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Abstract— This paper presents an application of neurobiolog-
ical motor principles to the control of humanoid robot reaching
movements. The model is mainly based on the hypotheses that
the energy of motoneurons signals is continuously minimized
along the motion and that dynamic and static efforts are
processed separately. This paradigm is used to control the robot
HRP2 by considering a dynamic model of the arm including, for
each degree of freedom, two second order low-pass filters mod-
eling the neuromuscular system defined by a pair of antagonist
muscles. The optimal control problem is solved as a nonlinear
programming problem by using a direct transcription method
coupled with the optimization software Ipopt. This approach
allows to generate realistic movements with anthropomorphic
features such as quasi-rectilinear trajectories and bell-shaped
velocity.

Keywords: human motor control, neurobiological principles,
reaching control, humanoid robot, direct transcription, nonlin-
ear programming.

I. INTRODUCTION

Even though humanoid robots strongly differ from humans
in their mechanical structure, their sensing and actuation
capabilities, and the way of processing data, the knowledge
of neurobiological motor principle turns out to be of great
interest to reduce the complexity of the control problem and
provide robots with anthropomorphic motor capabilities.

We focus here on the control of reaching movements.
For this problem, different kinds of biologically inspired
approaches have so far been proposed in robotics. Some
authors made a special effort to reproduce the mechanical
musculoskeletal structure of the human arm and develop
control strategies involving the dynamics of internal forces
[1], or replicate biological patterns of muscle activity [2].
Other authors tried to characterize trajectories by minimizing
of a particular cost function such as variance [3], torque [4],
jerk [5], or energy. Several control architectures were also
proposed to reproduce the multi-referenced brain processing
and its plasticity [6]. Finally, motion capture techniques were
used by numerous authors to execute human-like motions [7],
[8]. However, beyond imitation, the application of biological
motor principles seems to be a way to produce canonical
movements in any situation.
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This paper presents an application of a recent biologically
inspired computational theory based on a principled approach
to motor control [9], [10]. This theory, which can accu-
rately account for kinematics, kinetics, muscular, neural, and
stochastic characteristics of redundant reaching movements,
is applied here to the control of the humanoid robot HRP2.
The approach is grounded on the idea that the central nervous
system (CNS) processes dynamic efforts (inertial, velocity
dependent) and static efforts (elastic, gravitational) sepa-
rately, and that the energy of motoneurons is continuously
minimized during motion. In order to apply these principles
to the control of HRP2, a global model is considered, which
contains the dynamics of the six degrees-of-freedom (DOF)
robot arm and includes, for each DOF, an additional filter
simulating the dynamics of a pair of virtual antagonist
muscles. As a result, it will be shown that the robot arm
movements obtained with this approach exhibit the main
features of human motions, namely: quasi rectilinear hand
trajectories and bell-shaped single peak velocity profiles.

The paper is organized as follows. The neurobiological
motor principles which are at the basis of our work are
summarized in section II. The global model and the problem
statement are presented in section III. Section IV deals
with the characterization of minimum-energy trajectories
satisfying the boundary conditions. Finally, simulation results
are presented in section V.

II. THE BIOLOGICAL PRINCIPLES OF MOTOR CONTROL

Breakthroughs into the understanding of motor functions
have generally been brought about by computational studies
that disclose functioning principles independent of brain
structures or neural processes. The model proposed by
Guigon et al. [9], [10] provides a unified account of motor
behavior by making the hypothesis that motor control is
mainly governed by the following four principles.

Separation principle: There is a substantial experimental
evidence to support the idea that static and dynamics forces
are processed separately by the CNS. Psychophysical studies
have shown that velocity profiles remain unchanged when
moving in a known constant or elastic force field, but that
they are in general modified by time and amplitude scaling in
velocity-dependent and inertial fields [11]. EMG studies have
revealed additive velocity-independent, tonic and velocity-
dependent, phasic components which have been related to
the generation of anti-gravity torques and dynamic torques,



respectively [12]. A similar additive combination between
tonic and phasic activity was observed in neurons of primate
motor cortex [13]. Finally, experiments have shown that the
terminal posture of 3D redundant movements is independent
of velocity [14]. As the relative contribution of anti-gravity
and dynamic torques varies with velocity, optimization of
the total torque pattern would predict variations of terminal
posture with velocity. This result suggests that dynamic
forces are optimized independently of static forces.

Optimal feedback control principle: The CNS processes an
optimal control of dynamic forces that is appropriate for an
online regulation of movements. Though optimal control has
been repeatedly used to account for many aspects of motor
control, e.g. trajectory formation, muscular redundancy, pos-
tural control, locomotion, etc. [15], [16], [17], it has rarely
been applied to the case of nonlinear redundant systems [18].
The difficulty is to account for the simultaneous control of
posture and movement. Most studies did not consider the
case of static forces due to the difficulties to solve optimal
control problems in the presence of gravitational forces [19].
When a movement consists of a transition between two
equilibrium postures, the boundary conditions of the optimal
control problem should specify terminal equilibrium signals,
e.g. muscle forces which compensate for applied static (elas-
tic, gravitational) forces. The idea to add to the cost function
a term which enforces given initial and final equilibrium
postures should lead to solutions which depend on the level
and nature of the static forces [17]. In contrast, the previously
introduced separation principle provides a way to apply
optimal feedback control to kinematic redundancy problems
with static forces, as there is no a priori specification of the
final posture of the limb.

Maximum efficiency: The energy of the signals of mo-
toneurons, that eventually generate the dynamic forces, is
continuously minimized along the motion. The system at-
tempts to reach the goal with zero error and minimal control
signals. Note that, compared to other cost functions encoun-
tered in the motor control literature (jerk [15], torque change
[16], variance [17], energy [20], etc.) this cost function is
easily measurable by the CNS. Furthermore, the constraint
functions used in this model are the initial and final boundary
conditions that lead to an univocal description of motor
control, contrary to models involving related cost function
such as error/effort minimization [18].

Constant effort principle : The idea of motor behavior
being associated with the minimum of a cost function is
appropriate when both movement amplitude and duration
are specified. Otherwise, infinitely slow/fast or infinitely
short/long movements could result. The constant effort prin-
ciple states that a given set of instruction is equivalent to a
level of effort. For these instructions, movements of different
amplitudes, directions, or against different loads are executed
with the same effort.

III. MODEL AND PROBLEM STATEMENT

The separation principle stated in the preceding section
can be easily applied to the control design of robots such as
HRP2, in which each joint is independently regulated to a
reference angular value. Indeed, the robustness of the low-
level control of each link allows to make the hypothesis that
static forces are exactly counterbalanced. The synthesis of a
controller can then be obtained by disregarding static effects.
In this way, the optimization problem can be solved on the
basis of a simplified model describing the phasic component
only. In order to implement this model on the robot, we
developed a global model that contains the dynamics of the
n = 6 DOF arm and includes, for each degree of freedom,
the dynamics of the neuromuscular system associated to a
pair of virtual antagonist muscles. In this way, the considered
system input are the neural control signals of the virtual
motoneurons. Each muscle i (1 ≤ i ≤ 2n) is controlled by
a motoneuron and, according to [21], the set motoneuron
+ muscle (neuromuscular system) can be described by a
second-order low-pass filter having the neural control signal
ui as input and the muscular force Fi as output, according
to the following scheme

v(dei/dt) = −ei + ui

v(dai/dt) = −ai + ei

Fi = η(ai)
(1)

where v is a time constant. The function η (used to express
the fact that a muscle exerts a pulling force only) is defined
by η(z) = z if z > 0; otherwise, η(z) = 0. The variables ei

and ai correspond to excitation and activation parameters1.
As η(z) is not differentiable at the origin, it can be replaced
by the function z → log[1.0 + exp(κz)]/κ, with κ > 0.
Torques τk were calculated at each DOF from the difference
between the forces generated by antagonist muscles scaled
by a coefficient γk (in meters), as described in (2).

τk = γk(F2k−1 − F2k), k = 1 .. n. (2)

The robotics arm of HRP2 (see figure 1) has six DOF:
three at the shoulder, two at the elbow and one at the
hand (see [22] for details), the grasping DOF of the hand
being not considered here. We used the Lagrangian approach
to express the equation of dynamics of this rigid, multi-
linked, articulated system [23]. The computation was done
through the symbolic calculus tools in Matlab. On this basis,
the equivalent C code was generated for the optimization
program described § IV. The arm dynamics can be expressed
under the usual form

τ = M(q)q̈ +N(q, q̇)q̇ +G(q) (3)

where M is the inertia matrix, N is a nonlinear vector
including Coriolis effects, G is a vector related to gravity
efforts, τ is the torque vector that generates the movement,
q, q̇, q̈ are the vectors of angular position, velocity and

1The Electromyographic activity (EMG) usually corresponds to η(ei)



Fig. 1. Humanoid robot HRP2 and its mechanical structure.

acceleration of successive links. According to the separation
principle, for the computation of optimal trajectories, the
term G(q) which correspond to static efforts can be removed
from (3). So, the relationship between angular accelerations
and torques can be expressed as follows

q̈ = M−1(τ −Nq̇) (4)

By gathering the arm dynamics described by (4) with the
actuation dynamics associated to each of the six pairs of vir-
tual muscles described by (1) we obtained a 36 dimensional
dynamical system of the form

ẋ = f(x(t), u(t)) (5)

whose state is defined by

xT = (x1, ..., x36)
= (q1, ..., q6, q̇1, ..., q̇6, a1, ..., a12, e1, ..., e12)

where q1, ..., q6 are the angular coordinates, q̇1, ..., q̇6 are
the angular velocities, and for i = 1, ..., n, (a2i−1, a2i) and
(e2i−1, e2i) represent the activation and excitation parameters
respectively, associated to the pair of antagonist muscles
corresponding to the ith DOF. The control vector, uT =
(u1, ..., u12) is of dimension n × 2 = 12. For i = 1, ..., n,
(u2i−1, u2i) represent the motoneurons signals associated
to the pair of antagonist muscles corresponding to the ith

DOF. Note that the derivatives of the state variables xi are
computed as follows: for i = 1, ..., 6, ẋi = q̇i = xi+6, for
i = 7, ..., 12, ẋi are given by (4) and for i = 13, ..., 36, ẋi

are deduced from (1).

Given a current arm configuration x0 at time t0 and a
target position of the hand at time tf , and according to
the optimal feedback control principle and the maximum
efficiency principle, the trajectory of the global system must
minimize the energy of motoneurons along the time interval
[t0, tf ]. This problem can be stated as an optimal control
problem as follows: find a deterministic control u(t) =
{ui(t)} (1 ≤ i ≤ 2n) over [t0, tf ] such that x(t) is a solution
of (5) satisfying the following boundary conditions

x(t0) = x0 and ψ(x(tf )) = 0, (6)

while minimizing the quantity

E =
2n∑
i=1

∫ tf

t0

u2
i (t)dt (7)

In relation (6), ψ(x(tf )) expresses the constraint on the
state at time tf , which corresponds to the specified final
hand position at which q̇(tf ) = a(tf ) = e(tf ) = 0. As
explained in the next section, this final condition can be
deduced from the expression of the direct kinematics at time
tf . Considering that the robot arm is at rest at t0, the initial
condition is given by

x0
T = (q01 , ..., q

0
6 , 0, ...0) (8)

where q01 , ..., q
0
6 are the initial angular values of the robot

joints at t0.

IV. OPTIMIZATION

To solve the two-point boundary-value problem stated by
(5), (6), (7) we used a direct transcription method [24].
Following this approach, the original problem can be trans-
formed into a discretized version which then can be solved
by a large-sparse NonLinear Programming (NLP) method,
such as the interior point method implemented in the Ipopt
software [25]. The main steps of the method are presented
in the sequel, more details can be found in [24].

A. Direct Transcription

The first step of the direct transcription approach is to
determine the vector of variables of the corresponding NLP
problem. It consists in discretizing the time interval of
movement duration [t0, tf ] into m+1 time-points as follows

t0 = t0 < t1 < t2 < ... < tm = tf (9)

At each time-point, the state vector and the control vector
are both specified. As a consequence, the discretized version
of the variable vector has the form

χT = (x0
1, ..., x

0
36, u

0
1, ..., u

0
12,

x1
1, ..., x

1
36, u

1
1, ..., u

1
12,

. . . ,

xm
1 , ..., x

m
36, u

m
1 , ..., u

m
12) (10)

where xk
i and uk

i correspond to system states and controls at
tk. This vector χ includes l = (m+1)× (36+12) variables.

The next step is to represent the constraints. Here we have
two types of constraint, one on the dynamics (5) and another
one on the ψ function (6). The description of variables in
(10) conducts to the following trapezoidal representation of
dynamical constraints

xk+1
i − xk

i − hk

2 (fk
i + fk+1

i ) = 0
i = 1 .. 36, k = 0 .. m− 1

(11)



where hk = tk+1 − tk is the duration of the time interval
[tk, tk+1]. So, the number of dynamical constraints is equal
to d = m×36. The condition ψ(x(tf )) = 0, which expresses
the fact that the hand must reach the target at the final time
tf , is defined by the following equations

|g(xm
1 , x

m
2 , x

m
3 , x

m
4 , x

m
5 , x

m
6 )− Pt| = 0 (12)

xm
7 = xm

8 = ... = xm
36 = 0 (13)

where g is the direct kinematics function which calculates
the position of the hand in Cartesian coordinates from the
angular value of each link, and Pt is the desired target
point. The constraints corresponding to the initial boundary
conditions (8) are represented by{

for i = 1..6, x0
i = q0i

for i = 7..36, x0
i = 0 (14)

One important advantage of the direct transcription method
is that additional constraints can be easily taken into account
by introducing bounds on the state variables. For the case of
the HRP2 arm, the angular constraints are as follows

for i = 1..6, xmin
i < x0

i , x
1
i , ..., x

m
i < xmax

i (15)

Finally, the cost to minimize in (7) can be expressed as a
finite sum computed at all discretized time points

E(χ) =
2n∑
i=1

m∑
k=0

(uk
i )2 (16)

B. NLP Solving

By (10)−(16) we have formulated a large-sparse NLP
problem from an optimal control problem, which has the
form

min
χ∈Rl

E(χ) (17)

such that : cL ≤ c(χ) ≤ cU

χL ≤ χ ≤ χU

where E(χ) : Rl → R+ is the objective function, and c(χ) :
Rl → Rd are the constraint functions. The vectors cL and cU
denote the lower and upper bounds on the constraints, and
the vectors χL and χU are the bounds on the variables χ.
For the considered problem, the vector χ is defined by (10),
E(χ) is given by (16), c(χ) correspond to the functions in
(11) and (12), where cL = cU ≡ 0, and the constraints on χ
are represented by (13) and (14).

To solve the NLP problem, we used the Ipopt solver [25],
which turned out to be efficient in terms of accuracy and
convergence time. In practice, for the direct transcription,
we took m = 50 or 100 for movements of 1 second and
m = 100 or 200 for movements of 2 seconds, that correspond
to 2448, 4848 and 9648 variables respectively.

V. SIMULATION

In order to generate a movement, the algorithm requires
as input the initial angular configuration of the arm, the
movement duration, and the position of the desired target
expressed in a system of spherical coordinates (r, θ, φ)
centered at the initial hand position. In this definition, r is the
movement amplitude, θ and φ are the azimuth and elevation
angles respectively. This representation is well appropriate
for the description of movements starting with the same
initial arm configuration and directed toward peripheral hand
target positions.

The muscle parameters provided to the system were cho-
sen in the same way as in [9]: v = 0.05s (time constant of
muscle filtering), and κ = 10 (force generation characteris-
tics of the muscle). Moreover, as stated by (2) at each DOF,
the link between the force generated by the pair of muscles
and the torque is related to a coefficient γk. The choice of
these coefficients is somewhat arbitrary and discussed in [9].
In our program, we did not try to find the best values of γk for
all movements. The durations of movements were adapted
to the robot dynamics, they were a little bit increased with
respect to durations in [9].

Figures 2 and 3 represent the shape of trajectories of
amplitude 25cm and duration 1 second, ending at twenty
evenly spaced peripheral hand positions in the frontal and
sagittal plane respectively. These target positions correspond
to nonsingular configurations of the robot. The initial con-
figuration of the robot arm is (5◦,−15◦, 30◦,−110◦, 0◦, 0◦).
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Fig. 2. Movements of amplitude r = 25cm, starting with the same arm
configuration, and ending at twenty evenly spaced peripheral targets in the
frontal plane.

Figure 4 shows in detail the variation of motion parameters
during a simulated movement of the hand of amplitude r =
25cm to the direction (θ, φ) = (−45◦, 45◦).

As a result, it is interesting to remark that the robot
trajectories obtained through this approach exhibit the prin-
cipal characteristics of human motions, as reported in [9]
and [26]. Indeed, the hand trajectories are almost rectilinear
and the corresponding velocity profiles are single-peak and
bell-shaped. Figure 5 shows two sets of human hand paths
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Fig. 3. Movements of amplitude r = 25cm, starting with the same arm
configuration, and ending at twenty evenly spaced peripheral targets in the
sagittal plane.

starting with the same arm configuration and ending at
peripheral targets locations in the sagittal and the frontal
plane respectively. These trajectories look very similar to the
ones executed by HRP2, which are represented in figures 2
and 3. Furthermore, the slight curvature variation associated
to the circular distribution of targets seems to obey the same
rule in both cases. Concerning the accuracy of our result,
the average difference between the final robot hand position
and the target is very small, around 1 mm, and the average
of maximum distance to a virtual reference straight line
trajectory is about 1 cm.

In order to demonstrate that the control approach is not
limited to short motions, the method has also been tested for
movements of amplitude 50 cm with duration of 2 seconds.
Single peak bell-shaped velocity curves still occur, though
the trajectory is unsurprisingly more curved (the average
distance to the straight line is about 4 cm). The target-
hand distance error at final time is still small, about 1 mm.
Figure 6 shows two examples of such motions obtained
with the simulation software OpenHRP and figure 7 shows
corresponding hand trajectories and velocities. To simulate
motions with OpenHRP, we took the angular trajectory of the
robot joints obtained from the optimization program and then
interpolated it to determine the input data. The simulator then
follows the input data to display the movement by taking into
account the exact parameters of the robot. Such a validation
on OpenHRP guarantees that the movement will be correctly
executed by the real robot.

In our simulations, a movement generation normally takes
from 1 to 4 minutes depending on the amplitude of the
motion and the choice of parameters. The program Ipopt
converged to satisfy the constraints with very good accuracy
after around 200 to 300 iterations but it did not always finish
properly. This may be due to numerical errors in dynamics
calculations or to the approximation of the Hessian in the
program. This phenomenon was also pointed out in [27].
Finally, the performance of the program could be improved
by completing the refinement step in the direct transcription
approach.Videos showing different motions are available at
http://www.laas.fr/∼tmtuan/works/
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Fig. 4. Evolution of motion parameters during a movement of amplitude
r = 25cm to the direction (θ, φ) = (−45◦, 45◦). Left up: Cartesian
coordinates of the hand; right up: angular trajectory; left middle: hand
trajectory; right middle: hand velocity; left down: control signals; right
down: torques.

Fig. 5. Human reaching hand paths as reported by Flanders et al. in [26].
The situation is similar to the one described in figures 2 and 3: targets are
arranged at twenty peripheral positions located at 30cm from the initial hand
location. F, M and L stand for forward, right and left respectively.

VI. CONCLUSION

The interest of applying neurobiological principle to the
control of humanoid robots has been illustrated in the case of
reaching motions. Beyond the capacity of producing realistic
movements, the proposed approach has two main interest
from the control point of view. First, the separation of
dynamic and static efforts allows to simplify the optimization
problem which leads to the characterization of trajectories.
The hypothesis that static gravitational efforts are continu-
ously compensated by the tonic control is particularly well



Fig. 6. Two movements of amplitude r = 50cm simulated with OpenHRP.
Each movement is illustrated by four successive views arranged from left
to right. The first movement (top line) is directed to (−35◦, 35◦) whereas
the second one (bottom line) is directed to (40◦, 25◦).
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Fig. 7. Hand trajectories (left image) and velocities (right image) corre-
sponding to the two reaching movements represented in figure 6.

grounded in the case of robotic systems such as the humanoid
HRP2, for which each link is individually regulated to a ref-
erence value. Second, as the solution of an inverse kinematics
problem is not required, the redundancy problem can be
solved at low computational cost for a six DOF arm. Thanks
to the direct transcription method and the Ipopt software
which give performance and flexibility to our optimization
program, further constraints such as the bounds on articular
joints, the Zero-Moment Point (ZMP), or obstacles avoidance
can be easily added in the program. On this basis, we are
currently working on an extension of the approach to control
whole body reach-to-grasp movements.
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