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Abstract

Costs (e.g. energetic expenditure) and benefits (e.g. food) are central determinants of

behavior. In ecology and economics, they are combined to form a utility function which

is maximized to guide choices. This principle is widely used in neuroscience as a

normative model of decision and action, but current versions of this model fail to

consider how decisions are actually converted into actions (i.e. the formation of

trajectories). Here, we describe an approach where decision making and motor control

are optimal, iterative processes derived from the maximization of the discounted,

weighted difference between expected rewards and foreseeable motor efforts. The

model accounts for decision making in cost/benefit situations, and detailed

characteristics of control and goal tracking in realistic motor tasks. As a normative

construction, the model is relevant to address the neural bases and pathological aspects

of decision making and motor control.
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Author summary

Behavior is made of decisions and actions. The decisions are based on the costs and

benefits of potentials actions, and the chosen actions are executed through the proper

control of body segments. The corresponding processes are generally considered in

separate theories of decision making and motor control, which cannot explain how the

actual costs and benefits of a chosen action can be consistent with the expected costs

and benefits involved at the decision stage. Here, we propose an overarching optimal

model of decision and motor control based on the maximization of a mixed function of

costs and benefits. The model provides a unified account of decision in cost/benefit

situations (e.g. choice between small reward/low effort and large reward/high effort

options), and motor control in realistic motor tasks. The model appears suitable to

advance our understanding of the neural bases and pathological aspects of decision

making and motor control.
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Introduction

Consider a simple living creature that needs to move in its environment to collect food

for survival (foraging problem; [1]). For instance, it can have to choose between a small

amount of food at a short distance and a larger amount at a longer distance [2, 3]. These

two choices should not in general be equivalent as they differ by the proposed benefit

(amount of food), the cost of time (temporal discounting of the benefit), and the cost of

movement (energetic expenditure) [4-6]. To behave appropriately in its environment,

our creature should be able to: 1. make decisions based on the estimated costs and

benefits of actions; 2. translate selected actions into actual movements in a way which is

consistent with the decision process, i.e. the criterion used a priori for decision should

be backed up a posteriori by the measured costs and benefits of the selected action;

3. update its behavior at any time during the course of action as required by changes in

the environment (e.g. removal or change in the position of food).

Most theories of decision making and motor control do not account for these

characteristics of behavior. The main reason for this is that decision and control are

essentially blind to each other in the proposed frameworks [7]. On the one hand,

standard theories of decision making [8] rely on value-based processes (e.g.

maximization of expected benefit), and fail to integrate the cost of physical actions into

decisions [9]. On the other hand, modern theories of motor control are cast in the

framework of optimal control theory, and propose to elaborate motor commands using a

cost-based process (e.g. minimization of effort), irrespective of the value of actions [10,

11]. An interesting exception is the model proposed by Trommershäuser et al. [12-14]

which casts into a Bayesian framework the observation that at least one aspect of motor
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control (intrinsic motor variability) is optimally integrated into decision making

processes.

Here, we consider a normative approach to decision making and motor control

derived from the theory of reinforcement learning (RL; [15-17]), i.e. goals are defined

by spatially located time-discounted rewards, and decision making and motor control

are optimal processes based on the maximization of utility, defined as the discounted

difference between benefits (reward) and costs (of motor commands). The proposed

mechanism concurrently provides a criterion for choice among multiple actions, and an

optimal control policy for execution of the chosen action. We show that: 1. The model

accounts for decision making in cost/benefit situations, and characteristics of control in

realistic motor tasks; 2. Parameters that govern the model can explain the perviousness

of these behaviors to motivational and task-related influences (precision, instructions,

urgency). As a normative construction, the model can be considered as a prescription of

what the nervous system should do [18], and is thus relevant to address and discuss the

neural bases and pathological aspects of decision making and motor control. In

particular, we focus on the role of dopamine (DA) whose implication in decision

making, motor control and reward/effort processing has been repeatedly emphasized [2,

6, 19-22].

Results

The proposed model is a model for decision and action. It is based on an objective

function representing a trade-off between expected benefits and foreseeable costs of

potential actions (Fig. 1A and Eq. 4; see Materials and Methods). Maximization of

this function attributes a utility to each action, which can be used for a decision process,
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and generate a control policy to carry out the action (Eq. 6). Our goal is two-fold. First,

we show that the model accounts for decision making in cost/benefit situations, and

control in realistic motor tasks. Second, we show that the model makes sense from a

psychological and neural standpoint. As a preliminary, we describe parameters that are

central to the functioning of the model.

Nature of the parameters

The model contains five parameters (x*, r, ρ, ε, γ; Eqs. 5 and 6). Parameter x* specifies

the location of the goal to be pursued, and acts as a classic boundary condition for a

control policy. Parameter r is a value attached to the goal that can correspond to a

reward on an objective scale (e.g. amount of food, amount of money), or to any factor

that modulates the pursuit and achievement of goals (e.g. interest, attractiveness,

difficulty, ...). For pure motor tasks in which there is no explicit reward, we will assume

that r corresponds to one of these factors (see Discussion). x* and r are parameters

related to the specification of a task, and will be called task parameters.

For the purpose of decision and action, a reward value needs to be translated into an

internal currency which measures “how much a reward is rewarding” (parameter ρ). A

subject may not attribute the same value to food if he is hungry or satiated, and the same

value to money if he plays Monopoly or trades at the stock exchange. r and ρ are

redundant in the sense that only their product matters (Eq. 6), but we keep both of them

because their meaning is different.

Parameter ε is a scaling factor that expresses “how much an effort is effortful”. A

subject may not attribute the same value to effort if he is rested or exhausted. ρ and ε

are redundant in the sense that only their ratio matters (Eq. 6), but we keep both of them

because their meaning is different, and they can be regulated differently (e.g. level of
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wealth vs level of fatigue). In general, we consider variations in the ratio ρ/ε, that we

call vigor factor in the following.

Parameter γ is a discount factor on reward and effort. It is both a computational

parameter that is necessary to the formulation of the model, and a factor related to the

process by which delayed or far away reinforcers lose value [3, 23]. Note that a

decrease in γ corresponds to faster discount.

In the following, ρ, ε, and γ are called internal parameters, to indicate that they are

not directly specified by the external environment, but correspond to a subjective

valuation of concrete influences in the body and the environment. These parameters are

allowed to vary to explore their role in the model. To provide a neural interpretation of

the model, we tentatively relate effects of these variations to identified physiological

elements.

We note that the principle of the model is independent of the values of the

parameters, i.e. the decision process and the control policy are generic characteristics of

the model.

Decision making in a cost/benefit situation

The model provides a normative criterion for decision making when choices involve

different costs and benefits. To explore this issue, we considered the simple situation

depicted in Fig. 2A: a small reward at a short distance (reference distance) and a larger

reward at a variable distance (test distance). Distance is used here as a way to modulate

the required effort level. Simulations were run with Object I in the absence of noise. As

the test distance increased, the effort to obtain the larger reward increased, and the

utility decreased (Fig. 2B). Beyond a given distance (indifference point), the utility

became smaller than the reference utility. Thus the indifference point separated two
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regions corresponding to a preference for the large reward/high effort and the small

reward/low effort. This result corresponds to a classic observation in cost/benefit choice

tasks [4, 6].

The model further states that the same parameters underlie both decision and

movement production. To test this idea, we modeled the experiment reported by

Stevens et al. [3] [referred as Stevens in the following], in which the behavior of two

species of monkey (marmoset and tamarin) was assessed in the choice situation of

Fig. 2A. The monkeys had to choose between one reward at 35 cm, and three rewards at

35-245 cm (distances 1 to 7). Stevens reported the choice behavior of the monkeys

(Fig. 2 in Stevens) as well as the durations of chosen actions (Fig. 3 in Stevens). The

modeling principle is the following. We consider that the behavior of a monkey is

determined by two parameters: a vigor factor (ρ/ε) and a discount factor (γ). The

question is: if we infer these parameters from the displacement duration of the monkey,

can we explain its choice behavior? An important issue is the underlying determinant of

amplitude/duration data (Fig. 3 in Stevens). There is strong experimental evidence for

the existence of a linear relationship between distance and duration for locomotor

displacements ([24-27]; see also [28] with fish). This observation suggests that two

parameters could be sufficient to capture covariations between displacement amplitudes

and durations.

For Object I, we have an analytic formula for optimal movement duration

T*(A,r,ρ/ε,γ) as a function of movement amplitude (A), reward (r), vigor (ρ/ε) and

discount (γ) (see Materials and Methods). From Fig. 3 in Stevens, we also obtained

the duration of displacement T (mean±s.e.m of the individual mean performances across

the population) for each species in two conditions: one reward (r1 = 1) located at
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A1 = 0.35 m (marmoset: T1 = .75±.061 s, tamarin: T1 = .66±.047 s), and three rewards

(r2 = 3) at A2 = 2.45 m (marmoset: T2 = 1.84±.082 s, tamarin: T2 = 1.32±.050 s).

We randomly drew pairs of movement duration (one for each condition) from a

Gaussian distribution specified by the mean and sd (= s.e.m x sqrt(N), N = 4) given

above, thus generating for each species a set of synthetic monkeys (n = 100). For each

sample monkey, we obtained a unique value of vigor and discount factors [two

unknowns: ρ/ε and γ; two equations: T1 = T*(A1,r1,ρ/ε,γ) and T2 = T*(A2,r2,ρ/ε,γ)]. The

corresponding parameters are shown in Fig. 2C. The two synthetic species were clearly

associated with distinct regions of the parameter space, the marmosets being more

sensitive to effort than the tamarins. It should be noted that Fig. 2C does not mean that

there exists a redundancy between the two parameters: in fact, each point of the clouds

corresponds to a different displacement behavior, i.e. different distance/duration

relationships. The correlation between the parameters suggests a potential lack of

specificity of the duration measurements for our method to parsimoniously characterize

the populations. However, although it would be possible to tighten our predictions with

more structured data (e.g. estimated parameters based on individual behavior), it is

unnecessary to reveal a clear cut dissociation between the two species.

Then we computed for each monkey (i.e. for each set of parameters shown in

Fig. 2C) the utility of the different options (1 reward/35 cm, 3 rewards/35-245 cm). The

two sets of parameters produced different indifference points (Fig. 2D). Specifically, the

majority of marmosets, in contrast with tamarins, showed an inversion in their

preferences within the tested range of distances (< 2.45 m).
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To determine the choice behavior of the monkeys from option utilities, we calculated

the probability to choose the large reward at the different distances vs the small reward

at the shortest distance using a softmax rule

P(lar ge) = exp(J∞ l a r g e /β)/[exp(J∞  l a r g e /β) + exp(J∞ s m a l l /β)],

where J∞large and J∞small are the utilities for the large reward and small reward options,

respectively, and β a temperature parameter which represents the degree of randomness

of the action selection. It should be noted that the softmax transform is not a part of the

model, but a way to translate utilities into choice proportions, using the natural principle

that different option utilities should lead to a proportion near 1 (or 0), and equal option

utilities to a proportion of 0.5. The parameter β, which had no qualitative effect on the

predicted preferences, was selected for each monkey to fit the data from Stevens. The

model quantitatively reproduced the empirical results in the decision task for the two

monkey species (Fig. 2E). Some outliers exhibited a less characteristic behavior

(whiskers in Fig. 2D) due to some imprecisions in our estimation. However, these

marginal profiles were very scarce, and did not undermine our general results (see

confidence interval; Fig. 2E).

To assess more precisely the ability of the model to predict the choices, we

performed a detailed analysis over the two sets of simulated utilities (not over choices,

to rule out any confound induced by β). We found that distance to the large reward

modulated the utility of the large reward for both species, and that: 1. for tamarins, the

large reward option had a larger utility than the small reward option for all distances;

2. for marmosets, the large reward option had a larger utility than the small reward

option only for test distances strictly smaller than 210 cm. These results exactly parallel

the effects found by Stevens, and show that the model can quantitatively predict the
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inversion of preferences of the different species. This further supports the hypothesis

that the same process governs decision making and action in a cost/benefit choice

situation.

Control in realistic motor tasks

The model reproduced basic characteristics of motor behavior, as expected from the

close relationship with previous optimal control models [10, 11, 29, 30]. Simulations

were run with Object IIIa (two-joint planar arm) in the absence of noise. The internal

parameters (ρ/ε and γ) were chosen to obtain a range of velocities compatible with

observations on arm movements, and were kept constant for simulations of motor

control task (Figs. 3, 4, 5). Their values had no qualitative influence on the reported

results. Movements of different amplitudes (Fig. 3A) and in different directions

(Fig. 3B) were considered. Simulated trajectories were straight (Fig. 3A,B) with a bell-

shaped velocity profile (Fig. 3C, inset). Movement duration emerged implicitly

corresponding to the best compromise between discounted rewards and efforts.

Accordingly, duration was a function of movement amplitude (amplitude/duration

scaling law; Fig. 3C), and movement direction (Fig. 3D, plain line). In fact, the

influence of direction was related the inertial anisotropy of the arm (Fig. 3D, dotted

line). Scaling was also observed for peak velocity and peak acceleration (not shown).

These results are consistent with experimental observations [31].

Unexpected events can perturb an ongoing action, and prevent a planned movement

to reach its goal. Typical examples are sudden changes in target location [29] or

mechanical alteration of limbs dynamics [32]. In these experiments, participants correct

their movements and proceed to the goal by smoothly modifying the kinematics of their

arm and the duration of the action. In the model, movement duration is not fully
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specified in advance, but emerges from an online feedback process concerned only by

the remaining effort necessary to get a reward. We wanted to test if this property could

explain motor control when movement execution requires flexibility to deal with

unforeseen perturbations.

In the experiment of Liu and Todorov [29], the target location jumped unpredictably

during the reach. This caused a lengthening of movement duration which increased with

the time elapsed between movement onset and perturbation onset (perturbation time;

Fig. 1g in [29]), and systematic modifications of trajectory (Fig. 1a in [29]) and velocity

profile (Fig. 1b in [29]). We simulated this task with Object IIIa by changing the goal

position (x*) in the controller at different times (perturbation time+Δ, to account for

delayed perception of the change). The parameters of the model were estimated from

unperturbed trials. The model quantitatively reproduced trajectory formation (Fig. 4A;

Fig. 1a in [29]), velocity profiles (Fig. 4B; Fig. 1b in [29]), and the effect of

perturbation time on movement duration (Fig. 4C; Fig. 1g in [29]). Liu and Todorov

[29] have proposed an optimal feedback control model to explain their results.

However, in their approach, the duration of perturbed movements was not an emergent

property of the model, and they used experimentally measured durations in their

simulations. Later in their article, they described a different model, including a cost of

time, which was potentially able to predict the duration of perturbed movements, but

this model was not used to explain their initial target jump data.

In the experiment of Shadmehr and Mussa-Ivaldi [32], participants performed

reaching movements using a robotic device that exerted a force on their arm, i.e. altered

the dynamic of their limb and continuously deflected the arm from its intended

trajectory. Initial exposure to the perturbation induced deviations from straight line
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trajectories with typical hook-like final corrections (Fig. 7 in [32]), and multiple peak

velocity profiles (Fig. 10 in [32]). We simulated this task with Object IIIb in the

presence of a velocity-dependent force field. The controller was unaware of the

presence of the force field. The parameters were those used in the preceding simulations

(Figs. 3 and 4), and were appropriate to fit unperturbed trials. Unperturbed velocity

profiles are shown for 4 directions in Fig. 5A. From the interplay between the naïve

controller and the altered arm dynamics emerged curved trajectories with typical hooks

(Fig. 5B), and multi-peaked velocity profiles (Fig. 5C), which are qualitatively similar

to the experimental data.

These results illustrate how a unique set of parameters, and thus a unique controller,

explains both normal trajectory formation, and complex updating of motor commands

and trajectories when participants face unexpected perturbations. The same mechanisms

(optimality, feedback control, implicit determination of duration) underlie basic motor

characteristics (scaling law), and flexible control and goal tracking in complex

situations.

Modulation of decision making and motor control

The model is governed by the vigor (ρ/ε) and discount (γ) factors that can modulate

both the decision process and the control policy (Eq. 6).

Decision making in a cost/benefit situation (Fig. 2A) was characterized by a

threshold that delineates choice preference between small reward/low effort and large

reward/high effort options (Fig. 2B). We observed a shift of the decision criterion

toward the small reward/low effort option for a decreased vigor (lower ρ/ε; Fig. 6A), or

a steepened discount (lower γ; Fig. 6B). Interestingly, the shift was accompanied by a

decreased velocity in the former case (Fig. 6C), and an increased velocity in the latter
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(Fig. 6D). Note that the parameters were different from those used in Fig. 2, and were

chosen here to obtain a range of velocities compatible with observations on arm

movements. This choice had no influence on the results. This result is especially

interesting since it reveals a dissociation between the influence of vigor and discount on

decision making and motor control. The effects of vigor, but not discount, resemble the

shift of decision criterion toward small reward/low effort options [2, 6, 20], and the

decrease in velocity [2] observed in rat’s behavior following systemic injection of

dopamine receptor antagonists or DA depletion in the ventral striatum.

Motor control was characterized by scaling laws (Fig. 3C). Each factor, by its

variation, defined a family of amplitude/duration scaling laws. For instance, a decrease

in vigor induced an upward shift of the scaling law (Fig. 6C). Consistent with the

influence of vigor described above, this result could correspond to the widely reported

preservation and shift of amplitude/duration (and amplitude/velocity) scaling laws

across DA manipulations and basal ganglia lesions in animals [33-36], and basal ganglia

disorders in humans (bradykinesia; [37-39]). However, this interpretation is tentative as

the shifts induced by vigor and discount were qualitatively similar (Fig. 6C,D; see

Discussion).

Along the scaling laws defined by each factor (Fig. 6C,D), amplitude, duration and

variability varied in a concerted way that conformed to Fitts’ law [40, 41], i.e.

movement duration is a function of the index of difficulty (i.e. log2(2A/W), where A is

the amplitude and W the endpoint variability; Fig. 7A). We note that the underlying

pattern of spatiotemporal variability had two peaks, one around peak velocity and the

other near the end of the movement (Fig. 7B), and is consistent with experimental

observations (although the temporal profiles are usually cut before variability starts to
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return toward premovement levels; [29, 42, 43]). These results show that the vigor and

discount factors can induce modulations of movement duration and scaling laws that

might correspond to experimentally identified elements (see above and Discussion)

while strictly obeying to a robust and ubiquitous law of motor control. Interestingly, for

a given amplitude, any of these factors can act as an internal representation of a target

size (Fig. 7C), i.e. it specifies a control policy that can instantaneously elaborate a

movement of a given precision. It should be noted that there exist numerous models of

Fitts’ law in the literature [30, 44-46]. Our purpose here is not to propose a new model,

but simply to check that Fitts’ law can properly emerge from the proposed framework.

Overall, these results show that the internal parameters modulate decision making

and motor control in a way that makes sense from a physiological and psychological

point of view.

Discussion

We have presented a computational framework that describes decision making and

motor control as an ecological problem. The problem was cast in the framework of

reinforcement learning, and the solution formulated as an optimal decision process and

an optimal control policy. The resulting model successfully addressed decision making

in cost/benefit situations and control in realistic motor tasks.

Disclaimer

The proposed model is not intended to be a general theory of decision making and

motor control, which may not be feasible (e.g. [47]), but a more modest theory for

cost/benefit situations, i.e. specific situations in which expected benefits and foreseeable

physical costs of potential actions have to be evaluated and balanced. Accordingly, the
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model is not concerned with classic issues of risk and uncertainty which have been

thoroughly addressed in studies of Trommershäuser and colleagues [12-14].

Previous models

Our model is closely related to previous works in the field of decision making and

motor control. The central idea derives from optimal feedback control theory [10], and

continuous time reinforcement learning [16, 17]. Several modeling studies have

proposed modified versions of the optimal control approach to explain movement

duration and amplitude/duration scaling laws [29, 48-50]. The common idea is to

consider a compromise between a cost of time (which increases with movement

duration), and a cost of action (which decreases with movement duration; [29, 48-50]).

In a different framework, Niv et al. [51] proposed a compromise between a “cost of

acting quickly” and a cost of “getting the reward belatedly”. In these studies, the two

costs varied in opposite directions with time, and their sum had a minimum value

corresponding to an optimal behavioral timing (movement duration or latency; e.g.

Fig. 1B in [49]). Our model exploits the same formal idea (our Fig. 1A), but with two

differences. First, the cost of time in the previous studies were chosen for specific, task-

related purposes (e.g. minimize the loss of vision from image motion during a saccade

in [49]; minimize the time it takes to get a target on the fovea with a saccade in [50]; see

below for a further discussion on the cost of time). In our model, the cost of time

derives from a general normative criterion. Second, optimization in the previous models

involved only cost terms. In these approaches (e.g. [50]), a larger reward leads to a

larger cost of time, thus producing a faster movements but also a lower utility, which is

problematic if one wants to account for rational choices between actions. Indeed, none

of these formalisms proposed to formulate motor control as a decision making problem.
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In our model, the reward modulates a benefit term, i.e. a larger reward leads to a larger

benefit. This latter approach may be more appropriate to address cost/benefit situations

in behavioral studies [52, 53], and the differential sensitivity of costs and benefits to

pharmacological manipulations [52].

A series of study by Trommershäuser and colleagues [12-14] has explored the

connection between decision making and motor control. These studies showed that

human participants make optimal motor decisions (where to point in a spatial

reward/penalty landscape) that take into account their intrinsic motor variability. The

results suggest that at least one aspect of motor control (variability) is integrated into

decision making processes (see also [54]). Our study explores a different aspect of the

interaction between decision making and motor control: the influence of motor costs. In

the early publications of Trommershäuser and colleagues [12, 13], a biomechanical cost

was introduced, but was not actually used as it was assumed to be constant. The model

described in [12, 13] is a model of decision making, which solves a spatial gain/loss

trade-off at a motor planning level, but not a model of motor control as it does neither

explain how movements are actually produced following a decision, nor how motor

variability is estimated for a use in the decision process. Our model is primarily a model

of motor control, which solves a temporal reward/effort trade-off at a motor control

level, but disregards the issue of uncertainty. In this sense, our approach and that

developed by Trommershäuser and colleagues [55] are complementary, and both useful

to disclose the relationships between decision making and motor control.

A central and novel aspect of the model is the integration of motor control into the

decision process. This idea was not exploited in previous models because movement

duration was fixed [13, 56]. Our model is close to the model proposed by Dean et al.
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[57] (see below), as both models involve a trade-off between a time-decaying (reward)

quantity and a time-increasing (accuracy in [51], minus effort in our model) quantity.

However, the time-increasing quantity in [57] is derived from experimental data, and is

not generated by the model, i.e. there is no normative account of the speed/accuracy

relationship.

The model was described here in its simplest form. In particular, decision making

was considered as a deterministic process. The scope of the model could easily be

extended to address stochastic paradigms as in previous models [13, 56]. Utility needs

to be replaced by mean (expected) utility or possibly mean-variance combinations [7].

Further extensions could involve subjective utilities. In fact, none of these modifications

would alter the very principle of the model.

Decision making

An analysis of behavior in terms of costs and benefits has long since been usual in

behavioral ecology [1], but has only recently been exploited in the study of choice

behavior in the field of neuroscience [5, 52, 58]. There is now strong evidence that not

only payoff but also cost in terms of time and physical effort are integrated in the

valuation of actions during a decision process [2, 6, 52, 59]. The model captures this

view using an objective function in which a temporal cost is represented by a discount

factor on the payoff (reward), and an effort cost by the integrated size of motor

commands. The strength of this function is that it is not merely an aggregation of cost

and benefit terms [50], but it has a true normative and sequential dimension [16, 17]

which gives a consistent account of decision making and motor control.

A central observation in behavioral settings is that the calculation of cost involves a

detailed knowledge of motor behavior [58, 59]. Experiments using parametric
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manipulations of costs (e.g. number of level presses) and benefits (e.g. food quantity)

have shown that the choices are based on a rational ordering of actions (as measured by

percentages of choice and latencies; [21]). The model also accounts for this aspect as

decision is based on an exact estimation of the actual effort of tested actions derived

from a complete planning process.

The study of Dean et al. [57] provides indirect evidence for the proposed decision

process. In this study, subjects performed rapid arm movements to hit a rewarded target.

As the reward value decayed with time (a manipulation imposed by the experimenter)

and movement accuracy improved with time (natural speed/accuracy relationship), the

subjects had to choose a movement duration corresponding to a trade-off between

reward and accuracy (see Fig. 3 in [57]). The process described in Fig. 1A is similar,

but exploits the control cost (effort) rather than the movement accuracy. This is not a

critical difference since there exists an univocal relationship between effort and

variability [30]. Interestingly, Dean et al. [57] observed that a majority of subjects

behaved optimally in this task, i.e. chose movement durations that maximized their

expected gains. These results indicate that our hypothesized optimal decision process is

a feasible operation for the brain.

Motor control

A central property of the model is motor control, i.e. the formation of trajectories for

redundant biomechanical systems. This property is inherited from a close proximity

with previous models based on optimal feedback control [10, 30]. A main novelty of

this approach is to define a motor goal as a rewarded state rather than as a

spatiotemporal constraint. Accordingly, movement duration is not a parameter, but an

emerging characteristic of the interaction between a control policy, a controlled object,
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and unexpected events (noise, perturbations). The control policy makes no difference

between a normal and a perturbed state, and always elaborates commands according to

the same principle. This means that a perturbation requires neither an artificial updating

of movement duration [29], nor a dual control process for early (anticipatory

feedforward), and late (impedance-based) motor commands [32, 60].

Interpreting the role of parameters

The model is governed by task and internal parameters that specify choices in

cost/benefit situations, and kinematics and precision in motor tasks. These parameters

have a psychological and neural dimension that we discuss below.

Parameter r reflects the well-documented influence of reward magnitude on decision

making and intensity of action [61-64]. Although the observed effects are primarily

mediated by physical objects (e.g. food), they can occur in the absence of reward [65],

and are influenced by numerous elements. Experimental manipulations of DA

transmission have been shown to bias decision making in cost/benefit situations [2, 6,

53], and alter movement intensity [2, 66]. The model offers two interpretations of these

observations and of the role of DA in decision making and action, based on parameters

ρ  and ε (change in the perceived value of rewards or efforts). As ρ  and ε have a

symmetrical role, the model cannot help to decide between these interpretations. Recent

studies tend to favor a relationship between effort and dopamine [19, 20, 22]. A link

between ε and DA would provide a normative explanation of the strong sensitivity to

response costs with preserved primary motivation for rewards following reduction of

DA function [20]. Yet, the situation is probably more complex since dopamine is also

involved in the valuation of reward in the absence of effort [21, 67]. Overall our results

suggest that ρ and ε, through the vigor factor ρ/ε, are related to the modulation of
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motivational influences. Niv et al. [51] proposed the very similar idea that tonic

dopamine modulates the effort to invest in a (free operant) behavior. In contrast with

our work, they focused on the rate of responding irrespective of the content of the

actions, i.e. motor production. The two models are grounded on the same theoretical

framework, and could complementarily help to explain the dual role of dopamine in

motor behavior (e.g. vigor, time discounting) and foraging behavior (e.g. rate of reward,

opportunity costs).

Parameter γ has two dimensions. On the one hand, it is a computational parameter

that is central to the infinite-horizon formulation of optimal control [17]. On the other

hand, it is a psychological parameter which is widely used in behavioral ecology and

economics to represent the process by which delayed reinforcers lose value [23]. What

is the status of γ in the model? Two aspects need to be elucidated. First, are three

parameters (ρ, ε, γ) necessary to control movement duration? Second, is γ similar to a

discount factor in behavioral economics? The first question could amount to show that γ

is related to nonmotivational influences. Many elements affect movement duration, such

as task instructions (e.g. move accurately; [68, 69]), task difficulty [70], and task

conditions (e.g. externally-triggered movements are faster than internally-triggered

movements; [71-73]). Although it might seem clear that motivational influences are not

involved in these cases, it is not easy to prove it explicitly. In this framework, the latter

contrast between externally- and internally-triggered movements is especially

interesting. On the one hand, this contrast is similar in normal subjects and Parkinsonian

patients, both on- and off-medication [71, 72]. On the other hand, Parkinsonian patients

fail to properly translate motivation into action [19, 74]. The extreme case of apathetic

patients is particularly revealing as they are insensitive to incentives [74] while having
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“relatively spared externally-driven responses” [75]. This dichotomy is likely related to

the specific implication of DA transmission in internally-generated actions [76]. Overall

these results indicate that action can be modulated by influences which are independent

of dopamine and motivation. The discount factor γ could mediate one of these

influences.

The second question is related to the relationship between delay discounting and

velocity. The study of Stevens et al. [3] is relevant to this issue. They compared the

behavior of monkeys on an intertemporal choice task (a small food reward available

immediately vs a delayed larger reward) and a spatial discounting choice task (a small,

close reward vs a larger, more distant reward). They found that marmosets preferred

larger delayed rewards in the former task, and closer, smaller rewards in the latter task.

Thus their patience to wait to obtain a reward was not predictive of their will to travel

farther away and for a longer time to get a larger reward. Furthermore, their travel time

to the reward was not determined by their temporal discounting factor. These results

indicate that decision for action is not directly governed by a discounting of time. This

view is supported by neuroanatomical and neuropharmacological dissociations between

effort and delay discounting in rats [2, 77]. Accordingly, the cost of time as used in the

present model and in previous models [48, 49, 50, 51], seems unlike a classic temporal

discounting factor, and could be specific to cost/benefit situations and motor control.

This issue questions the uniqueness of time discounting across situations [50]. At odds

with classical economics theories, it highlights the potential complexity and

pervasiveness of the neural processes underlying computation of the cost of time [78,

79].
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The model was applied to pure motor tasks in which there was no explicit reward

[29, 32]. Yet, although these tasks do not apparently correspond to cost-benefit

situations, there is strong experimental evidence that their execution can be modulated

by cost- and benefit-related factors, e.g. loads [80], fatigue [81], task difficulty [70],

attractiveness [82]. These observations suggest that pure motor tasks and reward-related

motor tasks could share the same underlying representation.

Neural architecture

The model is built on a classic control/estimation architecture (Fig. 1B), which has been

thoroughly discussed in the literature [83]. There is evidence that the control process is

subserved by motor cortical regions [84, 85], and the estimation process by the

cerebellum [86]. A central component of the model is the translation of the task

parameters into a duration, a process which involves an integration of the internal

parameters to calibrate costs and benefits. As discussed above, the basal ganglia and

dopamine should play a crucial role in this process. In this framework, the basal ganglia

would render decision making and motor control pervious to fundamental behavioral

attributes (e.g. motivation, emotion, ...; [74, 87, 88]). This view is supported by studies

which show that interruption of basal ganglia outputs leads to basically preserved

functions [89], but deficits in behavioral modulation [74, 90].

Testing the theory

A central proposal of the model is a common basis for decision and action. The only

available data that quantitatively support this proposal are those of Stevens et al. [3],

which describe both choices and displacement characteristics in a spatial discounting

task (Fig. 2A). In fact, any cost/benefit decision task (e.g. T-maze; [52]) could be used
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to test the theory if data on displacement duration were available. As in [3], there should

be a univocal relationship between displacement characteristics and choice behavior. A

failure to observe this relationship would falsify the model. This would in fact

correspond to a self-contradictory behavior: the costs and benefits that are estimated at

the time of the decision would not be equal to those effectively encountered (during and

after the movement). It should be noted that this failure would not be of the same nature

as that usually reported in the field of decision making (e.g. a deviation from the laws of

probabilities).

The preceding results involved locomotor patterns, but appropriate data for arm

movements could be obtained using methods described in [59]. In a different domain,

the model suggests that movement intensity can be modulated by nonmotivational

elements, represented by the discount factor γ. One element could be urgency [71, 72].

This issue could be tested in apathetic patients, who should show a preserved sensitivity

to urgency despite a loss of sensitivity to incentives [74].

Materials and Methods

Our objective is to formulate a unified model of decision making and motor control.

Classical normative approaches formalize decision making as a maximization process

on a utility function [91], and motor control as a minimization process on a cost function

[92]. Our proposal is to build a global utility minus cost function (that we call again a

utility function) that could govern choices and commands in a unitary way. The central

issue is time, because costs in motor control are a function of time (i.e. slower

movements are less costly than faster movements), as are rewards due to a discounting

effect (i.e. late rewards are less valuable than immediate ones). This means that a
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rational choice between two actions should involve an evaluation of their durations.

However, the duration of the chosen action is only a prospective duration, valid at a

given time, based on the assumption that current conditions will not change until the

end of movement. The actual duration of the action can differ from this prospective

duration if unexpected perturbations are encountered during the course of its execution.

We have arbitrarily chosen the notations of control theory (J for utility/cost function,

u for control) rather than those of decision theory (U for utility function, a for action).

The principles of the model are first explained on a simple, deterministic example.

Then the complete, stochastic version is described. The model is cast in the framework

of reinforcement learning although we only exploit the optimal planning/decision

processes of RL, but not the learning processes. The rationale for this choice is the

following. Formally, the model corresponds to an infinite-horizon optimal control

problem [93]. This jargon is typically used in economics [94], but is much less familiar

in the fields of motor control and decision making, which describe similar problems in

the terminology of RL [15, 16]. Furthermore, the RL framework encompasses learning

processes which could explain how the proposed operations are learned by the nervous

system [95, 96].

A starting example

We consider an inertial point (controlled object) described by its mass m and its state

x = (p,v) (where p and v are the position and velocity of the object; bold is for vectors).

This object can move along a line, actuated by a force generating system (e.g. a set of

muscles). The force generating system is defined by a function h which translates a

control vector u into muscular force ([97]; h needs not be specified for the moment).
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This is a simplistic case to address e.g. the control of unidimensional saccades or single

joint movements [10, 49]. The dynamics of the point is given by the general equation

dx/dt  = f(x( t),u( t)), (Eq. 1)

corresponding to

dp/dt  = v( t)

dv/dt  = h(u( t))/m , (Eq. 2)

in the case of a single muscle. To control this object means finding a control policy, i.e.

a function u(t) (t ∈ [t0;tf]) that can displace the point between given states in the

duration tf−t0. In the framework of the optimal control theory, the control policy is

derived from the constraint to minimize a cost function

J(x( t)) = ∫[ t;t f ]  L[x(s),u(s)] ds, (Eq. 3)

for any time t ∈ [t0;tf], where L is a function which generally penalizes large controls

(effort) and deviations from a goal state (error; see [92] for a review). This formulation

is appropriate to solve the problem of motor control, i.e. the mastering of the dynamics

of articulated mechanical systems [10], but does not directly apply to a foraging

problem (as described in the Introduction) for at least two reasons. First, function L is

not concerned with values in the environment, although this difficulty could be relieved

by the addition of a value-related term. Second, and more fundamental, the objective

function cannot be used to specify the duration of an action, or to attribute a value to an

action independent of its duration. Thus J cannot be considered as a utility function for

decision making among multiple actions.

An alternative approach has been elaborated as an extension of RL in continuous

time and space [16]. In this case, an infinite-horizon formulation is used where the
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error/effort cost function is replaced by a time-discounted, reward/effort function (to be

maximized in this case)

J∞(x( t)) = ∫[ t;∞] e-(s- t)/γ  R[x(s),u(s)] ds, (Eq. 4)

where R is a function which weights rewarding states positively and effort negatively,

and γ a time constant for discounting reward and effort. As for Eq. 3, Eq. 4 gives a

recipe to find an optimal control policy u(s) for s ∈ [t;∞]. For clarity, we use the symbol

γ for the discount parameter as usually found in RL studies [15]. Yet the range for the

discount factor is [0;1] for discrete RL, and [0;+∞[ for the continuous-time formulation

used here (see [16] for a correspondence between discrete and continuous RL). As in

RL, a small value of γ corresponds to a large discounting effect.

We consider the case of a simple reward minus effort function where there is a single

reward of value r at state x*, i.e.

R[x(s),u(s)] = ρrδ(⎜⎜x(s)−x*⎜⎜) − ε⎜⎜u(s)⎜⎜2 (Eq. 5)

where δ is the function which is 1 when x(s) = x*, and 0 everywhere else, and ρ and ε

are scaling factors for reward and effort, respectively (see Results for a complete

description of the parameters). If the inertial point starts to move at time t, reaches the

rewarded state at an unknown time T, and the reward is given for a single timestep, we

can write from Eq. 4 and Eq. 5, using the fact that u(s) = 0 for s > T (the point stays

indefinitely at the rewarded state)

J∞(x( t)) = ∫[ t;∞] e-(s- t)/γ  [ρrδ(⎜⎜x(s)−x*⎜⎜)−ε⎜⎜u(s)⎜⎜2]  ds

 = e t /γ  [∫[ t;∞] e-s /γ  ρrδ(⎜⎜x(s)−x*⎜⎜)ds

                               − ε∫[ t;T] e-s /γ  ⎜⎜u(s)⎜⎜2ds]
 ∝  ρre-T /γ  − εJu(x( t)), (Eq. 6)
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where the term ρre-T/γ is the discounted reward (this result comes from the fact that

∫ g(s)δ(s)ds = g(0) for any function g), and Ju(x(t)) is the motor cost

Ju(x( t)) = ∫[ t;T] e-s /γ  ⎜⎜u(s)⎜⎜2  ds. (Eq. 7)

We have removed the term exp(t/γ) which has no influence on the maximization

process. This point highlights the fact that the maximization process does not depend on

current time t. For clarity, in the following, J∞ and Ju are considered as functions of the

reward time T.

The purpose of Eq. 6 is, as for Eq. 3, to obtain an optimal control policy. Maximizing

J∞ requires to find a time T and an optimal control policy u(s) for s ∈ [t;T] that provide

the best compromise between the discounted reward (ρre-T/γ) and the effort (Ju). This

point is illustrated in Fig. 1A. Both the discounted reward and the effort (-Ju is depicted)

decreases with T (i.e. a faster movement involves more effort, but leads to a less

discounted reward while a slower movement takes less effort, but incurs a larger

discount), and their difference takes a maximum value at a time T* (optimal duration).

For each T, the control policy is optimal, and is obtained by solving a classic finite-

horizon optimal control problem with the boundary condition x(T) = x* ([98, 99]; see

below). We note that T* may not exist in general, depending on the shape of the reward

and effort terms (Fig. 1A). Yet, this situation was never encountered in the simulations.

The search of an optimal duration can be viewed both as a decision-making process

(decide what is the best movement duration T* if it exists), and a control process (if T*

exists, act with the optimal control policy defined by T*). In the following, the maximal

value of J∞ (for T = T*) will be called utility.
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This description in terms of duration should not hide the fact that duration is only an

intermediate quantity in the maximization of the utility function, and direct computation

of choices and commands is possible without explicit calculus of duration [95, 96].

If there are multiple reward states in the environment, the utility defines a normative

priority order among these states. A decision process which selects the action with the

highest utility will choose the best possible cost/benefit compromise.

The proposed objective function involves two elements that are central to a decision

making process: the benefit and the cost associated with a choice. A third element is

uncertainty on the outcome of a choice. In the case where uncertainty can be

represented by a probability (risk), this element could be integrated in the decision

process without substantial modification of the model. A solution is to weight the

reward value by the probability, in order to obtain an “expected value”. Another

solution is to consider that temporal discounting already contains a representation of

risk [100].

In summary, equations (4) and (5) are interesting for four reasons: 1. Movement

duration emerges as a compromise between discounted reward and effort; 2. The

objective function is a criterion for decision-making either between different movement

durations, or between different courses of action if there are multiple goals in the

environment; 3. The objective function subserves both decision and control, which

makes them naturally consistent. The utility that governs a decision is exactly the one

that is obtained following the execution of the selected action (in the absence of noise

and perturbations); 4. The objective function does not depend explicitly on time, which

leads to a stationary control policy [16, 17].
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General framework

For any dynamics (Eq. 1), the problem defined by Eqs. 4 and 5 is a generic infinite-

horizon optimal control problem that leads, for each initial state, to an optimal

movement duration and an optimal control policy (see above). This policy is also an

optimal feedback control policy for each estimated state derived from an optimal state

estimator [10, 99, 101, 102]. Thus the current framework is appropriate to study online

movement control in the presence of noise and uncertainty. The only difference with

previous approaches based on optimal feedback control [10, 99] is that movement

duration is not given a priori, but calculated at each time to maximize an objective

function.

The general control architecture is depicted in Fig. 1B. As it has been thoroughly

described previously [30, 98, 99, 103], we only give here a rapid outline. The

architecture contains: 1. A controlled object whose dynamics is described by Eq. 1, and

is corrupted by noise nOBJ; 2. A controller defined as

u  = u(x* ,r,ρ,ε ,γ ,x^ , f), (Eq. 8)

which is an optimal feedback controller for Eqs. 1, 4, 5, where x^ is the state estimate

(described below); 3. An optimal state estimator that combines commands and sensory

feedback to obtain a state estimate x^ according to

dx^ /dt  = f(x^( t),u( t)) + K( t)[y( t) − Hx^( t−Δ)], (Eq. 9)

where K is the Kalman gain matrix [constructed to provide an optimal weighting

between the output of the forward model (first term in the rhs of Eq. 9), and the

correction based on delayed sensory feedback (second term in the rhs of Eq. 9)], H the

observation matrix, y(t) = Hx(t−Δ) + nOBS the observation vector corrupted by
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observation noise, and Δ the time delay in sensory feedback pathways. The observed

states were the position and velocity of the controlled object.

Object noise was a multiplicative (signal-dependent) noise with standard deviation

σSDNm, and observation noise was an additive (signal-independent) noise with standard

deviation σSINs [98]. The rationale for this choice is to consider the simplest noisy

environment: 1. Signal-dependent noise on object dynamics is necessary for optimal

feedback control to implement a minimum intervention principle [10, 99]; 2. Signal-

independent noise on observation is the simplest form of noise on sensory feedback. We

note that a stochastic formulation was necessary to the specification of the state

estimator even though most simulations actually did not involve noise.

Simulations

A simulation consisted in calculating the utility (maximal value of the objective

function), and the timecourse of object state and controls for a given dynamics f, initial

state, and parameters x*, r, ρ, ε, γ, σSINs, σSDNm, Δ. The solution was calculated iteratively

at discretized times (timestep η). At each time t, a control policy was obtained for the

current state estimate x^ (Eq. 8). Two types of method were necessary. First, the integral

term in the rhs of Eq. 6 (Eq. 7) required to solve a finite-horizon optimal control

problem. This problem was solved analytically in the linear case, and numerically in the

nonlinear case (see below). Second, optimal movement duration was obtained from

Eq. 6 using a golden section search method [104]. Then Eqs. 1 and 9 were integrated

between t and t+η for the selected control policy and current noise levels (σSINs, σSDNm)

to obtain x(t+η) and x^(t+η). The duration of the simulation was set empirically to be

long enough to guarantee that the movement was completely unfolded. Actual
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movement duration (and the corresponding endpoint) was determined from the velocity

profile using a threshold (3 cm/s).

Three types of object were considered, corresponding to different purposes. The

rationale was to use the simplest object which is deemed sufficient for the intended

demonstration. Object I was a unidimensional linear object similar to that described in

the starting example. The force generating system was h(u) = u. This object was used

for decision making in a cost/benefit situation. Object II was similar to Object I, but the

force generating system was a single linear second-order filter force generator (time

constant τ), i.e. the dynamics was

dp/dt  = v( t)

dv/dt  = ga( t)/m

τ  da/dt  = −a( t) + e( t)

τ  de/dt  = −e( t) + u( t), (Eq.  10)

where a and e are muscle activation and excitation, respectively, and g = 1 a conversion

factor from activation to force. The filtering process is a minimalist analog of a muscle

input/output function [105]. This object was used to study motor control in the presence

of noise (relationship between amplitude, duration, and variability) [10, 30, 45]. In this

case, variability was calculated as the 95% confidence interval of endpoint distribution

over repeated trials (N = 200). Object III (IIIa and IIIb) was a classic two-joint planar

arm (shoulder/elbow) actuated by two pairs of antagonist muscles. The muscles were

described as nonlinear second-order filter force generators. All the details are found

below. This object was used to assess characteristics of motor control in realistic motor

tasks.
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Parameters

For Objects I and II, the mass m was arbitrarily chosen to be 1 kg (no influence on the

reported results). For Object III, the biomechanical parameters are given below. Other

fixed parameters were: τ = 0.04 s, Δ = 0.13 s, η = 0.001 s. Noise parameters (σSINs,

σSDNm) were chosen to obtain an appropriate functioning of the Kalman filter, and a

realistic level of variability. The remaining parameters (x*, r , ρ , ε, γ) are “true”

parameters that are varied to explore the model (see Results).

Model of the two-joint planar arm

Object III is a two-joint (shoulder, elbow) planar arm. Its dynamics is given by

d2θ/dt2= M(θ) - 1[T( t) − C(θ ,dθ/dt)dθ/dt],

where θ = (θ1,θ2) is the vector of joint angles, M the inertia matrix, C the matrix of

velocity-dependent forces, W an optional velocity-dependent force field matrix, and

T(t) the vector of muscle torques defined by

T( t) = AFm a x [a( t)]+,

where A is the matrix of moment arms, Fmax the matrix of maximal muscular forces, and

a the vector of muscular activations resulting from the application of a control signal

u(t) (see Eq. 10).

For each segment (1: upper arm, 2: forearm), l is the length, I the inertia, m the mass,

and c the distance to center of mass from the preceding joint. Matrix M is

[M1 1 M1 2 ;  M2 1 M2 2 ] ,

with

M1 1 = I1  + I2  + m1c1
2  +  m2( l1

2  +  c2
2  +2 l1c2cos(θ2))

M1 2 = M2 1 = I2  + m2(c2
2  +  l1c2cos(θ2))
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M2 2 = I2  + m2c2
2

Matrix C is

[C1 1  C1 2  ;  C2 1  C2 2  ] ,

with

C1 1 = − m2  l1c2sin(θ2)dθ2 /dt  − 0.05

C1 2 = − m2  l1c2sin(θ2)(dθ1 /dt+dθ2 /dt) − 0.025

C2 1 =  m2  l1c2sin(θ2)dθ1 /dt  − 0.025

C2 2 = − 0.05

Matrix W is JDJT, where J is the Jacobian matrix of the arm, and D (Ns/m) is

[ -10.1 -11.2 ;  -11.2 11.1 ].

Matrix Fmax (N) is diag([700;382;572;449]). Matrix A (m) is

[ .04 -.04 0 0 ; 0  0 .025 -.025 ].

Two sets of parameter values were used in the simulations. For Object IIIa, we used

the values found in [29] (in S.I.): l1 = .30, l2 = .33, I1 = .025, I2 = .045, m1 = 1.4,

m2 = 1.1, c1 = .11, c2 = .16. For Object IIIb, we used the values given in [32]: l1 = .33,

l2 = .34, I1 = .0141, I2 = .0188, m1 = 1.93, m2 = 1.52, c1 = .165, c2 = .19.

Resolution of the optimal control problem

The problem is to find the sequence of control u(t) which optimizes the objective

function Ju(T) (Eq. 7), and conforms to the boundary conditions x(t0) = x0 and x(T) = x*

for a given dynamic f. The general approach to solve this problem is based on

variational calculus [106]. The first step is to construct the Hamiltonian function which

combines the objective function and the dynamic thanks to the Lagrangian multipliers

(or co-state) denoted by λ
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H(x ,u ,λ, t) = εu( t)Tu( t) + λ( t)Tf(x( t),u( t)).

The optimal control minimizes the Hamiltonian, a property known as the Pontryagin’s

minimum principle given formally by

dx/dt  = ∂H/∂λ = f(x( t),u( t)) (Eq. 11)

dλ/dt  = −∂H/∂x  + λ( t)/γ  = −λ( t)∂ f/∂x  + λ( t)/γ (Eq. 12)

0 = ∂H/∂u  = εu( t) + λ( t)∂ f/∂u (Eq. 13)

Equation (12), widely used in economics, is slightly different from what is usually used

in the motor control literature because of the discounting factor in the objective

function. We will thereafter consider two methods to solve this set of differential

equations depending on the complexity of the dynamics.

Linear case

If the dynamic f is linear, as for Objects I and II, the system of differential equations

(Eqs. 11, 12, 13) is also linear, and can be solved analytically. We rewrite the dynamics

as

f(x( t),u( t)) = Ax( t) + Bu( t).

From Eq. 13, we can reformulate the optimal control u*(t) as

u*( t) = −BTλ( t)/ε .

In order to find λ(t), we then replace u(t) by u*(t) in Eqs. 11 and 12, and get

dx/dt  = Ax  − BBTλ/ε

dλ/dt  = (−AT+I/γ)λ, (Eq. 14)

where I is the identity matrix. The resolution of this system gives the optimal trajectory

of the state and the co-state

(x*  λ*)T  = Γ( t)C,
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where Γ is the analytic solution to Eq. 14, and C can be deduced from the boundary

conditions [99]. Finally, we replace λ by λ* in Eq. 14 to get the value of the optimal

control. From Eq. 6, we obtain an analytic version of the utility, from which we can

derive the optimal duration T* analytically. Symbolic calculus was performed with

Maxima (Maxima, a Computer Algebra System. Version 5.18.1 (2009)

http://maxima.sourceforge.net/).

Nonlinear case

When the dynamics is nonlinear (Object III), the set of differential equations (Eqs. 11,

12, 13) cannot be solved directly. However, the minimum of the Hamiltonian (and thus

the optimal control) can be found through numerical methods using a gradient descent

method. The detail of the existing algorithms is outside the scope of this article, and the

reader is referred to [101], and [106].
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Figure legends

Figure 1. Objective function and model architecture A. Objective function (thick) as a

function of movement duration, built from the sum of a discounted reward term (thin)

and a discounted effort term (dashed). Optimal duration is indicated by a vertical dotted

line. B. Architecture of the infinite-horizontal optimal feedback controller. See Text for

notations.

Figure 2. Simulation of Stevens [3]. A. Cost/benefit choice task between a reference

option (small reward/short distance) and a test option (large reward/long distance).

B. Utility vs distance. The dotted line indicates the utility for the reference option (r = 1,

distance = .35 m). The solid line gives the utility for the test option (r = 3) for different

distances (range .35-2.45 m). An arrow indicates the distance at which the preference

changes. Results obtained with Object I. Parameters: ρ/ε = 1, γ = 2. C. Vigor and

discount factors for synthetic monkeys (black: marmosets; gray: tamarins) derived from

[3]. The figure was built in the following way. Mean m and standard deviation σ of

displacement duration were obtained from Fig. 3 in [3] for each species and each

amplitude. For each species, a random sample was drawn from the corresponding

Gaussian distribution N(m,σ) for each amplitude, giving two durations. These two

durations were used to identify a unique pair of parameters (vigor, discount). Each point

corresponds to one pair. See Text for further explanation. D . Indifference points

corresponding to the simulated monkeys shown in C (T = tamarin, M = marmoset).

Bold bar is the median, hinges correspond to the first and third quartile (50% of the

population), and whiskers to the first and ninth decile (90% of the population).
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E. Probability of choosing the large reward option according the test distance. Solid

lines are the experimental data from Stevens [3]. Dashed lines and shaded areas

correspond respectively to the mean and the 95% confidence interval of the decision

process derived from the simulated utilities and a soft-max rule. The temperature

parameter was selected for each monkey to fit empirical data.

Figure 3. Basic characteristics of motor control. A. Trajectories for movements of

different amplitudes (direction: 45 deg; 5, 10, 15, 20, 25, 30 cm). B. Trajectories for

movements in different directions (10 cm). C. Amplitude/duration scaling law and

velocity profiles (inset) for the movements in A . D. Direction/duration (plain line),

direction/apparent inertia (dotted line; arbitrary unit; [31]). Results obtained with Object

IIIa. Initial arm position (deg): (75,75). Parameters: r = 40, ρ/ε = 1/300, γ = .5,

σSINs = .001, σSDNm = 1.

Figure 4. Simulation of Liu and Todorov [29]. A. Simulated trajectories for reaching

movements toward a target which jumps unexpectedly up or down, 100 ms, 200 ms or

300 ms after movement onset. B. Corresponding velocity profiles. C. Arrival time as a

function of the timing of the perturbation. Results obtained with Object IIIa. Initial arm

position (deg): (15,120). Same parameters as in Fig. 3.

Figure 5. Simulation of Shadmehr and Mussa-Ivaldi [32]. A. Velocity profiles for

unperturbed movements in four directions. B. Hand trajectories during exposure to a

velocity-dependent force field. C. Velocity profiles for perturbed movements in four
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directions (data from B). Results obtained with Object IIIb. Initial arm position (deg):

(15,100). Same parameters as in Fig. 3.

Figure 6. Influence of parameters. A. Change in the distance/utility relationship induced

by a decrease in vigor: ρ/ε from 50 (gray) to 16 (black). Same experiment as in Fig. 2A.

Parameters: r = 1, γ = 2. B. Same as A for a decrease in the value of discount factor: γ

from 4 (gray) to 1 (black). Parameters: r = 1, ρ/ε = 50. C. Change in movement duration

corresponding to the results in A. D. Change in movement duration corresponding to the

results in B. Results obtained with Object I.

Figure 7. Fitts’ law and variability. A. Duration as a function of the index of difficulty

(ID) for 3 distances (10, 20 and 30 cm) and different values of vigor and discount (see

legend). B. Typical spatiotemporal variability (s.d. of position). C. Endpoint variability

for different values of the discount factor. Color is for the level of vigor (legend in A).

Results obtained with Object II. Parameters: distance = 30 cm, r = 1, ρ/ε = 100, γ = 2,

σSINs = .001, σSDNm = 1.
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