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a  b  s  t  r  a  c  t

This  paper  presents  a computational  approach  for transferring  principles  of  human  motor  control  to
humanoid  robots.  A  neurobiological  model,  stating  that the  energy  of  motoneurons  is minimized  and
that  dynamic  and  static  efforts  are  processed  separately,  is  considered.  This  paradigm  is  used to  produce
humanoid  robot’s  reaching  movements  obeying  the  rules  of  human  kinematics.  A nonlinear  programming
problem  is  solved  to determine  optimal  trajectories.  The  optimal  movements  are then  encoded  by  using
eywords:
uman motor control
otor primitives
umanoid robot
onlinear programming

a basis  of motor  primitives  determined  by  principal  component  analysis.  Finally,  generalization  to new
movements  is  obtained  by solving  of a low-dimensional  optimization  problem  in the  operational  space.

© 2012  Elsevier  B.V.  All rights  reserved.
ptimization

. Introduction

Even though today’s humanoid robots roughly have the same
hape as humans, they are strongly different in their mechanical
tructure, their sensing and actuation capabilities and the way they
rocess data. However, despite these differences, we  want to show

n this paper that it is possible to make these machines move in
 human-like way by applying computational principles of human
otor control. We  focus on the control of reaching movements,
hich is the topic of an extensive literature in computational neu-

osciences [45].
In humans, the question is to determine how the central ner-

ous system (CNS) processes to control the arm muscles in order
o drive the hand to a given target position. As initially pointed out
y Bernstein [4],  the difficulty of this question comes from the fact
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

hat, due to the numerous degrees of freedom (DoF) of the arm and
he important number of muscles involved in the reaching move-

ent, the system is highly redundant with respect to the task. As

� An overview of this collaborative work between roboticists and neuroscien-
ists was presented to the International Symposium on Scientific Computing for the
ognitive Sciences, in Heidelberg, Germany, in October 2010.
∗ Corresponding author at: CNRS, LAAS, 7 Av. du Colonel Roche, F-31400 Toulouse,
rance. Tel.: +33 561336352; fax: +33 561336455.

E-mail addresses: taix@laas.fr (M.  Taïx), soueres@laas.fr (P. Souères),
mmanuel.guigon@upmc.fr (E. Guigon).

877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jocs.2012.08.001
a consequence, infinitely many control can be used to perform the
reaching movement. The question is then to determine how the
CNS processes to choose one specific control solution.

In humanoid robotics, as the arm joints are usually driven by
DC motors, the redundancy does not yet concern muscle actuation
but the redundancy still exists at the kinematic and the dynamic
level. Indeed, only 3DoF are necessary for positioning the hand at
the target position whereas the robot arm usually includes at least 6
DoF. The question is then do determine how to control these joints
in order to make the humanoid robot move in a human-like way.

To answer this question different kinds of biologically inspired
approaches have so far been proposed in robotics. Some authors
made a special effort to reproduce the mechanical musculoskeletal
structure of the human arm and develop control strategies involv-
ing the dynamics of internal forces [48], or replicate biological
patterns of muscle activity [38]. Khatib et al. [26] used a prioritized
task-level control framework to generate whole-body movements
with a dynamic musculoskeletal model of human. Based on simu-
lations performed with this approach they suggested that human
postural motions minimize a muscle effort potential. Other authors
tried to characterize trajectories by minimizing a particular cost
function such as jerk [44], torque [30], variance [46], or energy
e reaching movements with a humanoid robot: A computational
.08.001

[1]. A trajectory generation method based on a neural time-base
generator was  proposed in [49] to reproduce constrained reaching
movements having human-like velocity profiles for rehabilitation.
A biologically inspired hybrid robot controller allowing to regulate

dx.doi.org/10.1016/j.jocs.2012.08.001
dx.doi.org/10.1016/j.jocs.2012.08.001
http://www.sciencedirect.com/science/journal/18777503
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he movement both in the joint space and in the Cartesian space was
roposed in [22] for executing reaching movements. This concept
f multi-referential controller was more recently improved in two
irections by Pattacini et al. [39]. These authors replaced the vector

ntegration to endpoint (VITE) model with a bio-inspired genera-
ion scheme to obtain trajectories with minimum-jerk profile, and
sed an interior point optimization technique to solve the inverse
inematics under contraints. This approach was successfully exper-
mented on the iCub to execute reaching movements having the

ain characteristics of human movements. Finally, motion cap-
ure was used to analyze human movement [58] and, associated to
etargeting techniques, to generate human-like motions [29,40,16].
owever, beyond imitation, the application of biological motor
rinciples is a way to produce canonical movements in any situ-
tion.

In this paper, we consider a new approach based on a recent
omputational theory of motor control [17,18]. We  propose to
pply this theory, which can accurately account for kinemat-
cs, kinetics, muscular, neural, and stochastic characteristics of
edundant movements, to control the humanoid robot HRP-2. The
pproach is grounded on the idea that the CNS processes dynamic
fforts (inertial, velocity dependent) and static efforts (elastic,
ravitational) separately, and that the energy of the signals of
otoneurons is continuously minimized during motion. In order

o apply these principles to the control of HRP-2, a global model
s considered, which contains the dynamics of the six degrees-of-
reedom (DoF) robot arm and includes, for each DoF, an additional
lter simulating the dynamics of a pair of virtual antagonist mus-
les. The computation of optimal trajectories is based on nonlinear
rogramming. A direct transcription method is used to transform
he original problem into a discretized version that is solved by
sing the interior point method implemented in the Ipopt software
59]. We  show that the robot arm movements obtained with this
pproach exhibit the main kinematic features of human motions
32], namely: quasi rectilinear hand trajectories and bell-shaped
ingle peak velocity profiles.

The strengths and weaknesses of the method are then consid-
red in the mid-term outcome analysis section. Though the method
llows us to generate human-like reaching movements in a canoni-
al way, the high computational time is pointed out as an important
rawback of the method. Indeed, several minutes are necessary
o compute certain movements. To cope with this problem, we
how in the second part of the paper that the theory of motor
rimitives can be applied to reduce the computation time. This
heory, which is one of the most important in motor control neu-
osciences, conjectures that, instead of recomputing each time a
omplex optimization problem, the CNS uses a finite basis of func-
ions to generate movements [43,33,10,56].  In order to develop a
ufficiently generic method we based our study on two  databases of
ovement. The first one was obtained from simulation by applying
uigon’s model [17] on the dynamic model of HRP2’s arm. The sec-
nd database was  obtained by recording the reaching movements
f different human subjects by using a motion capture system. From
oth databases, primitives are extracted by using principal compo-
ent analysis (PCA). The reconstruction process, which enables to
xpress each movement as a linear combination of these primi-
ives, is analyzed. We  prove that twenty primitives can represent
he movements of both databases with a very good accuracy. An
riginal generalization method is then proposed to generate new
ovements from this basis of primitives. The method consists in

olving a low-dimensional minimization problem to determine the
eighting coefficients for which the movement approaches the
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

inimum-jerk trajectory with the best precision. Depending on the
umber of primitives, the computation-time and the precision of
he reconstruction processes, are discussed. We  show that, with the
se of motor primitives, the computation time of trajectories can
 PRESS
al Science xxx (2012) xxx–xxx

be strongly reduced. Examples of reaching movements computed
with this method and executed on HRP-2 are finally presented.
This paper provides then an interesting example of application of
advanced computational methods [11] to movement generation in
neurosciences and robotics.

2. The biological principles of motor control

Breakthroughs into the understanding of motor functions have
generally been brought about by computational studies that dis-
close functioning principles independent of brain structures or
neural processes. The model proposed by Guigon et al. [17,18] pro-
vides a unified account of motor behavior by making the hypothesis
that motor control is mainly governed by the following four prin-
ciples.

2.1. Separation principle

There is a substantial experimental evidence to support the
idea that static and dynamics forces are processed separately by
the CNS. Psychophysical studies have shown that velocity profiles
remain unchanged when moving in a known constant or elastic
force field, but that they are in general modified by time and ampli-
tude scaling in velocity-dependent and inertial fields [41]. EMG
studies have revealed additive velocity-independent, tonic and
velocity-dependent, phasic components which have been related
to the generation of anti-gravity torques and dynamic torques,
respectively [60]. A similar additive combination between tonic
and phasic activity was observed in neurons of primate motor
cortex [23]. Finally, experiments have shown that the terminal pos-
ture of 3D redundant movements is independent of velocity [36].
As the relative contribution of anti-gravity and dynamic torques
varies with velocity, optimization of the total torque pattern would
predict variations of terminal posture with velocity. This result sug-
gests that dynamic forces are optimized independently of static
forces.

2.2. Optimal feedback control principle

The CNS processes an optimal control of dynamic forces that is
appropriate for an online regulation of movements. Though opti-
mal  control has been repeatedly used to account for many aspects of
motor control, e.g. trajectory formation, muscular redundancy, pos-
tural control, locomotion, etc. [14,57,19],  it has rarely been applied
to the case of nonlinear redundant systems [53]. The difficulty is
to account for the simultaneous control of posture and movement.
Most studies did not consider the case of static forces due to the
difficulties to solve optimal control problems in the presence of
gravitational forces [51]. When a movement consists of a transi-
tion between two equilibrium postures, the boundary conditions
of the optimal control problem should specify terminal equilib-
rium signals, e.g. muscle forces which compensate for applied static
(elastic, gravitational) forces. The idea to add to the cost function
a term which enforces given initial and final equilibrium postures
should lead to solutions which depend on the level and nature of
the static forces [19]. In contrast, the previously introduced sepa-
ration principle provides a way to apply optimal feedback control
to kinematic redundancy problems with static forces, as there is no
a priori specification of the final posture of the limb.

2.3. Maximum efficiency
e reaching movements with a humanoid robot: A computational
.08.001

The energy of the signals of motoneurons, that eventually gen-
erate the dynamic forces, is continuously minimized along the
motion. The system attempts to reach the goal with zero error and

dx.doi.org/10.1016/j.jocs.2012.08.001
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inimal control signals. Note that, compared to other cost func-
ions encountered in the motor control literature (jerk [14], torque
hange [57], variance [19], energy [1],  etc.) this cost function is eas-
ly measurable by the CNS. Furthermore, the constraint functions
sed in this model are the initial and final boundary conditions that

ead to an univocal description of motor control, contrary to mod-
ls involving related cost function such as error/effort minimization
53].

It is important to note that the minimization of the signals of
otoneurons, which is considered here, is different from mini-
um metabolic-energy models that have been investigated for

rm reaching movements [2,34,35], but without providing con-
incing results. Indeed, these studies have shown that minimum
etabolic-energy trajectories are not similar to the observed

uman trajectories. In particular, the simulated velocity profile are
ot bell-shaped [35].

.4. Constant effort principle

The idea of motor behavior being associated with the minimum
f a cost function is appropriate when both movement ampli-
ude and duration are specified. Otherwise, infinitely slow/fast or
nfinitely short/long movements could result. The constant effort
rinciple states that a given set of instruction is equivalent to a

evel of effort. For these instructions, movements of different ampli-
udes, directions, or against different loads are executed with the
ame effort.

Modeling studies dealing with 3D movements are rare [54,8],
nd address only the kinematic level (trajectory formation). The
ain interest of the present approach is to consider optimization

irectly at the level of motor commands, which provides a proper
redictive account of motor control [53,17,18].

. Model and problem statement

The separation principle stated in the preceding section can be
asily applied to control robots such as HRP-2, in which each joint
s independently regulated to a reference angular value. Indeed,
hanks to the robustness of the low-level control of each joint,
e can make the hypothesis that static forces are exactly coun-

erbalanced. The synthesis of a controller can then be obtained by
isregarding static effects. In this way, the optimization problem
an be solved on the basis of a simplified model describing the
hasic component only. In order to implement this strategy on the
obot, we developed a global model that contains the dynamics of
he n = 6 DoF arm and includes, for each DoF, the dynamics of the
euromuscular system associated with a pair of virtual antagonist
uscles. In this way, the considered system input is the vector of

ignals of the virtual motoneurons. Each muscle i (1 ≤ i ≤ 2n) is con-
rolled by a motoneuron and, according to [21], the set constituted
y the motoneuron and the muscle (neuromuscular system) can be
escribed by a second-order low-pass filter having the neural con-
rol signal ui as input and the muscular force Fi as output, according
o the following scheme

v
(
dei
dt

)
= −ei + ui

v
(
dai
dt

)
= −ai + ei

Fi = �(ai)

(1)
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

here v is a time constant, the variables ei and ai correspond to
xcitation and activation parameters, respectively, and the func-
ion � (used to express the fact that a muscle exerts a pulling force
nly) is defined by �(z) = z if z > 0; otherwise, �(z) = 0. As �(z) is
Fig. 1. The humanoid robot HRP-2 and its mechanical structure.

not differentiable at the origin, it can be replaced by the function
z → log [1.0 + exp(�z)]/�, with � > 0. Recall that a classical muscle
model involves at least 3 steps [21]: (1) an excitation dynam-
ics which translates an hypothetical control signal into a neural
signal; (2) an activation dynamics which translates the neural sig-
nal into an active state (representing the calcium uptake/release
dynamics); (3) a contraction dynamics (involving force–velocity
and force–length relationships of muscle fibers). Eq. (1) is a sim-
plified description of the first two steps and reflects the classical
low-pass filter characteristics of the muscle [42]. The excitation
and activation parameters ei and ai are the outcomes of steps 1
and 2, respectively. Note that the Electromyographic activity (EMG)
usually corresponds to �(ei).

The torques �k were calculated at each DoF from the difference
between the forces generated by antagonist muscles scaled by a
coefficient �k (in meters), as described in (2).

�k = �k(F2k−1 − F2k), k = 1, . . . , n (2)

The robotics arm of HRP-2 (see Fig. 1) has six DoF: three at the
shoulder, two at the elbow and one at the hand (see [25] for details),
the grasping DoF of the hand being not considered here. We  used
the Lagrangian approach to express the equation of dynamics of this
rigid, multi-linked, articulated system [47]. The computation was
done through the symbolic calculus tools in Matlab. On this basis,
the equivalent C code was  generated for the optimization program
described in Section 4. The arm dynamics can be expressed under
the usual form

� = M(q)q̈+ N(q, q̇)q̇+ G(q) (3)

where M is the inertia matrix, N is a nonlinear vector including
Coriolis effects, G is a vector related to gravity efforts, � is the
torque vector that generates the movement, q, q̇, q̈ are the vectors
of angular position, velocity and acceleration of successive joints,
respectively. According to the separation principle, for the compu-
tation of optimal trajectories, the term G(q), which corresponds to
static efforts, can be removed from (3).  So, the relationship between
angular accelerations and torques can be expressed as follows

q̈ = M−1(� − Nq̇) (4)

By gathering the arm dynamics described by (4) with the actua-
tion dynamics associated to each of the six pairs of virtual muscles
described by (1) we obtain a 36-dimensional dynamical system of
the form

ẋ = f (x(t), u(t)) (5)
e reaching movements with a humanoid robot: A computational
.08.001

whose state is defined by

x  = (x1, . . . , x36)T

= (q1, . . . , q6, q̇1, . . . , q̇6, a1, . . . , a12, e1, . . . , e12)T

dx.doi.org/10.1016/j.jocs.2012.08.001
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here q1, . . .,  q6 are the joint coordinates, q̇1, . . . , q̇6 are the angular
elocities, and for i = 1, . . .,  n, (a2i−1, a2i) and (e2i−1, e2i) represent
he activation and excitation parameters, respectively, associated
o the pair of antagonist muscles corresponding to the ith DoF. The
ontrol vector, u = (u1, . . .,  u12)T is of dimension 2n = 12. For i = 1, . . .,
, (u2i−1, u2i) represent the motoneurons signals associated to the
air of antagonist muscles corresponding to the ith DoF. Note that
he derivatives of the state variables xi are computed as follows: for

 = 1, . . .,  6, ẋi = q̇i = xi+6, for i = 7, . . .,  12, ẋi are given by (4) and for
 = 13, . . .,  36, ẋi are deduced from (1).

emark 1. The control vector u = (u1, . . .,  u12)T is then the input to
he global system that includes, in cascade, the upstreaming low-
ass filtering action of the virtual muscles and the dynamics of the
obot arm.

Given an initial arm configuration x0 = x(t0), at time t0, and a
arget position of the hand at time final T, and according to the
ptimal feedback control principle and the maximum efficiency
rinciple, the trajectory of the global system must minimize the
nergy of the signals of motoneurons along the time interval [t0, T].
his problem can be stated as an optimal control problem as fol-
ows: find a deterministic control u(t) = {ui(t)} (1 ≤ i ≤ 2n) over [t0,
] such that x(t) is a solution of (5) satisfying the following boundary
onditions

(t0) = x0 and  (x(T)) = 0, (6)

hile minimizing the quantity

 =
2n∑
i=1

∫ T

t0

u2
i (t)dt (7)

In relation (6),   (x(T)) expresses the constraint on the state at
ime T, which corresponds to the specified final hand position at
hich q̇(T) = a(T) = e(T) = 0. As explained in the next section, this
nal condition can be deduced from the expression of the direct
inematics at time T. Considering that the robot arm is at rest at t0,
he initial condition is given by

0 = (q0
1, . . . , q0

6, 0, . . . , 0)T (8)

here q0
1, . . . , q0

6 are the initial angular values of the robot joints at
0.

. Optimization

To solve the two-point boundary-value problem stated by (5),
6), (7) we used a direct transcription method [7].  Following
his approach, the original problem can be transformed into a
iscretized version which then can be solved by a large-sparse
onLinear Programming (NLP) method, such as the interior point
ethod implemented in the Ipopt software [59]. The main steps of

he method are presented in the sequel, more details can be found
n [7].

.1. Direct transcription

The first step of the direct transcription approach is to determine
he vector of variables of the corresponding NLP problem. It consists
n discretizing the time interval of movement duration [t0, T] into

 + 1 time-points as follows
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

0 < t1 < t2 < · · · < tJ = T

t each time-point, the state vector and the control vector are both
pecified. As a consequence, the discretized version of the variable
ector has the form
 PRESS
al Science xxx (2012) xxx–xxx

�T = (x0
1, . . . , x0

36, u0
1, . . . , u0

12, x1
1, . . . , x1

36, u1
1, . . . , u1

12, . . . , xJ1, . . . ,

xJ36, uJ1, . . . , uJ12) (9)

where for i = 1, . . .,  36, k = 1, . . .,  12 and j = 0, . . .,  J, xj
i

and uj
k

are
respectively the state variables and the control inputs at time tj.
This vector � includes l = (J + 1) × (36 + 12) variables.

The next step is to represent the constraints. Here we have two
types of constraint, one on the dynamics (5) and another one on
the   function (6).  The description of variables in (9) conducts to
the following trapezoidal representation of dynamical constraints

xj+1
i

− xj
i
− hj

2
(f j
i

+ f j+1
i

) = 0 i = 1, . . . , 36,  j = 0, . . . , J − 1 (10)

where hj = tj+1 − tj is the duration of the time interval [tj, tj+1]. So,
the number of dynamical constraints is equal to d = m × 36. The
condition  (x(T)) = 0, which expresses the fact that the hand must
reach the target at the final time tJ = T, is defined by the following
equations

|g(xJ1, xJ2, xJ3, xJ4, xJ5, xJ6) − Ptarget | = 0 (11)

xJ7 = xJ8 = · · · = xJ36 = 0 (12)

where g is the direct kinematics function which calculates the posi-
tion of the hand in Cartesian coordinates from the angular value of
each link, and Ptarget is the desired target point. The constraints cor-
responding to the initial boundary conditions (8) are represented
by:{
x0
i

= q0
i
, for i = 1, . . . , 6

x0
i

= 0, for i = 7, . . . , 36
(13)

One important advantage of the direct transcription method is that
additional constraints can be easily taken into account by introduc-
ing bounds on the state variables. For the case of the HRP-2 arm,
the angular constraints are as follows

for i = 1, . . . , 6, xi < x0
i , x1

i , . . . , xJ
i
< xi (14)

Finally, the cost to minimize in (7) can be expressed as a finite
sum computed at all discretized time points

E(�) =
2n∑
i=1

J∑
j=0

(uj
i
)2 (15)

4.2. NLP solving

By (9)−(15) we have formulated a large-sparse NLP problem
from an optimal control problem, which has the form

min
�∈Rl

E(�)

such that : c ≤ c(�) ≤ c

� ≤ � ≤ �

(16)

where E(�) : R
l → R

+ is the objective function, and c(�) : R
l → R

d

are the constraint functions. The vectors c and c denote the lower
and upper bounds on the constraints, and the vectors � and � are
the bounds on the variables �. For the considered problem, the
vector � is defined by (9),  E(�) is given by (15), c(�) correspond to
the functions in (10) and (11), where c = c ≡ 0, and the constraints
on � are represented by (12) and (13).
e reaching movements with a humanoid robot: A computational
.08.001

To solve the NLP problem, we used the Ipopt solver [59], which
turned out to be efficient in terms of accuracy and convergence
time. In practice, for the direct transcription, we took J = 50 or 100
for movements of 1 s and J = 100 or 200 for movements of 2 s, that
correspond to 2448, 4848 and 9648 variables, respectively.

dx.doi.org/10.1016/j.jocs.2012.08.001
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ig. 2. Movements of amplitude r = 25 cm, starting from the same arm configuratio
s  used to represent the hand trajectory (left picture) and the corresponding velocit

. First simulation results

In order to generate a movement, the algorithm requires as input
he initial angular configuration of the arm, the movement dura-
ion, and the position of the desired target expressed in a system of
pherical coordinates (r, �, �) centered at the initial hand position.
n this definition, r is the movement amplitude, � and � are the
zimuth and elevation angles, respectively. This representation is
ell appropriate for the description of movements starting with

he same initial arm configuration and directed toward periph-
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

ral hand target positions. The muscle parameters were chosen in
he same way as in [17]: v = 0.05s (time constant of muscle fil-
ering), and � = 10 (force generation characteristics of the muscle).

oreover, according to (2),  at each DoF the link between the force

ig. 3. Hand movements of amplitude r = 25 cm,  starting from the same arm configuration
olor  is used to represent the hand trajectory (left picture) and the corresponding velocit
 ending at ten evenly spaced peripheral targets in the frontal plane. The same color
le (right picture).

generated by the pair of muscles and the torque is related to a coef-
ficient �k. The choice of these coefficients is somewhat arbitrary
and discussed in [17]. In our program, we  did not try to find the
best values of �k for all movements. The durations of movements
were adapted to the robot dynamics, they were a little bit increased
with respect to durations in [17]. Figs. 2 and 3 represent the shape
of trajectories of amplitude 25 cm and duration 1 s, ending at ten
evenly spaced peripheral hand positions in the frontal and in the
sagittal plane, respectively. These target positions correspond to
nonsingular configurations of the robot. The initial configuration
e reaching movements with a humanoid robot: A computational
.08.001

of the robot arm is (5◦, −15◦, 30◦, −110◦, 0◦, 0◦). Fig. 4 shows
in detail the variation of motion parameters during a simulated
movement of the hand of amplitude r = 25 cm to the direction (�,
�) = (−45◦, 45◦). As a result, it is interesting to remark that the robot

, and ending at ten evenly spaced peripheral targets in the sagittal plane. The same
y profile (right picture).

dx.doi.org/10.1016/j.jocs.2012.08.001
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ig. 4. Evolution of motion parameters during a movement of amplitude r = 25 cm
ngular trajectory; left middle: hand trajectory; right middle: hand velocity; left do
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

rajectories obtained through this approach exhibit the principal
haracteristics of human motions, as reported by Morasso in [32],
landers in [12] and Guigon et al. in [17]. Indeed, the hand trajecto-
ies are almost rectilinear and the corresponding velocity profiles
 direction (�, �) = (−45◦ , 45◦). Left up: Cartesian coordinates of the hand; right up:
ontrol signals; right down: torques.
e reaching movements with a humanoid robot: A computational
.08.001

are single-peak and bell-shaped. Fig. 5 is from [12]. It shows two
sets of human hand paths starting with the same arm configura-
tion and ending at peripheral targets locations in the sagittal and
the frontal plane, respectively. These trajectories look very similar

dx.doi.org/10.1016/j.jocs.2012.08.001
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Fig. 5. Human reaching hand paths as reported by Flanders et al. in [12]. The situ-
ation is similar to the one described in Figs. 2 and 3: targets are arranged at twenty
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method was  applied by considering the dynamical model of the

F
d

eripheral positions located at 30 cm from the initial hand location. F, M and L stand
or forward, right and left, respectively.

o the ones executed by HRP-2, which are represented in Figs. 2 and
. Furthermore, the slight curvature variation associated with the
ircular distribution of targets seems to obey the same rule in both
ases. Concerning the accuracy of our result, the average difference
etween the final robot hand position and the target is very small,
round 1 mm,  and the average of maximum distance to a virtual
eference straight line trajectory is about 1 cm.

In our study, we considered the kinematic criteria stated by
orasso [32] to evaluate the similarity between the generated

obot trajectories and the human movement. Due to the strong
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

nter-individual variability between humans, it seems difficult to
efine a metric to further evaluate this degree of this similarity.

nstead, it is interesting to note that fitting/error functions, to be

ig. 6. From left to right: four successive snapshots of a reaching movements of the 6 Do
irected to the target position (− 35◦ , 35◦).
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Fig. 7. Hand trajectories (left image) and velocities (right image) corre
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minimized through inverse optimal control, were proposed in [5].
Such function could constitute alternative way  of evaluating the
similarity between the robot reaching robot movements generated
from Guigon’s model and human movements.

In order to demonstrate that the control approach is not limited
to short motions, the method has also been tested for movements
of amplitude 50 cm with a duration of 2 s. Single-peak bell-shaped
velocity curves still occur, though the trajectory is unsurprisingly
more curved (the average distance to the straight line is about 4 cm).
The target-hand distance error at final time is still small, about
1 mm.  Fig. 6 shows two  examples of such motions obtained with the
simulation software OpenHRP and Fig. 7 shows corresponding hand
trajectories and velocities. To simulate motions with OpenHRP, we
took the angular trajectory of the robot joints obtained from the
optimization program and then we  interpolated it to determine the
input data. The simulator follows this input to display the move-
ment by taking into account the exact parameters of the robot. Such
a validation on OpenHRP guarantees that the movement will be
correctly executed by the real robot.

Finally, to illustrate the generality of the approach, we applied
it to generate upper-body reaching movements. We considered a
7 DoF system including 2 DoF at the torso (yaw and pitch angles)
and 5 DoF at the arm (3 at the shoulder, and 2 at the elbow, the
last rotation at the wrist being fixed). The same motion generation
e reaching movements with a humanoid robot: A computational
.08.001

upper body of the robot. The passage from 6 to 7 DoF induced a
significant increase of computation time. Fig. 8 shows the robot
executing a downward reaching movement by using its upper body

F arm of HRP-2, simulated with OpenHRP. This movement of amplitude r = 50cm is

0 0.5 1 1.5 2
0
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0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Velocities

Time (s)

sponding to the two  reaching movements represented in Fig. 6.

dx.doi.org/10.1016/j.jocs.2012.08.001
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ig. 8. From left to right: four successive snapshots of a reaching movement involv

oints. Strikingly, when the torso joints are used, the robot seems to
ehave more closely like a human. Here again the hand trajectory

s almost straight and the hand velocity curve is bell-shaped. Fig. 9
hows the variation of parameters during this movement of the
pper-body. It appears that the highest torques are produced at
he torso, more important mass displacements being actuated by
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

hese joints.
In our simulations, a movement generation normally took from

 to 4 min  in the case of the 6 DoF arm, depending on the ampli-
ude of the motion and the choice of parameters. Whereas, up

ig. 9. Variation of parameters during an upper-body reaching movement of the robot
oordinates of the hand; right up: angular trajectory; left down: control signals; right dow
e upper-body joints: 2 DoF at the torso (pitch and yaw) and 5 DoF at the arm.

to 8 min  were necessary in the case of the 7DoF upper body
model. The program Ipopt converged to satisfy the constraints
with very good accuracy after around 200–300 iterations but it
did not always finish properly. This may  be due to numerical
errors in the calculation of the dynamics or to the approxima-
tion of the Hessian in the program. This phenomenon was also
e reaching movements with a humanoid robot: A computational
.08.001

pointed out in [31]. Finally, the performance of the program could
be improved by completing the refinement step in the direct tran-
scription approach. Videos showing different motions of HRP-2 are
available at: http://homepages.laas.fr/taix/neuro/.

 of amplitude 50 cm,  toward the direction (�, �) = (−45◦ , 45◦). Left up: Cartesian
n: torques.

dx.doi.org/10.1016/j.jocs.2012.08.001
http://homepages.laas.fr/taix/neuro/
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this new position. Movements were executed until the 32 targets
were reached from each other, giving a total of 993 movements
per participant.

Fig. 10. (a) Illustration of the human experiment during successive reaching move-
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. Outcome analysis

The first part of the study has shown that the principles of motor
ontrol proposed by Guigon et al. [17] can be applied to humanoid
obot, to generate reaching movements having the kinematic
haracteristics of human movements. Beyond providing a generic
ethod to produce realistic movements, the proposed approach

as two main interests from the control point of view. First, the
eparation of dynamic and static efforts simplifies the optimiza-
ion problem which leads to the characterization of trajectories. The
ypothesis that static gravitational efforts are continuously com-
ensated by the tonic control is particularly well grounded in the
ase of robotic systems such as the humanoid HRP-2, for which
ach joint is individually regulated to a reference value. Second,
he redundancy problem can be solved implicitly without solving
he inverse kinematics for the 6 DoF dynamic model of the arm
nd even for the 7 DoF dynamic model of the robot upper-body.
hanks to the direct transcription method and the Ipopt software,
hich give performance and flexibility to our optimization pro-

ram, further constraints such as bounds on articular joints, or
ollision avoidance can be easily added to the program. However,
he main drawback of the approach is the computational cost of the
ptimization problem resolution. Indeed, depending on the ampli-
ude of the movement, the computation of an optimal trajectory
equired form 1 to 4 min  for the 6 DoF arm and up to 8 min  for
he 7 DoF model of the upper-body. The heaviness of this com-
utation constitutes a strong limitation that prevents the method
rom being used online to control the robot, in particular within a
eedback process.

This limitation led us to ask whether the information contained
n a database of reaching trajectories could be used to generate,
t low cost, new trajectories still having the kinematic character-
stics of human movements. Many specialists of motor control in
euroscience agree that the CNS does not solve such a complex
ptimization problem each time it generates a movement. Instead,
hey believe that the knowledge acquired during the execution of
revious movements is stored by the brain and used to generate
ew movements. Among the theories based on this hypothesis is
he theory of motor primitives or synergies. This theory, which
as suggested by biological evidences, conjectures that the CNS
ses a finite set of elementary motor components, called primi-
ives, to generate movements [43,33,10,56].  At the kinematic level,
he primitives are sometimes described as joint covariations. For
xample, covariations of ankle, knee and hip joints during bending
ovements and walking were described in [3] and [27]. A similar

oactivation between whole-body joints during reaching move-
ents was reported in [50] and [24]. Motor primitives or synergies
ere also pointed out at the muscular level, from EMG  measure-
ents. For instance, five muscular synergies involved in postural

ontrol were described in [55]. The encoding of motor primitives
as also shown at the neural level. The well known experiment

y Mussa-Ivaldi and Bizzi [33], showing that local stimulations of
he spinal chord induce different leg movements in frogs, is a good
llustration of this phenomenon. Recently, an attempt at model-
ng these experimental results in the control theory framework

as proposed in [37]. For roboticists, reducing the complexity of
ontrol by using a finite set of movement primitives is a very attrac-
ive idea. It offers a promising alternative to the computation of
nverse kinematics and cost minimization to cope with the high
edundancy of anthropomorphic structures. This idea has already
otivated some applications. Two primitives were used by Hauser

t al. [20], for controlling the balance of a small size humanoid robot.
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

im et al. [28], used Principal Component Analysis (PCA) to extract
rimitives from the captured movement of a human arm modeled
s 4 DoF chain. These primitives were used as basis functions for
arameterizing new realistic robot movements. In [9],  the authors
 PRESS
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used a nonnegative matrix factorization method to extract prim-
itives from a database of control signals to control a 2 DoF  arm.
Interestingly, it was shown that new movements can be learned
faster in the primitive space than in the control space [6].  In order
to introduce feedback in the control, Todorov et al. [52] considered
sensorimotor primitives. This kind of primitive was applied to the
control a 2 DoF arm.

Following this trend, the remaining part of the paper presents
an original method for encoding reaching movements from a small
number of motor primitives in order to generate realistic human-
like movements at lower computational cost.

7. Encoding reaching movements with motor primitives

In order to show that the method is sufficiently general and can
be applied both to simulated robot movements and to recorded
human movements, two  databases of reaching movements were
considered.

- The first database was  obtained by simulation by applying to the
dynamic model of HRP-2’s arm the principled approach described
in Sections 3–5.

- The second database was obtained by recording human move-
ments using a motion capture system. The arm motions of 3
participants were recorded using infrared markers attached to
the shoulder, the elbow and the wrist. The accuracy of the cap-
ture was  less than 1 mm,  with a frequency of 100 Hz. Participants
were asked to perform a set of reaching movements while stand-
ing up. We  considered 32 target positions, regularly spaced in
two  parallel grids located in front of the participant’s shoulder
(see Fig. 10). The target was a small ball at the end of a stick that
was  manipulated by the experimenter. It was placed at one of
the 32 positions. The participants heard a sound to indicate that
they should start moving their hand to the target. Upon reach-
ing the current target, the next target was  randomly chosen from
the other 31 positions, and the experimenter moved the stick to
e reaching movements with a humanoid robot: A computational
.08.001

ments. The arm segments are in red and examples of hand trajectories are drawn in
blue. (b) The humanoid robot HRP-2. (c) Representation of the 32 target positions
on  two parallel virtual grids. These target positions were used to drive the human
reaching movements. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

dx.doi.org/10.1016/j.jocs.2012.08.001
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The same sequence of task was used for simulating the reaching
ovements with the dynamic model of HRP-2, in order to construct

he first database. However, in the case of the robot, a scaling factor
as applied to the dimension of the target setup and to its distance

o the robot, in order to obtain comparable values. For both the
uman subjects and the robot, the databases of movements contain
he variation of six joints: three at the shoulder, two  at the elbow
nd one at the wrist. Note that the remaining DoF of the human
rm were not considered for this application. In order to simplify
he primitive extraction, the robot movements were all executed
ith a duration of 1 s discretized in 100 time values. In the same
ay, the human reaching trajectories were normalized to 1 s within

he same sampling of 0.01 s. So, for both the robot and the humans,
ach reaching movement was described by 600 values encoding
he variation of 6 angles.

. Primitives extraction

We  are looking for open-loop primitives with no sensory feed-
ack. In the literature, such primitives are defined as time functions
o be modulated in amplitude by weighting coefficients [28,20,56].
he most general and simplest way of modeling the problem is to
onsider that movements are expressed as linear combination of
hese primitives. For our problem, each movement of the 6 DoF
rm can be represented by a joint trajectory U(t) ∈ R

6. A database
f M movements is then described by a set of such trajectories:

m(t) = (Um1(t), Um2(t), . . . , Um6(t))T ∈ R
6,

m = 1, . . . , M,  t ∈ [0,  T]

For this database, the primitive extraction problem is to
etermine K time-functions: ˚k(t) = (˚k1(t), ˚k2(t), . . . ˚k6(t))T ∈
6, k = 1, . . . , K, t ∈ [0,  T], such that, for all m = 1, . . .,  M, it is pos-
ible to determine k real coefficients ˛mk, verifying:

m(t) =
K∑
k=1

˛mk˚k(t) (17)

In this expression, the functions ˚k(t) represent the expected
rimitives and the coefficients ˛mk are weighting the contribution
f each primitive ˚k(t) into the movement Um(t). Each ˚k(t) has
hen the same dimension as Um(t), and constitutes a particular joint
rajectory.

emark 2. According to the considered definition, each motor
rimitive is the kinematic representation of a basic movement.
uch primitives can be viewed as basis functions from which reach-
ng movement can be reconstructed by linear combination to reach
ny target position in a region of space. However, it is important
o note that these primitives do not constitute universal units that
an be used to compose any kind of movements.

The determination of Eq. (17) states two problems. The first one
s to determine the number K of primitives that are necessary to
each the expected movement precision and the second one is to
haracterize these K primitives. To reduce the complexity of the
ontrol problem, K needs to be as small as possible, compared to
he number of parameters necessary to encode the trajectory Um(t).
or a continuous-time problem, this number is infinite. However,
n practice, the problem is solved by considering a sampling of the
ime interval [0, T] in J elements. For the considered 6 DoF arm, K
eeds to be small with respect to the 6J angle values that encode
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

ach movement. In other terms, once the K primitives are deter-
ined, it is sufficient to compute K coefficients ˛mk, k = 1, . . .,  K,

o generate the movement Um(t) over [0, T], instead of 6J variables.
he second problem is to compute the canonical time-functions ˚k.
 PRESS
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Considering the notation of Eq. (17), each movement Um and each
primitive ˚k is defined by a 6 × J matrix as follows:

Um =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
m1 u2

m1 · · · uJm1

u1
m2 u2

m2 · · · uJm2

...
...

...
...

u1
m6 u2

m6 · · · uJm6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ˚k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
k1 �2

k1 · · · �J
k1

�1
k2 �2

k2 · · · �J
k2

...
...

...
...

�1
k6 �2

k6 · · · �J
k6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

where uj
mh

and, �j
kh

, h = 1, . . .,  6, m = 1, . . .,  M,  j = 1, . . .,  J are inte-
gers. Using this notation, the reconstruction error relative to the M
movements of the database, {Um, m = 1, . . .,  M}  is defined by:

E = E(˛mk, ˚k) =
M∑
m=1

6∑
h=1

J∑
j=1

(
uj
mh

−
K∑
k=1

˛mk�
j
kh

)2

(19)

Solving this problem comes then to determine K primitives, with
K as small as possible (K � 6J), but sufficiently large to guarantee
that the reconstruction error will be lower than the expected pre-
cision threshold. This compromise will be discussed in the next
section. Among the existing techniques that could be used to cope
with this kind of problem (see [15] for an overview), principal
component analysis (PCA), is intrinsically well adapted, simple and
well-performing. It has already been used for data representation
problems in neurosciences and in robotics [3,50,43,28]. In order to
apply PCA, it is more convenient to use a vector notation of data. So,
instead of using the matrix notation (Eq. (18)), each movement Um,
m = 1, . . .,  M,  will be described by the following vector expression:

Um = (u1
m1, u2

m1, . . . , uJm1, u1
m2, . . . , uJm2, . . . , u1

m6, . . . , uJm6)T (20)

where each uj
mh
, h = 1, . . . , 6, j = 1, . . . , J, is the angular value of

joint h at time tj. The M column vectors Um of dimension N = 6J are
then gathered to compose a M × N matrix. The N × N covariance
matrix is then computed. The eigenvectors ei, i = 1, . . .,  N, and the
eigenvalues 	i, i = 1, . . .,  N, of this covariance matrix are then deter-
mined and ordered. Each eigenvalue 	i represents the variance of
data in the direction of the corresponding eigenvector ei. The larger
	i, the more its associated component ei is dominant in the repre-
sentation of data. The question is then to determine the number
K, such that the first K principal components ek, k = 1, . . .,  K, con-
stitute a basis of primitives from which the whole database can be
expressed with the required precision. Recall that each primitive
ek is itself the representation of a six-joints trajectory. Finally, for
each movement Um, the coefficient corresponding to the primitive
ek is determined by computing the scalar product between these
two vectors: ˛mk = 〈Um, ek〉, m = 1, . . .,  M,  k = 1, . . .,  K. Note that the
application of PCA requires the data to be centered. This condition
was almost exactly satisfied for each database.

PCA was separately applied to the robot database and the human
databases described in Section 7. In each case, we  observed that
the variance accounted for (VAF) by the K = 8 first primitives was
more than 96%, whereas it was more than 99.5% with the K = 20
first primitives. Using the previously described approach, we deter-
mined the coefficients that enable us to reconstruct the whole set
of movements by a linear combination of these primitives. These
reconstructed trajectories were then compared with the original
ones. To compute the reconstruction error for a whole database,
e reaching movements with a humanoid robot: A computational
.08.001

we used the Root Mean Squared Error (RMSE) expressed by:

RMSE =
√

E

(M × 6 × J)

dx.doi.org/10.1016/j.jocs.2012.08.001
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Fig. 11. Root mean square error between the original trajectories and the recon-
structed ones, as a function of the number of primitives K. The curves corresponding
to  the three human subjects and the robot arm are represented. In addition, the blue
curve represents the mean of the three human subjects. (For interpretation of the
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eferences to color in this figure legend, the reader is referred to the web version of
he article.)

here E is defined by Eq. (19). Fig. 11 shows the decay of the RMSE
s a function of the number K of primitives, for each database. The
ecay rate of the RMSE is similar for the three human subjects, while

t is slightly different for the robot arm. For human subjects, beyond
he first 8 primitives each addition of a new primitive induces
lmost the same error reduction. Whereas, for the robot model, the
mportant decay rate between the 8th and the 16th primitive shows
hat these primitives still contain an important part of information.
nterestingly, the curves corresponding to the human subjects and
he robot become roughly parallel after the 18th primitive, show-
ng a certain level of similarity between both databases. Beyond
his level, the regular gap between the curves seems to be due to
he difference in the kinematics and the dynamics of the arm struc-
ures. As human subject are taller and heavier than the robot, the
ffect of inertia and masses are higher on the human arm than on
he robot arm. This might induce a higher reconstruction error for
uman movements. In each case, the primitives computed with
CA represent the original data with a good precision. Depend-
ng on the expected level of precision, the number of primitives
an be easily chosen. For instance, with K = 16 primitives the robot
atabase can be reproduced with a mean error of 0.02 radians
1.2◦). With the same number of primitives, the database of sub-
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

ect 1 can be represented with a mean error of 0.03 radians (1.7◦).
s an example, Fig. 12 shows two trajectories reconstructed from

hese primitives and Fig. 13 shows the first 8 primitives for each

ig. 12. Example of joint trajectories reconstructed from K = 16 primitives. The curves in
ight  picture were obtained with the database of subject 1. The original trajectories are in
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database: the robot, subject 1, 2 and 3. The primitives represent
the principal variations of the movements, classified by decreasing
order of dominance variance. The first primitives are rather regu-
lar, while the last ones, more oscillatory, captures subtle variations
of movements. It is interesting to remark, in Fig. 13,  that the prim-
itives corresponding to the different database are not necessarily
similar. This difference is due to the definition of primitives given
by (17). Indeed, according to this relation, each primitive repre-
sents the simultaneous temporal evolution of the six arm joints,
and these six trajectories are weighted by the same coefficient ˛mk.
This choice is biologically plausible, but leads to a different primi-
tive basis for each database. Indeed, even though different subjects
do the reaching movements in a similar way, the variations due to
each subject may  radically modify the expression of primitives.

It is important to recall that some authors used PCA to extract
primitive for each joint separately [28]. As a consequence, the mod-
ulation of primitives is decoupled. In that case, it was shown that
a lower number K of primitives is sufficient for each link (usually
between 2 and 4), but the number of coefficients is multiplied by
N. Thus, if 3 primitives are necessary for each link of a 6 DoF arm,
then 18 primitives will be necessary for representing the arm move-
ments. We also tested this approach for our problem and we  found
that the variance accounted for by 3 primitives on each link was
more than 96%. In particular, we found a similarity between the
primitives for the subject and the robot arm. However, there is
no fundamental difference between the two  methods of primitive
extraction. The number of variables is almost identical in both cases.
Recall that, by looking for primitives containing the six arm joints,
our goal was  to capture the joints co-activation. In this way, we
expected to reduce the complexity, increase the precision of recon-
structed movements, and find a basis of primitives well adapted to
generalization. This last step is considered in the next section.

9. Generalization

So far, we have shown that large databases of reaching move-
ments can be expressed as linear combinations of a small number
of primitives. The question is now to determine if it is possible, from
these primitives, to generate new movements having the charac-
teristics of human movements. In other terms, we want to solve a
generalization problem which can be stated as follows: Consider-
ing a set of primitives ˚k, given the initial arm configuration and a
reaching task defined by the target position and the movement dura-
tion, determine the weighting coefficients ˛k to express the reaching
trajectory as a linear combination of the primitives.
e reaching movements with a humanoid robot: A computational
.08.001

reaching movements rapidly, without having to solve, each time,
the complex optimization problem described in Section 4. Our first
attempt to solve the generalization problem was  to apply learning

 the left picture were obtained with the robot database, whereas the curves in the
 dotted lines and the reconstructed trajectories in full line.

dx.doi.org/10.1016/j.jocs.2012.08.001
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Fig. 13. Description of the first 8 primitives obtained with PCA on the different databases. From left to right the column correspond to the robot, subject 1, 2 and 3, respectively.
From  top to down, primitives are classified by variance dominance. In each scheme, the abscissa axis represents the time in seconds and the ordinates represent the joint
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a

ngles  in degrees. A different color is used for each of the 6 arm joints. (For interpr
ersion of the article.)

ethods in order to characterize fast input–output interface. We
ested different architectures of multi-layer feedforward neural
etworks which received as input the six values of initial arm joints,
he three Cartesian coordinates of the target and the movement
uration, and were expected to give the ˛k weighting coefficients
f the K primitives as output. For some of these networks, the learn-
ng process on the 993 input–output pairs of each database took
everal hours. However, none of them succeeded in characterizing
he ˛k in a sufficiently generic way. In many cases, the reaching
rror between the final hand position and the target was  too large
nd the movements were often not realistic. Increasing the number

 of primitives did not improve the quality of the result. It seemed
hat the information learned by the networks was not sufficiently
ich to capture the movement characteristics. Furthermore, feed-
orward neural network does not seem to be well appropriate to
ope with the sensibility of the weighting of motor primitives.
hen, as the learning techniques we considered did not provide us
ith satisfying results, we developed an original approach which

onsists in constraining the hand trajectory in the operational
pace. This method is described in the following section.
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

.1. Method of trajectory constraint in the operational space

We want to determine the weighting coefficient ˛k to gener-
te new movements that still have the characteristics of human
n of the references to color in this figure legend, the reader is referred to the web

movements. To this end, we  propose to determine the ˛k for which
the hand trajectory approximates at best a reference trajectory in
the Cartesian space [13]. As we  know that human trajectories are
almost rectilinear and have bell-shaped velocity profiles, we have
chosen to consider the minimum-jerk criterion to compute the ref-
erence trajectories. However, though this criterion can be used to
demonstrate the feasibility of the generalization process, it is not
fully satisfying. Indeed the main limitation is that the minimum-
jerk criterion does not allow to take into account the dynamics of
the controlled object and that it fails to account for some charac-
teristics of reaching movements such as the slight curvature of the
trajectory. We  could as well use any other criteria that provides a
more realistic account of experimental observations in the Carte-
sian space. The minimum kinetic energy criterion considered by
Biess et al. [8] could be an interesting alternative solution. Another
possibility could be to used the metric function proposed in [5].  In
order to implement our reasoning, we formulate an optimization
problem whose objective is to characterize the ˛k coefficients that
minimize the error between the hand trajectory and the minimum-
jerk curve in the Cartesian space. As before, the time interval [0, T]
is sampled into J elements 0 = t1, . . , tJ = T. For j = 1, . . .,  J, let us denote
e reaching movements with a humanoid robot: A computational
.08.001

by qj = (qj1, qj2, qj3, qj4, qj5, qj6)T the arm configuration at time tj and
Hj = f(qj) the corresponding hand position in the Cartesian space,
where f represents the direct kinematics associated to the 6 DoF
arm model. Using this notation, the optimization problem can be

dx.doi.org/10.1016/j.jocs.2012.08.001
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tated as follows: Given K primitives ˚k, k = 1, . . .,  K, each one repre-
enting a trajectory of the six arm joints, the initial arm configuration
1, and a reaching task defined by the target position Htarget, find the
alue of K real coefficients ˛k, k = 1, . . .,  K, minimizing the distance

jerk, defined below as the sum of the successive gaps between the hand
osition and the reference minimum-jerk reference curve computed at
ach time tj:

jerk =
J∑
j=1

||f (qj) − g(
j, H1, Htarget)|| (21)

n this expression, 
 is the normalized time and 
j = tj/T the discrete
ormalized value that corresponds to time tj in [0, T], and g is the
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

ime-function representing the hand position along the reference
inimum-jerk trajectory expressed by:

(
, H1, Htarget) = H1 + (H1 − Htarget)(15
4 − 6
5 − 10
3) (22)

ig. 14. For a same reaching task of amplitude 58 cm, description of the movement succe
rom  top to down. From left to right, each horizontal set of 4 pictures corresponds to a par
rofile, the joint trajectories and the hand trajectory. The reaching errors in cm are respe
 PRESS
al Science xxx (2012) xxx–xxx 13

Recall that, according to the definition of primitives, the angular
value qj

h
of joint h at time tj, that appears in the above definition, is

computed from the relation qj
h

= q1
h

+
∑K

k=1˛k�
j
kh

, where �j
kh
, j =

1, . . . , J, is the angular value of the hth joint of the kth primitive
at time tj. In this problem, the joint limits on the qj

h
during the

movement are also considered. They are defined by inequalities of
the type:

lh ≤ qj
h

≤ uh for h = 1, . . . , 6 and j = 1, . . . , J (23)

where lh and uh are respectively the upper and lower bounds of the
joint h at tj.

Note that this problem is different from the one considered in
[28]. Here, the objective is not to minimize a kinematic or dynamic
e reaching movements with a humanoid robot: A computational
.08.001

criterion to determine the control signals, but instead to approx-
imate a reference curve, having the characteristics of the human
movement, in the Cartesian space. This problem is also different
from the usual minimum-jerk problem in the sense that the joint

ssively generated by using an increasing number primitives K = 6, 8, 10, 12, and 20
ticular value of K and represents: the Cartesian hand coordinates, the hand velocity
ctively: 4.07, 1.14, 0.36, 0.12 and 0.11.

dx.doi.org/10.1016/j.jocs.2012.08.001
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Table 1
Mean value of the distance Ejerk computed over the whole set of new generated
movements and corresponding computation time for different values of K.

K Mean value of Ejerk (cm) Computation time (s)

6 3.6504 5.5549
8 1.6120 11.1249
10  1.3822 14.1024
12  1.1417 20.5878
14  1.1169 28.3012
16  1.0842 35.5586
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18 1.0415 41.1163
20 0.9676 48.6022

rajectory of the arm is directly deduced from the knowledge of the
k coefficients. No additional computation is then required to com-
ute the joint trajectories; a step which usually requires to solve the

nverse kinematics problem with the minimization of some addi-
ional criterion to cope with redundancy. Furthermore, note that
he generalization problem described by Eqs. (21), (22) and (23) is

 simple optimization problem involving K real variables and 6J lin-
ar constraints, which can be solved by using standard techniques.
n this work, we  used the Matlab fmincon solver. The results are
escribed in the next section.

.2. Results

In order to test the proposed generalization approach, a large
umber of new movements were generated by considering the
odel of the robot arm. To this end, a shift between −10 cm and

10 cm was applied at random in each direction of the initial target
rid (see Fig. 10)  to generate new targets, and angular increments
etween −5◦ and +5◦ were randomly added to each arm joint to
pecify new initial arm configurations. In this way, we generated

 new large set of reaching movements with different arm config-
rations. Note that the largest amplitude movements were about
-m long.

In order to evaluate the compromise between computation time
nd distance to the reference minimum-jerk trajectory, different
alues of K between 6 and 20 were considered. Table 1 shows the
ean value of the distance Ejerk computed over the whole set of

ew generated movements and the corresponding computation
ime, for each value of K. Logically, for a higher K the computa-
ion time increases, while the distance to the reference trajectory
ecreases. It is important to recall that the distance Ejerk defined by
21) measures the sum of the gaps between the hand movement
nd the reference minimum-jerk trajectory, at each tj, all along
ach movement. Fig. 14 shows the characteristics of movements
btained with the robot arm, for K = 6, 8, 10, 12, 20. Clearly, the
and trajectories and the velocity curves are not realistic for K = 6
nd 8. However, as K increases, the trajectory becomes straighter
nd the velocity curve becomes smoother and more regular. For

 = 12 the movement starts being very realistic. The improvement
btained by adding a new primitive is very small. For K = 20 the
elocity profiles are perfectly bell-shaped and the hand trajectories
re almost straight with a continuous weak curvature. Compared to
ur initial approach presented in Sections 3–5, where reaching tra-
ectories were obtained by minimizing each time the energy of the
ignals of virtual motoneurons, the computation time was  reduced
y a factor six by using the motor primitives. Note that this time
ould be further reduced by encoding the algorithm in C++instead
f using Matlab.
Please cite this article in press as: M.  Taïx, et al., Generating human-lik
approach, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012

0. Conclusion

The interest of applying neurobiological principles to the con-
rol of humanoid robots has been illustrated in the case of reaching
 PRESS
al Science xxx (2012) xxx–xxx

movements. Though the mechanical structure of today’s humanoid
robots strongly differs from the structure of the human body,
applying biological principles provides a canonical way  to gener-
ate human-like movements. From a computational point of view,
the application of such principles is very interesting for roboti-
cists as it provides new strategies for synthesizing the controller.
The separation of static and dynamic efforts strongly simplifies
the optimization problem as it removes the difficult boundary
condition. Indeed, the dynamic controller vanishes at the begin-
ning and at the end of the movement and the compensation of
gravity is considered separately. This hypothesis is well adapted
to the control of humanoid robots such as HRP-2, in which the
low-level regulation of joint positions guarantees the compen-
sation of gravity during reaching movements. It is then possible
to focus on the dynamic part of the control for designing move-
ments resembling those of humans. Another interesting advantage
of the proposed approach is that it does not need the computa-
tion of inverse kinematics. As the Jacobian matrix is not square,
such an inversion would require the computation of a general-
ized inverse and implicitly the minimization of an additional cost
function which is unknown. It was pointed out that the main
drawback of the initial optimization approach is the computation
time. To cope with this problem, motor primitives were designed
to encode the movements. Thanks to this strategy it was pos-
sible to reduce the computational cost by a factor six. It turns
out that the use of movement primitives coupled with an appro-
priate generalization process provides an efficient way to store
the complex information of human movements and quickly gen-
erate new trajectories. Although it has been suggested that the
CNS generates movements by solving a complex optimization
problem, such as minimizing the energy of the signals of motoneu-
rons, it is likely that the use of a reduced number of canonical
synergies simplifies the computation. This study shows that this
biological solution can be efficiently transferred to robotics. In
future works, we  plan to address the problem of combining such
open-loop primitives to produce more complex whole-body move-
ments.
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