is
broadly tuned around a preferred direction of
movement in 3D space (Georgopoulos et al, 1986;
Caminiti ef al, 1991). In both frontal areas these
cell preferred directions rotate with the initial po-
sition of the arm (Caminiti et al, 1991). Further-
more, the rotation of the population of preferred
directions precisely correspond to the rotation of
the arm in space.

The - visual-to-motor transformatlon is thus
modelled by two maps (fig 5B): .a map of match-
ing units modelling neurons in parietal areas, and
a map of synergy units, modelling neurons in
premotor and motor areas. Matching units are
three-layered cortical column-like units which
combine three types of information: i) visually-
derived inputs on target position; ii) a somatic in-
formation on the arm position; and iii) a
somatomotor information on the motor command
from the synergy units (efferent copy of the com-
mand). Synergy units receive two types of inputs
in two layers: i) feedforward inputs from the
matching units; and ii) lateral inputs from other
synergy units. Synergy units project to motor out-
put units modelling motor units in the spinal cord.

The network learns self-consistency between
sensory and motor signals. through spontaneous
movements. Associations between synergy signal
(output), kinesthetic signal (arm position), and re-
afferent visual signal following a spontaneous
movement.are stored by adjusting visual receptive
fields of matching units through adaptive tuning
if gating (equation 3 in the Appendix). These re-
ceptive fields can store a ’photography’ of the
sensory effect of the motor command (vision of
the hand moving toward the fovea) in relation
with both the motor command (from synergy
units) and the relative positions between visual
receptors and arm effectors. Any visual informa-
tion that is collinear with this stored direction
becomes after learning information which can
guide the motor command in the appropriate di-
rection,
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The operation which is learned by the network

from spontaneous movement can be approximated-

by a bilinear combination (equation 2 in the Ap-
pendix) which can be interpreted as a generaliza-
tion of the classical coordinate: transformation
between two reference frames: the visual infor-
mation is projected on a reference frame which
rotates with the arm. The neural circuit converg-
ing toward a single neuron in the motor and
premotor cortices can easily learn and generalize
the appropriate command in a 2D subspace, but
not in the whole 3D space. However, the uniform
distribution .of cell-preferred directions in these
frontal areas can explain the computation of the
correct solution by a population of cortical neu-
rons. The model explains neuronal tuning proper-
ties ‘which are. observed in premotor and motor
cortex, both at the individual cell level and at the
population level (Caminiti et al, 1991; Burnod et
al, 1992): 1) cells ‘are tuned for a preferred di-
rection which depends upon the initial position of
the arm; 2) the population vector always predicts
the movement direction, even if the initial posi-
tion of the arm rotates; 3) the preferred direction
of a single neuron rotates like the arm within a
specific sub-space, but not in the whole 3D space;
and 4) the whole population of preferred direction
vectors rotates like the arm (fig 6).

Learning sensorimotor sequences

The next question is to understand how brain cir-
cuits integrate sequences of discrimination, rec-
ognition and reaching into a coherent behavior,
defined by some internal or external goals (for
example the getting of ‘a reward). Convergent ex-
perimental evidence has demonstrated the critical
role of the prefrontal cortex (PFC) and distributed
neural networks linking associative, motor and
prefrontal areas (fig 7A) in the acquisition and
expression of complex  behaviors (Goldman-
Rakic, 1987; Fuster, 1988). Lesion studies have
shown that monkeys with prefrontal lesions fail
to execute a behavior which requires the memory
of some recent events (Rosenkilde, 1979). Neuro-
nal activities recorded in PFC during the delayed
tasks in behaving monkeys appear to be a striking
correlate of behavior (Fuster, 1973, 1988)." For
example, neurophysiological studies have demon-

strated sustained neuronal activity during the-

delay between an instruction cue and the final
permission to use the information contained
therein for a spatial reaching movement (Fuster,
1973). The delay-related activity may reflect
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Fig 8. Computer simulations. A. Activities in three bistable
units (dark shaded pattern) and three matching units (light
shaded pattern) are qualitatively displayed for each training
stage and for left and right trials. The task events are those
described in figure 2. Note the gradual changes in the rela-
tionships between neuronal activity and task events and the
differentiation for left vs right trials. B. Variations in the level
of activity of a bistable unit during the training period. The
graph is constructed from, the activity during reinforced left
trials. Each horizontal division corresponds to a trial. Vertical
dashed lines indicate the transitions between training stages.
Note the combination of increasing and decreasing activity:
activity decreases at the transition between two stages and in-
creases after the transition,

short-term mnemonic aspects related to the in-
struction cue, the expectation of forthcoming sig-
nals and the preparation of the behavioral
reaction.

The neural network model, designed according
to the principles of organization of prefrontal con-
nections, was trained to execute a delayed re-
sponse task (Guigon et al, in press). The task
involves two lights mounted above two horizon-
tally arranged levers and a trigger light. At each
trial, one light (instruction stimulus) comes on for
a short period; a few seconds later, the trigger
light (go signal) comes on and the animal touches



the lever indicated by the instruction: it receives
a reward. The architecture’ of the network is
shown in figure 7B. Each sensory event is coded
by the all-or-none activation of a specific unit in
the sensory layer, ‘and movements towards the
levers are coded in the motor layer. The network
is made of two sets of units. Matching units model
neurons in the associative sensory and motor
areas connected to the prefrontal cortex. These
units implement sensorimotor relations, such as-a
direct relation between the position of the lever
and movement toward the lever. Bistable units
model prefrontal neurons and learn to modulate
these sensorimotor relations by reinforcement
contingencies. Bistable units receive two types of
signal in two layers: i) feedforward inputs from
matching units; ii) feedback inputs which inform
on motivational aspects (a drive pathway is made
active at the beginning of each behavior of the
network) and reinforcement (a reinforcement
pathway is activated when a correct beliavior is
produced by the network); - and iii) lateral inputs
from some other bistable units. Matching units re-
ceive two types of input in two layers: 1) feed-
forward inputs from sensory units; 2) feedback
inputs from bistable units.

The function of the network is defined by the
dynamics of ‘processing units and by the adJu-
stable connection coefficients between processing
units. Neural processing function of matching
units is modelled by a non-linear interaction be-
tween inputs, which reflects -the modulation of
sensory inputs and motor outputs by memorized
conditions (gating between feedforward and feed-
back inputs; equation 2 in the Appendix). Bistable
units display long-lasting activities which are a
selective memorization of past events (timing be-

tween two layers; equation 4 in the Appendix).

They can learn to control the transition to sus-
tained activity through adaptive timing (equa-
tion 5 in the Appendix).

Computer simulations of the neural network in
figure 7B were used to train it to execute a de-
layed response task in three successive stages
(stage 1: movement, reward; stage 2: go signal,
movement, reward; stage 3: instruction stimulus,

go signal, movement, reward). The rationale for

this protocol is that the training protocols used
with animals are progressive, stage-by-stage pro-
cedures. Furthermore, the teaching signal is an
all-or-none signal indicating the correctness of the
behavior. This strategy is related to reinforcement
learning procedures (Sutton and Barto, 1981). At
each stage, the network was presented with a
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number of trials, until the required behavior was
obtained. The’ outcomies of the model reflect two
aspects -of short-term memory - processes. First,
how bistable units may contribute to the execution
of .the"task. Second, how bistable units contribute -
to the acquisition of the task. :

Bistable units implement short-term memory

The contribution of bistable units to the execution
of the delayed response task is illustrated in fig-
ure 8A. Each graph displays quahtatlvely the ac-
tivity of three bistable units at a given training
stage. During execution of the task (stage 3), bi-
stable units display different patterns of activity
defined by the temporal relationship between task
events and peaks of activity (fig 8A). Each unit
is active between two successive task events. The
most 1nterest1ng pattern is the differential delay
activity. This is a sustained activity between the
onset of the instruction stimulus and the onset of
the go signal specific for right vs left trials. All-
these patterns have been described in the prefron-
tal cortex during the delayed response task (Fus-
ter, 1988).

At each training stage, bistable units play a
complementary role in encoding the temporal
structure of the task. Individual units are selective
for a specific sequence of events (drive / instruc-
tion stimulus; instruction stimulus / go signal; go
signal / movement), but the set of units is able’
to bridge all the gaps between the events of the
current task. The role of matching units is also
illustrated in figure 8A. These units displayed
transient activity that was time-locked to sensory
or motor events and that was correlated with the
end of activity in bistable ‘units. They signal the’
occurrence of specific sensory or motor events in
the context of a specific behavior.

Long-term changes in bistable units

The experience gained at each trial in the learning'
period is transferred to a long-term representation
of the task. This relationship changes from stage
to stage, and bistable units become progressively
specialized for different successions of events. At
the final stage, each unit is related to a specific
succession of events.

Variations in the activity of bistable units are
correlated with the changes: in reinforcement con-
tingency, depending on variations in the reinforce-
ment - rate (fig -8B). Two behaviors are
alternatively performed by  the network when
changing from stage 1 to stage 2: one is the pre-
viously correct behavior (self-initiated move-
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ments) and the other is the new correct behavior
* (stimulus-triggered movements). The mean activ-
ity during reinforced trials increases for leftward
self-initiated movements during the first stage.
During the transition from stage 1 to stage 2, ac-
tivity first decreases and then increases with the
increase in the performance rate. The same phe-
nomenon occurs between stage 2 and 3 (fig 8B).
These results are consistent with experimental
data. During reversal learning in a go/no-go dis-
crimination task, Niki et al (1990) found some
neurons that reversed their activity with the
change in the reward contingency (type 2), and
some that retained the same activity (type 1). The
matching units of this model resemble the type 1
units since both were related to the impending be-
havioral response and did not change their activ-
ity with change in the reward contingency. Type
2 units (Niki et al, 1990) reversed their activity
with the change in the reward contingency as do
bistable units in the network. Although few units
were studied, type 2 units were rarely found in
the premotor cortex, while the prefrontal cortex
contained both types of units in similar propor-
tions (Niki et al, 1990). Changes in the activity
of bistable units can also be compared with those
found by Thorpe et al (1983). Neurons in the or-
bitofrontal cortex decrease or increase their ac-
tivity depending on learning of the associative
significance of a visual stimulus. The results are
also consistent with the observations of Watanabe
(1990) who found decreasing activity when
changing the significance of a stimulus without
changing the required behavioral response. Modu-
lations of activity in bistable units may thus be
related to the change in the associative signific-
ance of the current behavior (will it lead to a re-
ward?) (Thorpe et al, 1983; Watanabe, 1990).

Discussion

Most neural models of brain functions are con-
structed using some principles of cortical organ-
jzation. However, in many - cases, biological
principles are mixed with engineering principles
(for example optimization procedures), and
models become complex hybrid systems. This ap-
proach may be defined as "top-down’, since a re-
stricted - number of hypotheses are made on
biological features, and outcomes are mainly
derived from algorithmic constraints. Strong criti-
cism has been formulated against this approach
(see Crick, 1989).

A complementary approach is to ask how the
cerebral cortex is likely to solve problems (Bal-
lard, 1986; Burnod, 1988). This ’bottom-up’ ap-
proach focuses on the structural and functional
characteristics of cortical circuits and their invol-
vement in the implementation of problem-solving
algorithms. The goal is not to take into account
the greatest number of biological properties, but
to point to the critical aspects, which contribute
to appropriate computation.

The appeal of the neocortex relies on the fol-
lowing facts: i) great regularity is observed in its
organization; ii) cortical circuits process any set
of data with a single format, whatever the mo-
dality; and iii) the phylogenetic development of
the cortex is correlated with the acquisition of
higher level behavior structures. However, to
focus on the cerebral cortex does not deny the
contribution of subcortical systems, such as basal
ganglia, cerebellum, or medial temporal lobe
structures. It is a means to describe the compu-
tational principles underlying various brain func-
tions within one and the same framework.

A cortical column-like processing unit

The modelling principles encompass several le-
vels of brain organization, including synapses,
neurons, and maps. It allows multiple constraints
in the construction of models of cortical functions
to be taken into account. A central, original com-
ponent of the framework is a multicellular pro-
cessing unit (cortical column), reflecting the
layered organization of the cortex and the dif-
ferential laminar distribution of cell types. The
architecture of the unit allows various processing
and learning modes to be used as a basis for re-
gional variations. Furthermore, the layered struc-
ture of the unit facilitates the construction of
neuronal networks with various patterns of con-
nectivity.

The unit implements two levels of processing
(feature extraction and vertical integration). In
this way, there is a dissociation between the spe-
cific operation performed by cortical circuits and
the nature of data on which they act. It means
that processing is independent of particular input
codes since feature extraction provides an unique
format, whatever the modalities. :

Higher-order processing units have already
been proposed as an alternative to the simple li-
near or thresholded summator, such as the sigma-
pi unit (Williams, 1986) -and the synaptic triad
(Dehaene et al, 1987). A sigma-pi unit computes



a sum of contributions from multiplicative clus-
ters of inputs and thus implements a gating mech-
anism as an intrinsic property of single operating
elements. Many models have stressed the compu-
tational interest of sigma-pi- units to represent
multidimensional receptive fields or higher-order
feature detectors (Mel, 1993), to implement in-
variant pattern recognition (Gliinder, 1987; Fuku-
shima, 1988), to perform coordinate
transformations (Kuperstein, 1988; Groh and

Spark, 1992). However, thete is no easy way to
set the synaptic weights in a network -of sigma-pi
units, although Durbin and Rumelhart (1989) pro-
posed a method based on the back- propagatlon al-
gorithm.

- The synaptic triad is an elementary device
made up of three neurons, in which the synaptic
transmission between two-neurons in the triad is
modulated by the third one (Dehaene et al, 1987).
The postsynaptic neuron in the triad acts as a se-
quence detector on the presynaptic and the modu-
lator neurons. A local Hebbian rule can be used
within a network of synaptic triads to learn tem-
poral sequences (Dehaene et al, 1987 Dehaene
and CHangeux, 1991).

Training neural networks: developmental stage
or conditioning

Generally, neural networks are trained following
the logic of classical conditioning. Learning oc-
curs even when the output of the network is in-
correct, the output being unconditionally given by
the teacher. However, for the development or the
adaptation of most neural systems, a teacher
either does not exist or gives only raw informa-
tion concerning the behavior (such as failure or
success). In the first case, the system learns:in
an unsupervised fashion, by experiencing the en-
vironment, as it may be the case for the devel-
opment of the selectivity to orientation in the
visual cortex (self-organization). In the second
case, the system learns by trial and error to meet
at each time the requirements of the teacher.
The model of invariant recognition is trained
by associations between raw retinotopic inputs
and inputs corresponding to a semantic repre-
sentation (Miyashita, 1993). The model of visual-
to-motor transformation learns, through
spontaneous movements under visual control, the
consistency between visual, proprioceptive and
motor signals. A similar learning seems to happen
during critical periods of development in the child
(Hay, 1984). A progressive, stage-by-stage proce-
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dure is wsed, in the third model, to encode a sen-
sorimotor sequence in a neural network. Such a
procedure is encountered when laboratory animals
are operantly trained to perform a sequence of ac-
tions in order to get a reward (Delacour, 1981).

Towards an integrated model of a
‘reference’ task

To perform a task such as a delayed pointing .
toward a visual target (reference’ task), a num-
ber of fundamental processes must be carried out
by the cerebral cortex: i) discrimination and rec-
ognition of the target: this step involves first the
orientation toward the target and then the process-
ing of the visual image of the .target, which in-
cludes feature extraction, perceptual grouping of
textured surfaces, classification, etc; ii) construc-
tion of a body-centered representation of the tar-
get: this step involves the evaluation of the
distance from the body, the integration of eye,
head and body position signals; iii) visual-to-
motor transformation and computation of the
motor command: this step involves solving the in-
verse kinematics and the inverse dynamics for the
arm; and iv) planification of the sequence of
events: this step involves the short-term memori-
zation of the target and the preparation for re-
sponse.

The neural substrate of these operations can be
addressed experimentally both at the cellular level
in . behaving monkeys, using single unit recor-
dings, and at the system level in monkeys and
humans, using brain imaging techniques (deoxy-
glucose labeling, position emission tomography,
functional : magnetic - resonance imaging). The
model helps to relate these two different levels
of analysis and provides a guide to a systematic
experimental study of the ’reference’ task using
different techniques.(Burnod, 1994).

Appendix

Processing unit

Each layer i (1 < i < N) has n; weighted input

pathways { le (le) }, eorfespondihg to afferences

from  other columns It provides first a ’global
layer input’ u', which:is internal to the ‘cokiimn,
and then an output y* which is sént’to-othier col-
umns.
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The global layer input #’ of layer i is calculated
according t0'

() fZ v (r)x (0 W

J=1

where ¢ is a quantized time, which describes
the course of processing, and f a non-linear non-
decreasing function in [0,1]. '

The output activity of layer i depends upon the
combination of two terms: the first term expresses
the influence of each layer k independently, with

a layer coefficient (L;( ), and the second one ex-
presses the non-linear interaction between pairs
of layers, with an inter-layer coefficient (Ql.lk).

The general form of the output y' of each layer i
is a function of the global layer inputs, and the
layer and inter-layer coefficients.

Gating and adaptive tuning if gating

In this case, each layer i provides an output ac-
tivity ¥' according to:
N

YO =Y Q) u' @ ut @] )
k=1,k=1
where the inter-layer coefficients Q are equal

to 1. The intra-layer coeff1c1ents are mod1f1ed ac-
cording to:

Aw]i. (t, t+1) = k[Gle: - w]i. Oy =1 u () ()

where A is a positive constant determining the
rate of learning and © a positive constant. This

rule expresseérthat the coefficient w; increases to-

ward ¢ with the coincidence ofpre- and post-sy-
naptic activity when the column has been
previously active, and decreases toward 0 with
post-synaptic activity alone in the same condition.
In this way, coefficients can be tuned around
values that correspond to the most probable input
within layer i when this layer has been active.

Timing and adaptive timing

In this case, each layer i provides an output ac-
tivity ¥ according. to:

N .
Y@O=[1-Ay ¢~ DIF X Lut @)+
k=1

FInye—- D -FIX @1} @)
k=1

where A and m are parameters, F is the sto-
chastic function defined by:

Flu) = 1 with  probflu)

Owith  probl - flu)

Equation 4 implies that the output layer i has
two states of activity (0 and 1) and switches be-
tween these states with a probability defined by
the global layer inputs. The first term of the equ-
ation indicates that the output layer becomes ac-
tive when it was previously inactive and when the
global layer inputs are sufficient. The second term
indicates that the output layer can stay active for
a while and returns to rest following subsequent
inputs.

The layer coefficients are modified according
to:

N
AL, (1, tH) =e; (t)j{%[k— o u()y(t-1)+
Bu @y " @)r(®)) ®)
where r is a reinforcement signal, o and P are
positive parameters. Using the notations of Sutton
and Barto (1981), we define:
Wi+ D =xu? () +u @)

eli(t )= coe]i(t) + Oy )

Y e+ D =xy" @+ xDO - e+ D)

where k, ®, y;and X, are parameters in [0,1].
Equation 5 indicates that the layer coefficient
L]lc decreases when the sustained activity of the
unit triggered by the layer k is stopped by some
other pathways (term with -o¢) and increases when
a reinforcement signal occurs after the. sustained
activity (term with +f).
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