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Abstract

B A new type of biologically inspired multilayered network is
proposed to model the properties of the primate visual system
with respect to invariant visual recognition (IVR). This model
is based on 10 major neurobiological and psychological con-
straints. The first five constraints shape the architecture and
properties of the network.

1. The network model has a Y-like double-branched mul-
tilayered architecture, with one input (the retina) and two
parallel outputs, the “What” and the “ Where,” which model,
respectively, the temporal pathway, specialized for “object”
identification, and the parietal pathway specialized for “spatial”
localization.

2. Four processing layers are sufficient to model the main
functional steps of primate visual system that transform the
retinal information into prototypes (object-centered reference
frame) in the “What” branch and into an oculomotor command
in the “Where” branch.

3. The distribution of receptive field sizes within and be-
tween the two functional pathways provides an appropriate
tradeoff between discrimination and invariant recognition ca-
pabilities. ‘

4, The two outputs are represented by a population coding:
the ocular command is computed as a population vector in the
“Where” branch and the prototypes are coded in a “semidis-
tributed” way in the “What” branch. In the intermediate asso-
ciative steps, processing units learn to associate prototypes
(through feedback connections) to component features
(through feedforward ones).

5. The basic processing units of the network do not model
single cells but model the local neuronal circuits that combine
different information flows organized in separate cortical lay-
ers.

Such a biologically constrained model shows shift-invariant

INTRODUCTION

A particular object can correspond to an infinite number
of possible retinal images. A bottle, for example, can be
seen at different distances, in different positions, and with
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and size-invariant capabilities that resemble those of humans
(psychological constraints):

6. During the Learning session, a set of patterns (26 capital
letters and 2 geometric figures) are presented to the network:
a single presentation of each pattern in one position (at the
center) and with one size is sufficient to learn the correspond-
ing prototypes (internal representations).

These patterns are thus presented in widely varying new
sizes and positions during the Recognition session:

7. The “What” branch of the network succeeds in imme-
diate recognition for patterns presented in the central zone of
the retina with the learned size.

8. The recognition by the “What” branch is resistant to
changes in size within a limited range of variation related to
the distribution of receptive field (RF) sizes in the successive
processing steps of this pathway.

9. Even when ocular movements are not allowed, the rec-
ognition capabilities of the “What” branch are unaffected by
changing positions around the learned one. This significant
shift-invariance of the “What” branch is also related to the
distribution of RF sizes.

10. When varying both sizes and locations, the “What” and
the “Where” branches cooperate for recognition: the location
coding in the “Where” branch can command, under the control
of the “What” branch, an ocular movement efficient to reset
peripheral patterns toward the central zone of the retina until
successful recognition.

This model results-in predictions about anatomical connec-
tions and physiological interactions between temporal and par-
ietal cortices. l

different shapes and colors. However, we can always
recognize it. This is what we call invariant visual recog-
nition (IVR).

This property of invariant visual recognition is of very
great interest for both neuroscientists and engineers.
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From a neurobiological point of view, IVR raises the
question of what kinds of processes operate on the ret-
inal image to allow access to previously stored “internal
representation(s)” necessary for recognition. From a tra-
ditional engineering point of view, it would be extremely
useful to design computers and robots that would be
able to recognize objects in naturally varying perspec-
_tives and contexts. For this purpose, work on pattern
" recognition (particularly alphanumeric patterns) has fo-
cused on different methods:

1. Template matching: the simplest way to recognize
patterns would be to match each incoming pattern
against the set of stored templates. Not only does this
method need a previous “cleaning up” of the image to
normalize the patterns in size,-angle, etc. but also it is
not satisfactory for generalization processes.

2. Feature analysis: it would be more efficient to dis-
criminate patterns by dealing with the combination of
local features that can distinguish one from another. But
descriptions of patterns in terms of a set of mini-tem-
plates, such as a Pandemonium system adapted from
Selfridge (1958), will fail on capturing overall structural
relations. It will confuse patterns built up from common
local features but globally organized in a different spatial
arrangement (like a “T” and an “L”).

3. A more flexible representation of patterns is pro-
vided in humans by language: a set of symbolic propo-
sitions can describe the components of a pattern, making
explicit the structural arrangements of these primitives.
This ‘symbolic approach has often been attempted in
artificial intelligence but the main problem lies in the
necessity for humans to make an a priori cognitive de-
scription of what is pertinent to recognize a particular
pattern and what is not.

More recently, artificial neural networks approaches
have tried to get rid of these top-down inferences. It is
the network itself that provides, by learning from ex-
amples, the adequate configuration of local primitives to
discriminate each pattern from the others. Various global
properties such as parallel data processing, noise
suppression and associative recall can be used to im-
prove performance. However, IVR is typically not an
emergent property of these networks and thus particular
models have been proposed to improve invariant visual
capabilities: combination of AND/OR functions with in-
creasing receptive field size (Fukushima, 1980; Fuku-
shima & Miyake, 1982; Fukushima, Miyake, & Ito, 1983),
graph matching with short-term plasticity (Bienenstock
& Von der Malsburg, 1987), and networks with sigma—pi
units allowing autocorrelations (Glinder, 1987).

However, these models do not tackle the problem of
invariant recognition such as that faced by the human
visual system and they do not mimic its powerful per-
formances: for patterns presented with widely varying
sizes, textures, colors, and orientations (for familiar ob-
jects), visual identification can be achieved on the basis
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of only approximately 100 msec of processing (Thorpe,
1989; Thorpe & Imbert, 1989). For learning and identi-
fication of patterns, it is important to take into account
the sensorimotor loop capturing the object in the center
of gaze: when a composite pattern is presented to a
subject in varying positions in the visual field and ocular
movements are not allowed, it is recognized only in the
restricted region where it has been learned (Lévy-
Schoen, 1977; Walker-Smith, Gale, & Findlay, 1977; O'Re-
gan & Lévy-Schoen, 1983; O’Regan and Nazir, 1990). To
investigate the invariant capacities of the visual system,
it is thus important to associate in the same network both
direct sensory perception and adaptive sensorimotor
control of gaze.

In this article, we propose a neural network that mod-
els specific biological properties which could be respon-
sible for the IVR capabilities of the human brain. This
model is not based on a unique factor but takes into
account the most striking features of the visual system of
the primates that we have summed up by 10 major
psychological and neurobiological statements. The first
five constraints operate on the functional architecture of
the network and the other five concern its expected
behavior and performances.

We will first expose these 10 statements and then detail
their biological validity and explain how they shape the
neural network model.

Functional Architecture
Segregation between Two Visual Pathways

The multiple visual areas are organized into two separate
cortical visual pathways: a ventral stream specialized for
“object” vision and a dorsal stream for “spatial” vision.
The divergence between these two systems appears to
begin after striate cortex.

We thus propose a network whose global architecture
is Y-like shaped with a “What” branch performing object
recognition and a “Where” branch encoding the location
of the pattern in the peripheral field. We have tested and
compared the performances of each branch separately
on one hand and of the two cooperating branches on
the other hand.

Number of Steps and Their Respective Function

The visual system transforms the pattern of excitation
that reaches the eyes from a retinotopic coordinate sys-
tem to a coordinate system centered on the object itself.
This final representation is achieved by a forward pro-
gression from striate cortex to temporal lobe through a
rather limited number of successive steps of information
processing.

We have taken into account the essential functional
steps necessary to achieve this transformation, with (1)
first steps performing low-level processing of retinal in-
formation, (2) high-level terminal steps storing the
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learned prototypes, and (3) intermediate steps learning
the association between internal and external represen-
tations.

Central vs. Periphery Representation and
Receptive Field Size

Receptive field (RF) size increases regularly in the suc-
cessive steps of the two functional pathways. In addition,
RF size increases as a linear function of eccentricity.
These facts, coupled with the observation that the rep-
resentation of the central vs. peripheral visual field is
different in the two pathways (in the ventral stream areas,
there is a larger representation of the central region
whereas in the dorsal stream the peripheral region pre-
vails) imply that RF size increases more rapidly in the
dorsal stream than in the ventral one.

We relate this distribution of RF sizes in the step where
learning takes place with the invariant capabilities of the
system without ocular movements. We propose a solu-
tion for the necessary tradeoff between discrimination
capabilities (in terms of fine grain construction of visual
image) and invariant capabilities in both size and posi-
tion.

Coding Properties of Neurons

Cortical neurons exhibit differential selective properties
along the processing pathway: neurons are selective (1)
to simple features like oriented edges, color, direction
of movement of moving patterns in the first steps, (2) to
complex patterns (or “prototypes™) in the highest steps
(and not to their component features), and (3) to both
in intermediate associative levels.

We have implemented these three levels of coding. In
the higher levels prototypes are coded by local popula-
tions of cells in a “semidistributed” way. In the inter-
mediate associative steps, cells code a combination of
both low-level characteristics (through feedforward con-
nections) and high-level properties (through feedback
ones).

Cortical Column-Like Processing Unit

Different types of cells coexist in the cortical tissue and
form local circuits within the depth of the cortex with
anatomofunctional characteristics organized in “col-
umns.”

In this model, the basic processing units are not single
cells but model these basic circuits. We propose learning
and activation rules that are consistent with the known
properties of these neuronal circuits.

Expected Behavior and Performances
of the Network

We expect from the model five behavioral performances
resembling those of humans (and more generally of
primates).

Immediate Learning

Humans and primates are capable of learning with only
one trial.

A single presentation of each pattern in one position
and one size only should be sufficient for the network
to learn it.

Immediate Recognition of Centered Patterns

Humans can identify patterns centered on the foveal
region on the basis of only 100 msec of processing.

We expect an immediate recognition in the temporal
branch for centered patterns presented in the learned
size (direct temporal recognition).

Moderate Size Invariant Properties

Without any active process modifying the size of the
presented patterns, humans can recognize patterns in a
given range of sizes, even if it has been previously pre-
sented once at one particular size.

The network should be resistant to changes in size of
the presented patterns, at least for a limited range of
sizes.

\

Moderate Shift-Invariant Properties without
Ocular Movements

In a similar way, humans show shift-invariant recognition
for patterns limited to a central region of the retina (again
when presented centered and only one time in eye-fixed
conditions).

We expect that, when ocular movements are not al-
lowed, the recognition capabilities should be unaffected
by changing positions around the learned one.

Cooperation between Recognition and
Control of Gaze

Limits of recognition in eye-fixed conditions are over-
come by the cooperation between the sensory and the
oculomotor systems: recognition is achieved by the com-
mand of appropriate eye movements that can succes-
sively foveate on different objects (or different parts of
composite objects). The information on object location
information provided by the parietal lobe is an appro-
priate source for this oculomotor command.

When the pattern is not directly recognized by the
“What” branch, the “Where” branch should be able to
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command an eye movement that can reset the pattern in
the center of the visual field where it can be recognized
by the “What” branch.

We will now explain in detail how the five architectural
and functional properties that are the most salient known
features of the cortical visual system do constrain the
network architecture and then show that the five behav-
ioral expectations can be obtained using such a con-
strained model.

FUNCTIONAL ARCHITECTURE OF
THE NETWORK

Modeling the Two Visual Pathways
The Two Visual Pathways in the Macaque Morkey

In the mammalian visual system, visual information is
first processed in the retina and the lateral geniculate
nucleus (LGN) by low-level operations (such as enhance-
ment of spatiotemporal contrasts) before reaching the
cerebral cortex. ’

Numerous neuroanatomical studies coupled with
physiological recordings suggest that, among the 20 or
so visual cortical areas devoted to vision (Van Essen,
1985), two major visual pathways originating from the
striate cortex can be distinguished, dealing with two
different kinds of visual information (Fig. 1A) (Ungerlei-
der & Mishkin, 1982). One pathway, called the “Where”
pathway, leads dorsally to the parietal cortex and is in-
volved in motion detection, spatial location, and three-
dimensional (3D) relationships. The other pathway,
called the “What” pathway, leads dorsally to the infero-
temporal cortex (IT) and deals with 3D form identifica-
tion, surface properties, and color extraction (Zeki, 1973;
Ungerleider & Mishkin, 1982; Mishkin, Ungerleider, &
Macko, 1983; Van Essen & Maunsell, 1983; Shipp & Zeki,
1985; Desimone & Ungerleider, 1986; Maunsell & New-
some, 1987; Perret, Mistlin, & Chitty, 1987; De Yoe & Van
Essen, 1988; Morel & Bullier, 1990).

Temporal lobe lesions can produce specific deficits
related to object recognition such as an inability to rec-
ognize faces (Meadows, 1974a,b; Pearlman, Birch, &
Meadows, 1979; Damasio, Damasio, & Van Hoesen, 1982;
Joynt, Honch, Rubin, & Trudell, 1985). In contrast, lesions
of the parietal cortex in Macaque monkeys lead to clear
deficits on learning of tasks involving the recognition of
relative spatial positions of objects in the visual field
(Pohl, 1973). Furthermore, clinical observations in hu-
mans indicate that damage to the posterior parietal cor-
tex can produce deficits including the inability to localize
visual targets or to perceive movements, disturbances in
the spatial distribution of attention, loss of spatial mem-
ories, and the inability to represent spatial relations in
models or drawings, yet leave object recognition unim-
paired (Ratcliff & Davies-Jones, 1972; Zihl, Von Cramon,
& Mai, 1983). ,

The two kinds of deficits, produced by inferotemporal
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and parietal lesions, can be reproduced by disconnecting
these two regions from the striate cortex (Mishkin, 1966;
Iwai & Mishkin, 1969; Cowey & Gross, 1970; Mishkin,
1972; Ungerleider & Mishkin, 1982) demonstrating the
importance of the pathways, i.e., of the successive cortical
areas, linking the striate cortex to these two higher level
processing regions. It has been suggested that the “What”
pathway runs ventrally through areas V2, V4, TEO, and
TE in the inferortemporal cortex while the “Where”
pathway leads dorsally to area 7a or PG of the parietal
cortex (Desimone, Fleming, & Gross, 1978, 1980; Unger-
leider & Mishkin, 1982; Mishkin, Ungerleider, & Macko,
1983). ‘

Although inferotemporal and parietal cortices receive
largely separate prestriate afferents, they also exchange
direct connections and both receive common inputs
from extensive regions within the fundus of the superior
temporal sulcus (STS) (Maunsell & Van Essen, 1983; Un-
gerleider & Desimone, 1986; Shipp & Zeki, 1985, 1989,
De Yoe & Van Essen, 1985; Cavada & Goldman-Rakic,
1989a,b; Kuypers, Szwargbart, Mishkin & Rosvold, 1965;
Seltzer & Pandya, 1980; Shiwa, 1987; Desimone, Fleming
& Gross, 1978, 1980; Morel & Bullier, 1990). However,
connections within and between the two streams are not
of the same type (according to the laminar distribution
of the labeled cells), the segregated prestriate connec-
tions being “feedforward” while the connections from
STS areas are either “lateral” or “feedback” connections
(Morel & Bullier, 1990).

The Network Architecture: A Y-Like Structure

A single multilayer network does not fit this branched
architecture. We thus propose a Y-shaped network, with
one input (the retina) and two outputs: the “What”
branch models the ventral stteam and the “Where”
branch models the dorsal stream (Fig. 1B).

The retina (RETINA) is the unique input layer on which
visual stimuli are presented while the model provides
two different outputs: the “What” branch will signal for
the recognized prototypes and the “Where” branch will
determine target location in space (with a control on
“eye” movements). These two branches are linked to-
gether by lateral connections that can control the inter-
actions between the two processes to increase
recognition capabilities.

Functional Steps
Successive Steps in the Two Pathways

Anatomical and physiological studies have provided im-
portant insights in the successive functional steps oper-
ating along the two pathways.

The inferotemporal cortex can in fact be divided in
two anatomically and functionally distinct areas (Fig. 1A):
(1) the anterior portion (Von Bonin and Bailey’s area
TE) involved in mnemonic functions that is hypothesized
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"WHERE" "WHAT"
PATHWAY

Figure 1. The Y-like architecture of the multilayered network and
the connectivity scheme. (A) Visual areas of the primate: visual infor-
mation is first processed by V1 and V2 and then by two major path-
ways: a ventral pathway toward the inferotemporal lobe rather
involved in object recognition and the dorsal pathway toward the
parietal lobe rather involved in localization and motion detection.
The figure shows some important functional steps in each stream: V4
and IT subdivisions (TEO, TEp, TEa) in the ventral pathway, PO and
PP (including 7a and LIP) in the dorsomedial pathway, and MT and
MST in the dorsolateral pathway. (B) The model: The global architec-
ture of the network is Y shaped with a “What” pathway performing
pattern recognition and a “Where” pathway encoding the location of
the pattern. Patterns enter the visual pathway through a 32 X 32
retina (binary coding). The two first “low-level” maps, common to
the two streams, are called primary sensory area (PSA) and secondary
sensory area (SSA). The two “high-level” maps are called temporal
associative area (tAA) and temporal semantic area (tSA) in the “What”
branch and parietal associative area (pAA) and parietal semantic area
(pSA) in the “Where” branch. Each processing unit in these maps is
represented by the smallest square (their inner divisions are not rep-
resented in this figure) and is labeled by three indices (X,Y,?) in PSA
and SSA maps and by four indices (X,Y,ip) in the associative and
semantic areas. The figure suggests a possible 2D mapping of these
indices on the surface of the cortical maps: the first two maps are
retinotopic (their main axes are topographic: X,Y) with “local feature
indices” (#). The topographic indices are maintained as main axes of
the maps in the “Where” pathway although the prototype index “p”
becomes the main axis in tSA (and thus with a loss of topography).
Units in area PSA [16(X) X 16(Y) X 4(#)] performs an OR operation
on the result of the filtering of a 7 X 7 RF by a 3 X 3 specific

orientation mask [¢, with horizontal (H), vertical (V), and 2 obliques
(D1) and (D2)]. Units in SSA [8(X) X 8(Y) X 6(¥)] code for combina-
tions of orientations (AND operation) extracted in PSAon a 5 X 5 RF
by a 3 X 3 mask (OR operation), with six possible combinations
(HH,WV, D1D1, D2D2, HV, and D1D2). Units in the two associative
maps [4(X) X 4(Y) X 6() X 28 (p)] depend both on the 3 indices of
the feedforward inputs (XY, £) and on the “prototype” index “p” of
the feedback inputs coming from semantic areas (28 prototypes are
learned). “Feature” index () is the same in pAA as in SSA (combina-
tion of orientations), and within each index “,” a unit of area pAA
performs a convolution of a 5 X 5 RF'on SSA by a 3 X 3 mask (OR
operation). Each group of cells with the same “prototype” index (p)
in pAA is connected in a reciprocal mode with the cluster of units
coding for the same index “p” in pSA. The same mapping is applied
for connections from SSA to tAA but on smaller receptive fields size.
The global number of units in tAA is the same as in pAA. Units in the
semantic areas [2(X) X 2(Y) X 6(#) X 28(p)] are connected in a
reciprocal mode with units of similar “prototype” (p) and “feature”
(#) indices in the associative area, with a convergence on the topo-
graphical indices (X)Y). RF greatly overlap in the “Where” pathway
but not in the “What” pathway. The representation of prototypes in
the temporal semantic area is thus “semidistributed” (among 2 X

2 X 6 units). The position of the pattern in the visual field is coded
in the parietal semantic area by a population of units (each one spe-
cialized for upper left, upper right, lower left, or lower right of the
visual field). The two pathways are connected: a signal from tSA to
PSA can influence (by gating or inhibition) the output of pSA which
drive ocular saccades (see Discussion section). Only feedback con-
nections from the semantic areas down to the associative areas are
modified by learning.
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not only to synthesize the analyzed attributes into a
unique configuration but also to work as the storehouse
for central representations of the objects (Miyashita,
1990) and (2) the posterior portion (area TEO) that
seems to be responsible for linking the object reference
frame (in TE) to the retinal reference frame (in striate
and extrastriate areas; Iwai & Mishkin, 1969; Weiskrantz,
1990). Lesions in the lower part of IT (TE) lead to lasting
deficits in the learning of new visual discriminations and
the recollection of previously learned memories (Chow,
1954; Mishkin & Pribam, 1954; Mishkin, 1954, 1966, 1972,
1982; Iwai & Mishkin, 1969; Gross, 1973a,b; Review by
Dean, 1976) while lesions of intermediate temporal cor-
tex (TEO) impair the visual discrimination of objects per
se whether the discriminanda differ in color, orientation,
brightness, pattern, or shape (Gross, 1973a,b; Dean, 1976,
1982; Wilson, 1978; Gross, Bruce, Desimone, Fleming, &
Gatass, 1981; Ungerleider, & Mishkin, 1982; Mishkin, Un-
gerleider, & Macko, 1983). As the anterior portion can
be also separated in an anterior half (area TEa) more
strongly linked with the limbic structures than is the
posterior half (area TEp), it is thus possible to consider
the ventral cortical pathway, which processes visual dis-
crimination in primates, to include at least the following
steps: V1 — V2 — V4 — TEO — TEp — TEa (Fig. 1A)
(Mishkin, Ungerleider, & Macko, 1983; Yaginuma, 1990).

The dorsal pathway itself can be subdivided into two
streams: (1) a dorsomedial stream involving the parieto-
occipital visual area (PO) and area PG (or 7a) in the
inferior parietal lobule (IPL) and (2) a dorsolateral
stream involving areas MT and MST as well as the lateral
intraparietal areas (Gatass, Rosa, Sousa, Pifion, Fiorani,
Neuenschwander, Moura, Abrahdo, & Saraiva, 1990).
Neurophysiological explorations of the different parietal
areas (Mountcastle, Lynch, Georgopoulos, Sakata &
Acuna, 1975; Lynch, Mountcastle, Talbot, & Yin, 1977;
Hyvarinen & Poranen, 1974; Sakata, Shibutani, & Kawano,
1983; Sakata, Shibutani, Kawano, & Harrington, 1985;
Sakata, Shibutani, Ito, & Tsurugai, 1986) have shown that
they process complementary aspects of space. The dorso-
lateral pathway processes visual motion (MT), with more
and more integrated aspects (MST). The dorsomedial
pathway seems to be involved in coding the location of
visual stimuli for spatial orientation, spatial perception
(Ratcliff & Davies-Jones, 1972; Lamotte & Acuna, 1978),
and visual guidance of hand movements (Pohl, 1973;
Buchbinder, Dixon, Hwang, May, & Glickstein, 1980; Un-
gerleider & Mishkin, 1982; Weiskrantz & Saunders, 1984).
For example, in area 7a, neurons can combine infor-
mation on the retinal location of visual stimuli and on
the position of the eyes in the orbits possibly to locate
visual targets in a head-centered space (Andersen &
Mountcastle, 1983; Andersen, Essick, & Siegel, 1985). The
two subsystems can contribute to the control of eye
movements: MST neurons for smooth pursuit, 7a neu-
rons for fixation, and area LIP for programming saccadic

eye movements (neurons can hold in short-term memory
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the metrics of planned eye movements in motor coor-
dinates) (Hyvarinen, 1981; Andersen, Essick, & Siegel,
1985; Andersen, Bracewell, Barash, Gnadt, & Fogassi,
1990; Gnadt & Andersen, 1986, 1988). ,
The dorsolateral pathway for motion perception, after
V1 and V2 areas, passes via intermediate areas such as
MT and MST, to the intraparietal regions while the dorso-
medial pathway for spatial perception shares the two first
maps V1 and V2 and then passes, through PO, POa / 7a
(or PG), to the posterior parietal cortex.

From Retinal to Object-Centered
Reference Frames

The global architecture of the Y-like multilayered net-
work is organized in six maps along four sequential
processing stages that model the main functional steps
of the actual cortical areas (Fig. 1B): two low-level stages
learning-independent and two high-level learning de-
pendent: (1) primary areas perform low-level processing,
such as elementary feature extraction, on the retinal in-
formation; (2) secondary areas perform more elaborated
processing using larger RF but still with a retinal refer-
ence frame; (3) associative intermediate areas relate the
resulting pattern of activity with the (4) highest level
steps, which store the learned prototypes.

It is precisely those four functional stages that we have
implemented in four processing maps. Their correspon-
dence with actual cortical areas will be discussed further
(discussion section). The two first “low-level” maps, com-
mon to the two streams, are called the primary sensory
area (PSA) and the secondary sensory area (SSA). The
two “high-level” maps are called the temporal associative
area (tAA) and the temporal semantic area (tSA) in the
“What” branch and the parietal associative area (pAA)
and the parietal semantic area (pSA) in the “Where”
branch.

The processing pathway leading to the parietal lobe
can process both moving and static patterns, respectively,
in the dorsolateral and dorsoventral streams. Given that
we deal only with static pattern recognition, the “Where”
branch only models the dorsomedial parietal stream.

Central-Periphery/Receptive Field Size

Visual Field Representation and
Receptive Fields Size

The segregation of the visual system in two separate
processing pathways matches well with the old idea of
focal vision vs. ambient vision, exposed by Trevarthen
(1968). The focal vision system is involved in object
manipulation tasks and form recognition. It has a very
high degree of acuity and concerns mainly the central
visual field (foveal zone). The ambient vision system
concerns the entire visual field, has a very poor degree
of spatial resolution, but is particularly selective for
movement and position in space of global objects. The
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differences in the emphasis on the representation of
central (or focal) vs. peripheral (or ambient) vision in
the distinct visual areas are likely to be related to the
functional division in ventral and dorsal pathways. In-
deed, in the areas of the ventral stream (V4, TEO) there
is emphasis on the representation of central vision while
the dorsal stream has a representation either of the
whole visual field or with emphasis on the periphery (in
PO virtually no receptive field centers were found below
20° of eccentricity).

The second important parameter is the size of the
receptive fields (RF) in the different areas of the two
streams. As already outlined by Maunsell and Newsome
(1987), RF size provides a good index of how the sensory
information is integrated through the successive pro-
cessing stages. There exists a relation between neuronal
receptive field size and its eccentricity (here measured
by the center of the receptive field and not to the max-
imal activity in the field) and we have plotted this relation
(RF diameter /ecc. function) for the known cortical areas
belonging to ventral and dorsal streams in Figure 2.

Three points can be made about the organization of
the RF in the different maps:

1. Within the same area, the receptive field size is not
constant but increases with eccentricity (in a linear fash-

1001
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T
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CENTRAL PERIPHERAL

Eccentricity (deg)

Figure 2. Receptive fields size as a function of eccentricily in visual
areas. Neuronal receptive field sizes as a function of eccentricity (RF/
ecc function) of cortical areas in ventral (V4, IT), dorsomedial (PO,
PP) and dorsolateral (MT, MST) streams as compared to primary
and secondary visual areas (V1, V2), from Gatass et al. (1987) for V1,
Rosa et al. (1988) for V2, Gatass et al. (1988) for V4, Desimone and
Ungerleider (1986) for MI/MTp and MST, and Neuenschwander et al.
(1990) for PO. For IT (dashed line), the functions are approximated
from Desimone and Gross (1979) and Desimone and Ungerleider
(1986), with properties similar to those of area FST, whose receptive
fields are large enough to encompass the center of gaze. For PP
(dashed line), approximation from Steinmetz et al. (1987), Motter et
al. (1987), and Motter and Mountcastle (1981), with very large RF, up
to 100° in diameter. Note that slope increases in the successive pro-
cessing steps in both ventral and dorsal streams and the representa-
tion of central vision is emphasized in the ventral stream while
periphery is more represented in the dorsal stream (in PO virtually
no receptive field centers were found below 20° of eccentricity). This
property, associated with the increase of RF size with eccentricity,
results in larger RFs in the dorsal stream.

ion, at least in the lower level areas) (Gatass & Gross,
1981; Albright & Desimone, 1987; Gatass, Sousa & Rosa,
1987; Rosa, Sousa, & Gatass, 1988; Gatass, Sousa, & Gross,
1988).

2. When comparing different areas of each functional
stream at a similar eccentricity value, the mean receptive
field size increases significantly from one step to the next
one, that is, for example from V1 to V2, from V2 to V4,
from V2 to PO, resulting in a progressive integration of
more and more sensory information (Hubel & Wiesel,
1962, 1965, 1968; Van Essen & Maunsell, 1983; Maunsell
& Newsome, 1987; Zeki & Shipp, 1988).

3. Along the temporal pathway, the receptive field size
increases gradually through the successive cortical areas
but does not exceed 20° X 20° at the highest level (IT).
In contrast, the receptive field size increases more rap-
idly along the parietal pathway. This effect is enhanced
by the emphasis on the peripheral representation in this
stream [cf.(1)]. At the most integrated level (PP), it can
reach half or even the entire contralateral visual field,
often including part of the ipsilateral one (Motter &
Mountcastle, 1981; Sakata, Shibutani, & Kawano, 1983,
Sakata, Shibutani, Kawano, & Harrington, 1985; Stein-
metz, Motter, Dufy, & Mountcastle, 1987; Motter, Stein-
metz, Dufy, & Mountcastle, 1987).

Functional Differentiation of the Two Branches
of the Network

In the model, raking into account that there is not an
absolute correspondence between the processing steps
and the actual cortical maps, we have simplified the RF
size of each processing step considering it as constant,
and we have focused on two principles of the biological
architecture: (1) the RF size increases from one step to
the next one in each stream, and (2) the mean RF size
increases more rapidly in the “Where” branch than in
the “What” branch (in relation with the emphasis on the
peripheral zone).

The distribution of RF sizes in the model reflects an
important functional consequence of the RF size orga-
nization in the visual system. To learn a visual pattern,
the network has to associate a configuration of local
features with a particular prototype. The RF sizes affect
the precision of the configuration that can be learned.
In the temporal pathway, the slow increase of the RF size
should maintain a precise configuration until the poste-
rior IT (where RF size are smaller than 7°) while in
anterior IT prototypes seem to be represented with re-
ceptive fields larger than 20°. We can thus hypothesize
that a fundamental step in learning a configuration of
local features should then occur between posterior IT
and anterior IT. We have modeled this step in the relation
between the associative map and the semantic map.

The transition between the successive areas is different
in the two functional streams: a moderate convergence,
as in the temporal pathway, allows the relative spatial
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arrangements of local features to be discriminated
whereas a steeper one, as in the parietal pathway, can
allow the detection of global coarse patterns all over the
visual field. We consider in the model this differential
increase of RF size as a preset anatomical parameter and
we have fixed the ratio “Where” RF/“What” RF at 9/4.

Information Coding in the
Two Pathways

Neuronal Response Properties in the Two
Visual Pathways

As for their receptive field sizes, the stimulus selectivity
of neurons differs in the two streams and in the succes-
sive steps within each stream.

At the primary levels of processing, the ventral pathway
contains a higher proportion of neurons that are mainly
selective to orientation and thus more related to physical
properties of patterns while neurons in the dorsomedial
pathway are more selective to the direction of movement
of the pattern in the visual field (Maunsell & Newsome,
1987; De Yoe & Van Essen, 1988). Orientation sensitivity
in the dorsolateral stream may be responsible for pro-
cessing location of stationary stimuli in space.

In the posterior parietal cortex, neurons are typically
not sensory or motor in a strict sense but there appears
to exist a spectrum of cells ranging from those that are
activated by light stimuli and unaffected by eye move-
ments through those with combined properties (“light-
sensitive” neurons influenced by saccadic behavior) to
others active during saccades but insensitive to light stim-
uli (oculomotor neurons or “saccade neurons”). This
gradient change in functional properties suggests the
possibility that such cells may be arranged in a sequential
chain from visual neurons to motor ones (Motter &
Mountcastle, 1981). The lateral intraparietal area neurons
respond to light stimuli and have also saccade-related
responses, which are mainly presaccadic, while the area
LIP appears to play a role in the processing of saccadic
eye movements rather in motor coordinates (Barash,
Andersen, Bracewell, Gnadt, & Fogassi, 1988; Barash,
Bracewell, Fogassi, & Andersen, 1989; Andersen, Essick,
& Siegel, 1985; Andersen, 1987, 1989).

In the temporal lobe, neurons can respond to simple
stimuli, such as white and colored bars, but can also
respond to much more complex stimuli including real
objects such as hands and faces (Gross, Bender, & Rocha-
Miranda, 1969; Gross, Rocha-Miranda, & Bender, 1972;
Gross, 1973a,b; Rocha-Miranda, Bender, Gross, & Mish-
kin, 1975; Gross, Bender, & Mishkin, 1977; Rolls, Judge,
& Sanghera, 1977; Desimone & Gross, 1979; Bruce, De-
simone & Gross, 1981; Perret, Rolls, & Caan, 1982; De-
simone, Albright, Gross, & Bruce, 1984). Responses to
more complex stimuli increase with a posterior to an-
terior gradient in the ventral stream. In the posterior IT
(TEO and TEp) most cells have small receptive fields
(<7°), and show selective responses for simple features
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such as orientation, color, and/or size of the stimuli (as
in V1, V2, and V4). In the anterior IT, the proportion of
these “primary” neurons falls from 72 to 9%, while the
proportion of “elaborated” cells, with larger receptive
fields (>10°) and optimal responses to complex stimuli
(group of patterns of particular shapes), increases from
9 to 44% (Tanaka, Saito, Fukada, & Moriya, 1990). In
anterior IT, elaborate responses are invariant irrespective
of stimulus size, orientation or color (Miyashita, 1990).
It has been demonstrated that elaborate response of cells
to complex stimuli can be acquired through learning
(Miyashita, 1990). Consequently they could represent the
learned “prototypes” and their invariant properties
should be built in the posterior IT (TEp) (Weiskrantz,
1990). The coding of “prototypes” in the anterior IT
seems to correspond neither to the idea of “local” coding
(grandmother cell) nor to a complete “distributed rep-
resentation,” but rather to an intermediate “semidis-
tributed coding” (Tanaka, Saito, Fukada, & Moriya, 1990).
Cells with different levels of complexity are intermingled
among clusters that appear to associate elaborate neu-
rons (for example, the image of the hand) and primary
neurons representing partial features (for example, spa-
tial frequency of fingers) of the optimal patterns activat-
ing the close elaborate cells (Tanaka, Saito, Fukada, &
Moriya, 1990).

Local Coding of Features in Primary Areas,
Semidistributed Coding of Prototypes, and
Population Coding of Locations

In the model, all the units in a given map perform the
same type of local processing on the afferent information
flow. They are classified according to three kinds of
indice (which correspond to the dimensions of the pro-
cessing maps in Fig. 1B): (1) topographic (XY), (2) local
indice (¢), and (3) global indice (p).

1. The topographic index defines the ordered rela-
tions between the successive maps: two neighboring
units in a given map have two neighboring receptive
fields in the afferent map. This topography becomes less
precise along the processing hierarchy. This index cor-
responds to the two planar coordinates (X)Y) labeling
the relative location of each unit in its respective map
and consequently the location of its retinal receptive
field. :

In the present implementation, X=Y=16 in PSA,
X=Y=8 in SSA, X=Y=4 in the associative areas, and
X=Y=2 in the semantic areas.

2. The local feedforward index (i) labels the specific
filtering process that each unit performs on the sensory
information. As we were interested in static pattern pro-
cessing, and as the outline shape of such patterns appears
to be a particularly salient feature (Gross, Rocha-Miranda,
& Bender, 1972; Rocha-Miranda, Bender, Gross, & Mish-
kin, 1975; Gross, Bender, & Mishkin, 1977; Sato, Kawa-
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mura, & Iwai, 1980; Desimone, Albright, Gross, & Bruce,
1984), we focused on orientation selectivity (a character-
istic common to the two pathways, even if more prepon-
derant in the temporal one). For each topographic indice
(X.Y), four units (i=4) of the primary sensory area (PSA)
detect four orientations of edges modeling the tuning
properties of the cortical columns in striate and extras-
triate cortices: horizontal (H), vertical (V), and the two
diagonals (D1, D2). Units of the secondary sensory area
(SSA) detect six different combinations of orientations
(¢=6) with larger receptive fields: (HH), (VV), (D1D1),
(D2D2), (HV), and (D1D2). Such extraction evokes sim-
plified models of complex and hypercomplex cells found
in the striate and extrastriate cortices. This organization
with 3-indices (represented by a 3D structure in Fig. 2)
is maintained in the associative areas.

3. The global feedback index (p) defines a “fourth
dimension” (only in the associative maps, tAA and pAA)
that characterizes units receiving feedback links from
groups coding a given prototype (p) in the semantic
maps. These feedback links will allow us to learn to
associate a configuration of local features (i, through
feedforward links) with a given prototype (p, through
feedback links) within the associative map. After learning,
a pattern presented on the retina will activate a config-
uration of local features (#) and this ascending informa-
tion ‘will be matched with the stored internal
representations (see Mishkin, Ungerleider, & Macko,
1983 for a neurobiological discussion ).

4. The first three dimensions (X, Y, ) are maintained
in groups of neurons coding for different prototypes (p)
in the semantic maps (semidistributed coding) but with
still larger RF sizes (less precision on X and Y). In these
maps, a pattern (for example, a particular view of a given
prototype) is thus not encoded in a single unit but is
encoded by a population (see Desimone et al. 1984, for
biological sources), i.e., is reflected in the pattern of
activity across this population of units coding for different
relative positions, orientations and other characteristics
of the same prototype. This coding is consistent with
experimental results in the inferotemporal cortex (De-
simone, Albright, Gross, & Bruce, 1984; Tanaka, Saito,
Fukada & Moriya, 1990). The summed population activity
will be the same for various views of a prototype, even
if at the level of the single cells (or automata) the pattern
of activation can be different and reflects the particular
characteristics of each view. Recognition of a prototype
corresponds to a strong population activity in the cor-
responding cell cluster, and if several groups are simul-
taneously active, the discrimination is made through a
winner-take-all mechanism.,

In the present implementation, the neural network
model learns 28 different prototypes which are stored in
28 different clusters of processing units. These 28 pro-
totypes can correspond to many different incoming pat-
terns, which are coded by different configurations of

activities within the corresponding clusters leading, how-
ever, to the same population activity. Considering that a
limited number of prototypes exist [no more than
100,000 have been described (Thorpe, 1989)], such a
semidistributed coding is biologically plausible.

The response in the “Where” branch is also the result
of a population code. The different units vote for a given
position (upper lefvupper right/lower lefvlower right)
with a strength proportional -to their activation. Since
they model population of neurons in the parietal stream
that project to structures commanding eye movements,
a vectorial sum of the different activities can be inter-
preted as a shift command to reset a pattern on the fovea.

It is important to note that even if the two semantic
areas express a decision about either form or position,
the branch that extracts the position includes a coarse
coding of the form and reciprocally the branch that ex-
tracts the form includes a coarse coding of the position.

Processing Unit

The Columnar Organization of the
Cerebral Cortex

The cortical maps are not made of a uniform lattice of
neurons, but the cerebral cortex is made of local circuits
of cooperative neurons (pyramidal neurons and inter-
neurons) arranged throughout the depth of the six cort-
ical layers. This group of highly interconnected cells
shares the same set of inputs and outputs and show
similar selectivity to external stimuli (Szentagothai, 1975;
Evarts & Tanji, 1974; Hubel & Wiesel, 1977; Mountcastle,
1978; Jones, 1981). These stereotyped neuronal circuits
(about 100 neurons) are repeated, with cytoarchitectonic
variations, throughout the cortical sheet (Szentagothai,
1975; Mountcastle, 1978).

The cortical layers correspond to a differential distri-
bution of neuronal types in local circuits as well as sub-
sets of inputs and outputs. The intermediate layer IV
(which contains granular cells) divides two subsets of
pyramidal neurons, the upper division (supragranular
cortical layers I, II, and III) and the lower division (in-
fragranular cortical layers V and VI). These divisions pro-
cess different types of information. The granular layer
receives the main sensory inputs, either directly from
the thalamus (LGN and thus from the retina) or from
columns of cortical areas involved in earlier stages of
sensory processing (feedforward connections). The su-
pragranular layers are mainly specialized in corticocor-
tical connections, toward adjacent cortical zones or
toward more distant cortical areas (Szentagothai, 1975;
Jones, 1981; Feldman, 1984). The infragranular layers
project outside the cortex toward other neural structures
such as the superior colliculus or control the ascending
information flow, through feedback connections (Van Es-
sen & Maunsell, 1983; Zeki & Shipp, 1988).

These local multineuronal circuits form “cortical col-
umns” that have been described as functional units in
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the different cortical areas (Szentagothai, 1975; Hubel &
Wiesel, 1977; Mountcastle, 1978; Gilbert & Wiesel, 1981).
They can be labeled by different biological markers and
physiological explorations that show regular patterns in
surface views of the cortex (Hubel & Wiesel, 1977). In
fact, different superimposed patterns may appear and
could represent the overlay of different information
flows (Swindale, 1990) that are combined by the local
cortical interneuronal circuits.

The Learning and Activation Rules of the
Processing Units Modelling the Cortical Column

The Processing Unit. 'The processing unit used in the
network is thus not a neuron but models in a simple
way this local neuronal circuit that combines the input
information arriving in the different cortical layers, with
different spatial arrangements (Fig. 8, explained in the
Formalism section).

This model of “cortical column” (viewed as an inter-
neuronal circuit) is organized in three major input—out-
put divisions (Burnod, 1988; Alexandre, Burnod, Guyot,
& Haton, 1988; Alexandre, Guyot, Haton, & Burnod,
1991): the upper, the intermediate, and the lower divi-
sions in which three kinds of inputs are dispatched and
produce by specific combinations two different outputs.

The processing unit combines three types of inputs:

1. feedforward (or bottom-up) inputs, in the inter-
mediate division (modeling cortical granular layer IV),
from previous stage units, providing sensory information
from the “outside world” that has already been subject
to selective filtering through previous processing steps;

2. feedback inputs from higher stage units (modeling
top-down effects), in the upper division, which control
the ascending flow of information by a gating or an
inhibitory effect which is determined by both previous
learning and the internal state of expectation of the sys-
tem;

3. lateral inputs provided by neighboring units, in the
upper division, which can become either excitatory or
inhibitory, depending on the differential activities of the
units, modeling the intracortical balance between col-
umns.

The processing unit produces two kinds of outputs:

1. The upper division (modeling the supragranular
cortical layers) makes local connections with surround-
ing units of the same map and long-range connections
with other maps.

2. The lower division (infragranular cortical layers)
projects outside the network to other structures involved
in oculomotor commands or generates the feedback con-
nections for selective control of the incoming informa-
tion provided by lower maps.
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We consider that interactions between feedforward
and feedback connections are important for learning. We
have thus implemented reciprocal connections between
the associative map and the semantic map in both “What”
and “Where” pathways (i.e., between tAA and tSA and
between pAA and pSA). Connections between RETINA
and PSA, between PSA and SSA, and between SSA and
the two associative areas (tAA and pAA) involve only
feedforward connections and are thus not influenced by
learning.

Activity Levels. 'The activity range of these local cortical
circuits are simplified with three different levels of acti-
vation, which correspond to three different functional
states, EO, E1, and E2:

1. The null state (E0) is the result of inhibitory pro-
cesses.

2. The low state (E1) models a moderate activation of
the intracortical circuit, corresponding to selective atten-
tion or anticipation of a possible goal. It can be inter-
preted as an “hypothesis” that can dynamically propagate
through the network searching for a validation.

3. The high state (E2) models a strong activity corre-
sponding to a certainty in the detection of a specific
sensory input or to the validation of an “hypothesis.”
Such states are typically observed during sensorimotor
interactions with the external world.

Activation Rules. Activation and learning rules are de-
tailed in the section Formalism. They are constrained by
neurobiological knowledge (bottom-up constraints) and
are in correspondence with elementary human-like type
processing (top-down constraints) (Alexandre, Guyot,
Haton, & Burnod, 1991)

The different inputs enter the unit through separate
divisions (as in cortical layers). Within each division, a
convolution and a thresholding are performed on sub-
sets of inputs (corresponding to the receptive field of
this unit division). The results (or global inputs) of the
different divisions are integrated to compute the global
output activity of the unit, taking into account the pre-
vious state of the global unit (short-term memory) and
the learning coefficients (long-term memory) specific to
each division. A Strong input can produce an excitatory
or inhibitory influence depending upon the previous
state of the unit. A Moderate input may have different
influences in function of learning: it can either trigger
strong activity in the target units or gate the effect of
another input (as an “AND” operation) or inhibit the
target units. In the present implementation, only the
feedback input is dependent upon learning.

The output computation in the “What” semantic map
(tSA) corresponds to a matching process between the
feedforward incoming distributed activity and the learn-
ing coefficients, for both excited and inhibited values,
corresponding to the stored prototypes. This dual match
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operation enables two embedded patterns (such as “P”
and “R”) to be differentiated.

Learning Rules. The processing unit has specific learn-
ing coefficients for each division. According to these
learning coefficients, each type of input may have three
different effects, which depends upon the probability of
input—output coactivations: (1) triggering effect, (2) gat-
ing effect, and (3) inhibitory effect. This learning can
occur in one step due to weight modifications that are
based on conditional probabilities of strong input—output
events (see Formalism section): even with a single trial
the network produces a learned response (the condi-
tional probabilities are equal to one or zero). This re-
sponse will be further refined through the following
trials. This type of learning seems more realistic than
progressive adjustments of synaptic weights, which need
a high number of iterating steps on a given pattern or a
high number of presentations of the same learning set
of patterns.

EXPECTED BEHAVIOR AND
PERFORMANCE OF THE NETWORK

This biologically constrained model has been tested on
a set of 28 prototypes to investigate its IVR capabilities.
The results match the five expectations presented in the
introduction.

Learning Session: Immediate Learning

The learning corpus is constituted of a set of 28 binary
patterns digitized in a 12X 12 grid (the 26 capital letters
of the alphabet plus two geometric figures: triangle and
diamond).

During the learning session, a given pattern is pre-
sented once on the central part of the retina. At the same
time, all the units in both semantic areas are inhibited
(E0) except those corresponding to the adequate pro-
totype [uniform population activation over all the local
indices (¥) of the prototype (p)] and its location (uniform
activation corresponding to a centered position), which
are forced to the stable state E2. Information propagates
in the whole network according to the connectivity and
the functional rules both in the bottom-up direction
(through “feedforward” connections) from the retina to
the two associative areas and in the top-down direction
(through “feedback” connections) from semantic areas
down to associative areas. At the level of the associative
areas, the two flows interact and build up by learning
the excitatory or inhibitory learning coefficients, which
correspond to the internal representations of the exter-
nal pattern. In accordance with the differences in the RF
size between the two branches of the network, rwo dif-
Sferent schemes of internal representations (Fig. 3) are
obtained at the end of the learning session.
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Figure 3. Learning coefficients in temporal and parietal associative
areas. This figure compares the two sets of learning coefficients
stored in the feedback connections from the semantic areas down to
the corresponding associative ones: they store two “internal repre-
sentations” (represented within the same map: dark squares only for
the temporal coefficients and dark squares plus gray ones for the
parietal ones) of the 28 learned prototypes. Each prototype (p) is
coded in a cluster of 4(X X 4(Y) X 6(¢) processing units (semidistri-
buted coding, with 6 blocks of 16 units for 6 features HH, D1D1, WV,
D2D2, HV, D1D2 in 16 positions). Black squares signal for both ()
the basic features componing each learned prototype and their topo-
graphical location (X)Y). Note that an adequate set of features is ex-
tracted in both the “What” and “Where” pathways, but their relative
positions (spatial configuration) are maintained only in the temporal
associative map (black squares).

1. In the tAA, the model has associated each prototype
with a set of local features with their relative spatial
arrangement. This maintained configuration of local fea-
tures will allow patterns to be differentiated during the
recognition session.

2. In the pAA, although the local features of each pat-
tern have been detected as well, their relative positions
have been mixed by wider RF: the local features have
been spread and thus learned everywhere in the asso-
ciative map. Ambiguous patterns built up with the same
local features but in a different spatial configuration (like
a square and the letter H) will thus be confused. How-
ever, they will always be localized, whatever their posi-
tion on the retina.

To investigate the capabilities the model had acquired,
after this single learning session, in pattern recognition,

Orto et al, 45




all activity-dependent modifications are stopped and the
different learned patterns are presented to the network
with varying sizes (just one has been learned) and vary-
ing locations within the visual field (only the centered
position has been learned).

Immediate Recognition of Centered Patterns

During the recognition session, the network reaches its
stable state in one time step [what we consider as one
time step is the time needed by the activity to propagate
in a feedforward mode from the input layer (the retina)
to the output ones (the two semantic areas) as defined
in backpropagation algorithms] and gives a response in
the two semantic areas.

Figure 4 shows that the model has a recognition rate
of 100% when the patterns are presented in the same
conditions as in the learning set (size 12, at the center).

We have thus performed three different sessions of
tests:

1. The pattern remains at the center of RETINA (which
is the learned position) but varies in size.

2. The pattern remains at the size that has been
learned but varies its location on the retina.

3. Both size and location change.

Moderate Size Invariant Properties in the
Temporal Branch

The pattern, centered on the RETINA (which is the
learned position), varies in size, from a maximal size
occupying the whole associative areas (size 13=26X%26
pixels) to a minimal one which corresponds to one RF
size in the primary sensory area [only seen by 9 pro-
cessing units (size 3=6X6 pixels)].

Figure 4 shows that, when the size is decreased by
25% (from size 13 down to size 9), the network also
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Figure 4. Performances of the temporal patbway: effect of changing
size only. After the 28 patterns have been learned at one size (size
12, 24 X 24 pixels) and in the central position, they are presented,
during the recognition session, in the central position but with vary-
ing sizes: from a size 13 (26 X 26 pixels) down to a size 3 (9 X 9
pixels). Note that the recognition rate remains above 70% despite
decreases from the learned size of up to 33%.
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responds with a very satisfactory rate (superior to 70%)
for varying sizes. Other investigations using smaller sizes
for the learning set show that the recognition rates for
patterns with increasing or decreasing sizes are roughly
symmetrical with respect to the learned one.

What it is important to stress is the fact that the patterns
within this range of sizes (i.e., from size 13 to size 9)
produce patterns of activity in the tAA that perfectly match
the stored internal representations (represented in Fig.
3A). This is mostly due to the RF width. This is not the
case for smaller patterns whose feedforward pattern of
activation concern more central units in such a way that
a mismatch does occur: in fact, there is a match with a
prototype that is not the good one (for example, “C”
when too small is interpreted as “E”).

Moderate Shift Invariant Properties without
Ocular Movement

In this case, the pattern, with the learned size (size
12=24X24 pixels) varies in location, from one side to
the other of the retina, on both the vertical and horizontal
axes (corresponding to a shift up to 6 “pixels” on each
axis and in the two directions).

In the case of varying location, the model shows (Fig.
5) a very interesting invariant recognition rate: it remains
superior to 70% for a translation on RETINA correspond-
ing to the size of the receptive fields of the temporal
associative area (|dx{=4 and |dy|=4 “pixels” on RETINA).
This is also due to the convergent connectivity.
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Figure 5. Performances of the temporal pathway: effect of changing
Dposition only. With the same learning conditions as in Figure 4 [size
12 and central position, position (0,0) in this figure], the 28 patterns
are presented, during the recognition session, in the same size but
with varying positions, from one side to the other of RETINA [given
the size of the retina (32 X 32) and the size of the pattern (24 X 24),
its position is changed up to 6 pixels in both the X and Y axes). Note
that the recognition rate remains superior to 70% for a shift up to 4
pixels in the two directions and along the X and Y axes. This shift
globally corresponds to the surface of the retina (RF size) “seen” by
the processing units of the temporal associative area.
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Parietotemporal Cooperation for Invariant
Recognition

We focus on the conditions where the “What” and the
“Where” branches tightly cooperate to perform success-
ful pattern recognition.

Figure 6 shows the behavior of the Y-like network
when both size and location of the presented pattern
are changed [for each different size (13 to 3), the pattern
is presented in all the locations over the retinal.

When the pattern is not too small, the “What” branch
can perform direct recognition at different locations,
mainly around the center of RETINA: the positions of the
patterns where this direct recognition is satisfactory are
represented in Figure 6 by the darkened squares. In this
case (“temporal satisfaction”), the “where” computation
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Figure 6. Cooperation between temporal and parietal pathways.
With the same learning paradigm as Figures 4 and 5, a pattern is
presented during the recognition session with varying sizes and posi-
tion shifts on the retina of up to —10/+10 “pixels.” This figure shows
the behavior of the double-branched network for a prototype (here
the capital letter “X”) presented with one size (size 10, 20 X 20
pixels) in all the positions (in the upper quarter of the retina, the
other quarters can be deduced by symmetry). Dark squares represent
the positions where the pattern is directly recognized by the “What”
branch. Arrows represent the vectorial population coding of an ocu-
lar movement performed in the “Where” branch when the “What”
branch fails to recognize the pattern. Notice that these vectors con-
tain the directional information needed to reset the pattern closer to
the positions where it is directly recognized (dark squares). Further-
more, the amplitude of the vector increases with the distance of the
pattern from the center.

is performed in parallel in the parietal branch but is not
used for recognition. A recognized pattern finally results
in a well-contrasted activity (EO, E2) in the tSA. We con-
sider that the overall effect of this “temporal” activity is
inhibitory on the output from the “Where” branch (driv-
ing the ocular command).

By contrast, failure of recognition corresponds to
spread of activities (EQ, E1 and E2) within the tSA, without
any emergent well-contrasted pattern. The overall effect
on the “Where” branch is considered as an excitatory
gating effect (a “call for help”) on its oculomotor output.
The “Where” branch has already extracted a global lo-
cation of the pattern displayed on the retina (population
coding). The output effect of the parietal areas toward
the structures that command the extraocular muscles
(colliculus, FEF) is modeled by a vector: the population
code is transformed into a motor command (vectors
shown in Fig. 6), which drives the movement to be
performed to reset the pattern in the foveal region.

Figure 6 shows that the “Where” branch not only com-
putes the good direction, from the target location toward
the center of the visual field, but also calculates an am-
Dlitude, which increases, in a step-like fashion, with the
eccentricity of the target: the greater the eccentricity of
the target, the larger the amplitude of the resetting vector.

The motor command positions the pattern closer to
the center of the fovea and a few time steps are sufficient
to reset the pattern in the region where the “What”
branch recognizes it. This resetting operation can fail for
smaller patterns: in this case, it is necessary either to
change the internal representation (“internal zoom,” ex-
posed in the Discussion section) or to move toward the
object (“external zoom”): these two adaptive processes
can be triggered by the persisting spread activity (“lack
of satisfaction™) in the “What” branch.

Furthermore, it is important to note that the response
given by the “Where” branch is linked to the “parietal
prerecognition” of a possible pattern: the “Where”
branch indeed will not localize a random signal that does
not have a similar association of local features to the
previously learned patterns (as a “list” and not as a “con-
figuration™).

DISCUSSION

In this article we have outlined a computational solution.
to the invariant recognition problem—invariance in size,
invariance in position—which is based on neurobiolog-
ical knowledge. The invariance property in the whole
visual field mainly comes from the cooperation between
two regions that are a priori known to extract two dif-
ferent types of information, one that has limited invariant
capacities for object recognition in the center of the
visual field and the other that can extract object locations
in the periphery and drive eye movements to reset the
pattern in the central region. A Y-like double branched
network (constraint 1) allows us to extract these two
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different types of information, form and location, with
an optimal tradeoff between precision of recognition and
invariant capabilities in each branch, which is due to a
differential distribution of RF sizes and visual field rep-
resentation in the two streams (constraint 3). Invariant
capabilities in the central part of the visual field are due
to the increase of RF size along the successive steps
(constraint 2) of the “What” pathway. These steps have
clearly different functional roles since only the “associ-
ative” area has the optimal tradeoff between the size of
the RFs and the maintenance of spatial configuration of
features to learn patterns efficiently. A semidistributed
coding of information (constraint 4) allows us to repre-
sent in the network a limited number of “prototypes” by
independent neuronal groups: each neuron can opti-
mally learn a specific feature of a given prototype and
different views of the same prototype are represented by
different patterns of activation within the same neuronal
group. The lamination of the local cortical circuits in
different input-output divisions (constraint 5) allow us
to integrate information along each stream (through
feedforward processing), to associate local features and
prototypes in the associative areas (through feedforward
and feedback interactions), and to achieve the functional
cooperation between the two branches (through “lateral”
interactions). The learning rules of these units are based
on conditional probabilities (consequence of a multicel-
lular circuit) that allow immediate learning (constraint
6). The four last constraints represent the expected per-
formances of the network and this paper shows how they
can be obtained when the architecture of the network
and the properties of the processing units are con-
strained by the six first constraints.

Our proposition to explain the phenomenon of “stim-
ulus equivalence” (Rocha-Miranda, Bender, Gross, &
Mishkin, 1975; Mishkin, Ungerleider, & Macko, 1983;
Gross & Mishkin, 1977; Seacord, Gross, & Mishkin 1979)
for changes in location and size over the central 20° or
so of the retina lies thus in anatomical constraints due
to the size of the receptive fields in the associative areas.
Recovering global information about “what is it every-
where it could be” is obtained due to the parallel ex-
traction of these two types of information: when the
temporal branch cannot directly discriminate an object,
a shift of the pattern close to the central zone can be
performed, as the result of a resetting vector computed
by the parietal branch, until the temporal branch can
perform a successful recognition.

This model is based on 10 constraints, five linked with
the functional architecture of the cortex (bottom-up con-
straints) and five linked with the expected behavior of
the system (top-down constraints). Our aim was not to
investigate the effect of these 10 constraints considered
separately since they coexist in the visual system of pri-
mates and work cooperatively at different levels. The goal
of this paper is rather to show how these constraints can
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be simply associated in a neural net to achieve invariant
visual recognition.

Comparisons with Other Models

This model shares some particular properties with other
neural networks used to perform visual pattern recog-
nition (Rueckl, Cave & Kosslyn, 1989; Bienenstock & Von
der Malsburg, 1987; Finkel & Edelman, 1990; Fukushima,
1988) but its originality lies in its commitment to support
neurobiological and psychological constraints at different
levels of organization.

As in other models (Fukushima, 1988; Gliinder, 1990),
the invariance property is first obtained by a combination
of feature extractions (AND) and converging receptive
fields (OR). However, in the present model, these two
parameters are more directly linked to architectural
properties of the visual system and are not the unique
source of invariant capacities due to two complementary
processes: (1) receptive fields size and (2) sensorimotor
cooperation in a similar way and with similar limits as
human visual recognition (for patterns learned at only
one location).

As in other models (Rumelhart, Hinton, & Williams,
1986), the learning signal is provided by a feedback flow
of information. But in our model, the feedback connec-
tions do not send an “abstract error signal” but rather
neuronal activities representing the top-down expecta-
tions of the system. Furthermore, these feedback projec-
tions are modifiable by learning, providing a
semidistributed storage of the learned prototypes that
will be matched during the recognition session with the
incoming patterns.

As in a recent model (Rueckl, Cave, & Kosslyn, 1989),
we stress the computational advantages of the physical
segregation of the “What” and the “Where” functions in
two separate pathways. In their model, based on the
backpropagation algorithm, they have compared two net-
works that both have to recognize and locate patterns in
a retina, but one is fully interconnected and the other
one is built with two independent hidden layers and
output layers. The second architecture appears to be
more efficient in terms of recognition rate and speed of
learning in each independent branch. In our model, the
two pathways are a priori distinct with specific features
(RF sizes and indices) and cooperate for a common
function, namely the invariant visual recognition.

An important characteristic of this model is the nature
of the basic processing unit, which is very different from
those typically used in neural networks. This unit does
not model a unique neuron but rather a cortical neural
circuit that can deal with various types of architectures
and has specific learning and activation rules that allow
a fast learning speed. To call it a “column” refers more
to the vertical arrangement of these neurons in the depth
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of the cortex (as stressed in the original physiological
paper of Mountcastle in accordance with the classical
images of Ramon y Cajal) than to the different “surface
views,” which have been obtained in the two last decades
with different types of metabolic markers and anatomical
tracers and which do not give a uniform view of the
cortex as stressed by Swindale (1990) since they are
linked most of the time to the specific marked or acti-
vated inputs that may have different “lateral” extensions,
segregated or overlapped. The processing unit in our
model is defined as a combination of several indices and
would thus model a vertical circuit in the cortex inter-
secting several subsets of inputs and outputs that could
have different spatial organizations and extensions. Such
processing units are thus consistent with a wide variety
of views concerning the nature of cortical columns
(Swindale, 1990). Another original feature of this model
is to propose a semidistributed coding of the stored
prototypes which is in accordance with experimental
data about the temporal lobe (Tanaka, Saito, Fukada, &
Moriya, 1990).

Limitations and Potentialities of the Model

Even with these 10 constraints, we cannot ignore of
course that the situation is much more complex in pri-
mate visual systems.

Almost 20 different areas have been identified on the
basis of various criteria and each of them is characterized
by different and complementary anatomical and func-
tional properties. But we have made the voluntary—and
reasonable—choice to focus on a minimal number of
processing steps that we consider as necessary to per-
form invariant visual recognition. Similarly we have fo-
cused on RF size distribution within the visual pathway
but it is-important to point out that all the characteristics
of the receptive fields are not fully known: (1) there is a
scatter in the size of the RF for each eccentricity and this
scatter may be of physiological importance; and (2) the
characteristics of the RF around the center of the visual
field are less known for higher levels areas. The size of
the RF varies with the attentional state of the animal
(Moran & Desimone, 1985): when the attention of an
animal is focused on one of two simultaneously pre-
sented stimuli, the effect of the other one is decreased.
In the model, the RF structure of the PSA units is preset
to yield simple cell-like properties described in the
striate cortex of the monkey. Since this organization is
stabilized during a critical period that we consider fin-
ished when learning prototypes occurs, we did not make
these features extractor adaptive. The only adaptive con-
nections in our model are feedback connections that are
modifiable in either excitatory or inbibitory direction.
Lateral and long-range connections could also be adapt-

able with similar learning rules. They could introduce
supplementary controls on the recognition process.

The present model has focused on temporoparietal
interactions for invariant visual recognition. With the
same types of units, it could include in the future other
known properties of the visual system in order to deal
with more natural environments:

1. Our model is restricted to 2D patterns identifica-
tion. To recognize 3D patterns, it should include learning
of different prototypic views.

2. The parietal coding of saccade vectors is computed
in retinal coordinates and could be extended toward
other coordinate systems like the head-centered refer-
ence frame (see, for example, Andersen, Essick, & Siegel,
1985; Burnod, Caminiti, Johnson, Grandguillaume, &
Otto,; 1990).

3. It will also be important to take into account the
parallel cooperation of the colliculus for the extraction
of location in space (for discussion, see Mishkin, Unger-
leider, & Macko, 1983).

4. The model shows the efficiency of temporoparietal
cooperation in recognizing a single pattern whatever its
position in the input retina. To improve its performance
with more natural visual scenes including several objects,
the associative and semantic areas should contain a finer
partitioning of the retinal information; to separate pat-
terns and attentional processes would be necessary to
enhance one particular pattern among the others to fo-
veate toward it.

5. Another simple extension of the model involves
generalizing the role of the parietal lobe from the loca-
tion of different global targets in the peripheral visual
field to the location of several fixation points within the
same object in the pericentral zone. In both cases the
parietal lobe will allow us to build, through the succes-
sive foveations, an internal representation of spatial re-
lations either between different objects of the visual
scene or between the different local features constituting
a given object.

To explore a visual scene with more than one object,
or to explore different parts of the same object, it should
be necessary to take into account two complementary
processes:

1. Sequential local enhancements of activity in the
parietal region (corresponding to the points that will be
successively foveated) as “attentional spots.” These suc-
cessive enhancements may have different origins such as
local prerecognition of groupings of specific features in
the parietal areas, temporal prerecognition with a coarse
coding of the direction of its locus (as already coded in
the model), frontal drive, given, for example, by internal
expectations or an instruction about the attended loca-
tion, or an internal gradient, like a Gaussian filter around
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the present point of fixation, enhancing the nearest pat-
tern with respect to the current fixation point.

2. Control by the temporal areas on eye movements
until recognition is achieved.

For more complex patterns, we could hypothesize a
process at the level of the parietal areas in which the
two kinds of information are combined: (1) feedforward
information creates a landscape of activation widely
spread with several mountains and valleys and (2) lateral
input coming from the temporal lobe enhances one peak
(only one saccade toward a single object is performed
at the same time). Step by step, the different points of
the visual scene can thus be successively explored until
recognition is achieved.

We hypothesize that the same kind of processing may
be involved for the recognition of large-scale patterns by
successive foveations: as different objects within a visual
scene are successively foveated, within a given object,
the different points of interest may be successively fo-
cused according both to peripheral local features and
global object temporal prerecognitions.

Segregation of the Two Pathways

From a biological point of view, the segregation between
the two functional pathways is still an object of discus-
sion. This model does not exclude the existence of either
" a certain degree of convergent interaction between dif-
ferent features (for example, among Y, X, and W chan-
nels) or a certain degree of hierarchical organization
between processing modules, but it does emphasize the
importance of the separate projections and parallel pro-
cessing. In the present model, we have considered only
the direct connections within each direct pathway. The
existence of additional interconnections between the two
pathways and common connections from the STS region
(Morel & Bullier, 1990) would correspond to functionally
different inputs involved in linking and controlling the
two separate direct processing pathways. Such additional
inputs would not change the properties of the model
since they will enter the processing units through differ-
ent input layers having specific activation and learning
rules, for example, for control and timing correlation.
Inputs from central vision are more important for the
object recognition function of IT cortex (Mishkin & Un-
gerleider, 1983). The inferotemporal cortex receives a
heavy projection from the “foveal prestriate cortex”
(Cragg & Ainsworth, 1969; Zeki, 1969), whereas inputs
from central and peripheral visual field (VF) are equally
important for the visuospatial functions of the posterior
parietal cortex (Mishkin, Ungerleider, & Macko, 1983).
In our model, the segregation Central VF-Temporal cor-
tex vs. Peripheral VF-Parietal cortex is functionally im-
plemented: the temporal recognition works only in the
pericentral region of the VF while the parietal action is
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triggered only in the case of eccentric patterns (gating
signal from the temporal branch).

“Where” Branch and Properties of the
Parietal Neurons

In the posterior parietal cortex, neurons are not sensory
or motor only but there is a gradient from “light-sensi-
tive” neurons to oculomotor neurons. In the present
model, we have considered the parietal semantic map
units to be light sensitive and to contain, through a
population code, the information necessary to drive a
motor saccade toward the light target. What we suggest
is that associative areas of the dorsomedial stream are
capable of some pattern recognition in terms of a list of
local features (no topographical organization can be
learned because of the wide receptive fields). Thus it
will not localize random patterns of activation but rather
blurred associations of local features that could corre-
spond to “a possible interesting pattern.”

In the present implementation, we have just consid-
ered the dorsomedial pathway of the dorsal stream. We
could easily generalize the properties of the dorsomedial
stream to the dorsolateral one, replacing, for example,
the orientations extractors by direction and speed of
motion detectors. The addition of a cooperative motion
pathway would be very interesting in that motion pro-
cessing can help to segregate figure from ground.

“What” Branch and Temporal Neurons

Sato, Kawamura, and Iwai (1980) have described two
types of IT neurons: a given neuron responsive to a
global pattern may also be triggered by its components
(type 1) or may not (type 2). We hypothesized that these
two classes correspond to two successive processing
steps. In our model, in the associative areas in which
patterns are coded in a semidistributed fashion, clusters
of processing units respond both to global patterns and
to their local components. However, at the highest level
(modeling the TEa area) a global population activity
value is computed for each prototype cluster. Units re-
spond not to the presence (or the absence) of the basic
components separately (as an OR gate that operates at
lower processing steps) but only to their combined pres-
ence (or absence, as with an AND gate). This property
allows us to enhance the differentiation between pat-
terns.

In the present model, learning of the different proto-
types takes place somewhere in between an associative
area whose moderate RF size allows us to keep the spatial
configuration of local features (as TEp?) and a “semantic”
area storing the global object in an object-centered in-
ternal representation (as TEa?). This hypothesis is con-
sistent with data on the temporal lobe (Mishkin, 1990;
Weiskrantz, 1990; Miyashita, 1990).

In TE area, there is no sign of clear visuotopic orga-
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nization (Desimone & Gross, 1979). Even if we have
described topographic indices X and Y in the two se-
mantic areas, they do not organize the map at this level
and appear only as “secondary” indices, repeated in dif-
ferent subpopulations and thus more related to pattern
coding.

A Parallel Processing Focused on
Different Sizes

For the different areas, RF sizes increase with eccentricity.
However, a significant scattering in RF size seems to exist
at different eccentricities and may have a functional
meaning. It is possible to hypothesize the presence in a
given area of multiple levels of representation of the
retinal input. Small patterns would be processed with a
high resolution and this resolution would decrease while
the size of the pattern increases. Consequently, the num-
ber of processing units necessary to discriminate a con-
figuration would thus remain constant independently of
the size of the pattern. We can consider that the visual
information may be processed by parallel channels with
different degrees of resolution in relation to the global
size of the pattern (such as an internal “zoom” effect)
and that the more efficient one should perform success-
ful recognition. These parallel channels would work
within a range of minimal to maximal possible sizes:
patterns that are too small would fall under the resolu-

tion level and large ones could extend beyond the peri- -

foveal region of recognition. But, within this range, it
would be possible to consider that each parallel channel
corresponds to a network such as the “What” branch.
The total size invariance capabilities should cumulate the
capabilities of each “What” subnetwork. Outside this
range, a motor command (body movement toward the
object or manipulation of the object to bring it closer to
face) will be necessary to optimize recognition by reset-
ting it back to the well-working domain. Within the range
of direct recognition, it is' possible to compute the opti-
mal number of subnetworks needed to cover the range.!
Furthermore, as the learned stored configuration is the
same for all scales, we can hypothesize that the learning
can occur with one presentation only, in one size: learn-
ing can be stored indeed at the level of a common
associative area to which the different processing chan-
nels should access. One of those channels may be se-
lected each time, for example, in direct dependence with
the maximal eccentricity of the retinal information (or
the proprioceptive signal from ocular muscles respon-
sible for convergence on the target).

Temporoparietal Interactions

Direct anatomical relations have been described between
the temporal and the parietal pathways (Morel & Bullier,
1990). 1t is very interesting to note that (1) from the
parietal to the temporal lobe, the parietal region called

POa (in direct relation with a parietal region which com-
mand eye movements) projects to TEO (intermediate
region of IT, related to identification of objects per se);
and (2) in the reverse direction, the anterior region of
the superior temporal sulcus (STS), more related to vis-
ual recognition, projects to POa. The function of these
connections is not fully understood. Modeling allows us
to explore the functional role of a direct cooperation
between “What” and “Where” pathways. The processing
units can integrate such types of interactions in two
stages:

1. Long-range direct connections from temporal areas
to parietal ones could support the direct temporal call
toward the parietal lobe: when no contrasted activity
emerge within the temporal semantic area, this area can
learn to gate the parietal control of an oculomotor action
in order to enhance recognition through an extracortical
feedback loop. We expect a strong input signaling for
the global status of recognition: this signal could be
provided by STS (see Morel & Bullier, 1990). The mod-
ification of learning coefficients in these long-range con-
nections can increase the efficiency of this process. The
temporal logic of these rules corresponds to operant
conditioning: if a unit activated by several inputs has a
strong activity level (E2) and if another of its inputs is
strongly reactivated (E2), this input will gain more influ-
ence by learning. If a strong input (E2) follows an inhib-
ited activity of the unit (E0), the input will lose influence
by learning. In this case, it is important to stress that
there are two different aspects of the timing of parietal
activity: (1) a direct response is processed by the parietal
lobe, even if there is no eye movement, with a rather
short latency and (2) this first response may be enhanced
by several different controls either from the temporal
lobe or from other cortical structures.

2. In a second phase, an important contribution of the
parietal lobe areas to recognition could be to provide
the positional information directly to the temporal areas.
This information could be used to shift the ascending
input pattern,'when displayed in perifoveal zone, within
the temporal associative area itself, to match it with the
previously stored information (learned in the central
position). This éntracortical shift could be sufficient to
avoid the need for a global reset of the retinal input
performed by an ocular or a body movement (Fig. 7)
and then to efficiently parallelize the recognition process
(Anderson & Van Essen, 1987). An additional interesting
property of such a process would be the possibility that
such partial shifts could be used to correct local defor-
mations.

The processing units in this model allow such inter-
actions to be taken into account. In the temporal asso-
ciative area, units could directly combine (1) feedforward
information from the retina, (2) positional information
from parietal areas, and (3) feedback information sig-
naling for success or failure of the recognition process.
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The learning logic of this model predicts that learning
will mostly occur when ocular movements are made to
reset the pattern in the fovea (as described in the first
part of this paper; operant conditioning). The informa-
tion coming from the parietal pathway that can help
temporal recognition will get an increased influence: this
effective resetting will produce a satisfactory recognition
and then a strong feedback signal will locally reinforce
the previously activated parietotemporal circuit. After
learning, this reinforced interaction will be sufficient to
produce an anticipatory shift in the temporal pathway,
improving temporal recognition without need to make
an effective ocular saccade (Fig. 7).

EXPERIMENTAL PREDICTIONS OF THE
MODEL

From this model, we can make five major experimental
predictions.

Intracortical
shift

Figure 7. Direct parietotemporal interaction to improve direct tem-
poral recognition without ocular movements. (Top) When it fails to
recognize, the temporal areas gate the output command of parietal
areas, which reset the pattern in the central region of the retina, via
an external feedback (oculomotor) loop. We hypothesize that learn-
ing can occur in the connections from the parietal to the temporal
associative area, directly associating a positional coding of the pattern
in the parietal pathway before ocular movement, with a shift of the
pattern representation in the temporal associative map due to the
resetting ocular movement. (Bottom) After learning, a direct parieto-
temporal activation can shift the visual information, directly at the
level of the temporal associative area, without need of effective ocu-
lar movements.
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Psychophysical Experiments

When new patterns are learned in a given position and
when ocular movements are not allowed, there are very.
strong limits in shift-invariance capacities. Our prediction
is that these limits can be directly related to the receptive
field size in an area, which is intermediate between V4
and TEa (for example TEp or TEO). We can consider that
previously unknown patterns, learned in one position
only, will interest in this intermediate area a small group
of cells coding for the ascending information flow. There
should exist a zone of shift invariance around this
learned position, which should correspond to the surface
covered by the receptive field of these cells. When the
position crosses the border of the receptive field, in this
intermediate area, the performances should drop with a
curve of performances close to the one obtained by
simulation and shown in Figure 4.

Asymmetrical Connectivity between the
Temporal and the Parietal Lobes

Our model makes some predictions concerning tempo-
roparietal connectivity and the corresponding interac-
tions.

From Temporal to Parietal Lobes

The most efficient connections from the temporal Jobe
to the parietal lobe should be from higher temporal level
(where patterns are recognized) to a region of the par-
ietal lobe where the target position is computed and
close to the regions that command ocular movements
(i.e., projections either to subcortical regions as the SC
or to cortical regions as LIP or the FEF). These connec-
tions should be necessary to trigger the ocular movement
command required to remove ambiguities concerning
the pattern to be recognized. We expect, for conveying
this kind of global triggering signal, that this connection
does not need to be dense or topographically organized.

From Parietal to Temporal Lobe

Conversely, the connections from the parietal to the tem-
poral lobe need not be symmetrical to those previously
described. In this case, the information about target po-
sition may be sent more efficiently to an intermediate
area in the temporal stream (such as TEO or TEp) so
that the resulting global information after combination
could match the prototypes stored in the TEa cortex. We
predict that this projection should be highly divergent
so that each region of this intermediate temporal stream
area can receive a positional information.
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Physiological Experiments: Balance of
Activity between the Temporal and
Parietal Areas

As a result of the cooperative mechanism implemented
in our model, there should be a “flip-flop™-type pattern
of activity between temporal and parietal areas: when a
pattern is recognized there is either a strong contrasting
activity in a restricted part of the terminal area in the
temporal pathway while the activity in the parietal ter-
minal area remains moderate, or conversely, there is a
low and widely distributed activity in the temporal area
(ambiguous patterns) producing a strong enhancement
(a gating) of the already activated parietal area.

Anatomy: Strong Anatomical Divergence
within the Temporal Pathway

We have a priori implemented a strong divergence from
SSA to tAA over the global indice (p). This divergence is
essential in our model to learn each kind of prototype.
We thus expect to find some intermediate temporal area
(between V2 and TEa) with RF sizes allowing us to main-
tain the spatial configuration of the patterns and “several”
repetitions of the representation of the retina (at least as
much as the different prototypes).

Physiology and Attentional Process

In our model, the tAA output is gated by the feedback
activity coming from the temporal semantic area corre-
sponding to the stored learned patterns. We thus expect
the propagation of activity along the temporal pathway
to be strongly dependent on attentional processes. With-
out attention, we expect the ascending activity flow to
fade away after V2 or V4 while continuing to higher levels
under attentional conditions. This type of propagation
could be easily tested in humans by PET studies.

FORMALISM (Fig. 8)
Notations

E..(t)  Input from unit  to unit s in layer v

E@® global input per layer v of unit s

A Influence of the global input in the layer v of
unit s

AD) Global output of the unit labeled s

Three Levels of Activity Ei (i=1,3)

Eal(D), I:(®) A((r) = B2 Strong activities (high firing
frequency)

ESD), B@), At) = E1  Weak activities (low firing
frequency)

Eo (D), I6(0), A(t) = E0  Null activities (inhibited)
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Figure 8. Formalism. Each unit “S” of given area receives a certain

@ "

number of inputs E within each layer “v.” This figure summarizes the
processing steps performed on these inputs to compute the global
output of the unit “S.” For precisions, refer to section “FORMALISM.”

Within Each Layer v

wy,  Weighting coefficients applied on the
inputs ¢
(input mask) arriving to layer v of
unit s
W = {wi.} Vector of weighting coefficients
E@®) = {E2.[()} Vector of inputs arriving in layer v

Activations Rules
Global Input per Layer v
A unit s receives, in each layer v, inputs E(t)={E5.(0)}
from other columns .
Inputs Eg.(#) are convoluted with an input mask

W = {wi.} and thresholded (function gee’) to produce
a “global input” per layer v: I5(2).

140 = g0 S 0 )] = 800/ WEED)]

with gog = 8{0,0'] + 28{0',+] and 6 < 6', and where
0 and 0’ are the two thresholds that separate the three
levels of activity (given by goe-).
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Influence per Layer

The influence Ai(¢) on the global output (A;) of the global
input Z(#) depends on the global inputs Z(#), on a func-
tion (per layer) of the previous state of the unit (“short-
term memory” factor SMs) and on previous learning of
layer v (“long-term memory” factor LMY).

A = SMETLD} + M T}
where “I%(¢) = 1 if I:(¢) = Ek else *I'() = 0, k=12.

Global Output of the Unit

The global output is a sum of the influences per layer v:

AL+ dD = 2 AU

Learning Rules
Short-Term Memory

SM: = At ~ D] + B foldile = DI+

where 0,0'€E N, fo = 89,4}, fo = 80,4}, and ‘a’, B, *y"
€ N are parameters that are layer-specific (index ¢) and
define short-memory effects (index s)

Long-Term Memory (indice 1)

Learning depends on conditional probability P2; of
strong input I5(¢) after strong outputs Az — 1).
LMY ="o fo(P2) + ‘B for (P2Y) + 'y

where 0,0 € N, fo = 8o+, fo, = jor,400, 8’ > 0, and
‘o’, ‘8%, 'y’ € N are other parameters that are also layer-
dependent (index v) and define the long-term effects
(index “1”), where P2¢ represents the probability that the
layer “»” has a strong global input Z£(¢) when the global
output of the unit was strong at the time step before

- 1)
P2¢ = ProblA«(t — 1) = E2/[{(t = E2]

Value of the Different Coefficients per Layer v

SBV SaV v Inv L

Layers ‘o Y o B Y
Feedforward 0 0 2 0 0 1
Feedback 1 1 0 2 1 1
Local 0 0 0 0 0 0

Note

1. This computation takes into account the relative size-invar-
tance within the prototypic subnetwork that we have already
tested (Fig. 4). This relative size invariance can be represented
by a factor R, which represents the ratio between the learned
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size and the lower satisfactory limit. The relative pixel size
between two successive subnetworks is equal to  in order to
cover all the sizes between the minimal and the maximal cut-
offs. The number # of subnetworks necessary to cover the
whole range between the maximal scale (Smax) and the mini-
mum one (Smin) is given by the equation R” = Smax/Smin. The
network can recognize all sizes if » = R and then if the number
of subnetworks is

n= (lOg Smax/Smin / 108("')

With this equation, it is interesting to see that the total num-
ber of subnetworks 7 does not increase in a linear fashion with
the number of scales but with the log of this number.

Reprint requests should be sent to Dr. Isabelle Otto, Institut
des Neurosciences, Départment des Neurosciences de la Vision,
Université Paris V1, 9 quai St. Bernard, 75005 Paris, France.
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