
Journal of Muscle Research and Cell Motility 17, 221-233 (1996) 

Mechanics of feline soleus: II Design and validation of a 
mathematical model  

I A N  E. B R O W N ,  S T E P H E N  H.  S C O T T  ~, and  G E R A L D  E. L O E B *  

The MRC Group in Sensory-Motor Neuroscience, Department of Physiology, Queen's University, Kingston, Ontario, Canada K7L 3N6 

Received 3 July 1995; revised 18 October 1995; accepted 23 October 1995 

Summary 

We have developed a mathematical model to describe force production in cat soleus during steady-state activation over a 
range of fascicle lengths and velocities. The model was based primarily upon a three element design by Zajac but also 
considered the many different features present in other previously described models. We compared quantitatively the 
usefulness of these features and putative relationships to account for a set of force and length data from cat soleus whole- 
muscle described in a companion paper. Among the novel features that proved useful were the inclusion of a short-length 
passive force resisting compression, a new normalisation constant for connective-tissue lengths to replace the potentially 
troublesome slack length, and a new length dependent term for lengthening velocities in the force-velocity relationship. 
Each feature of this model was chosen to provide the most accurate description of the data possible without adding 
unneeded complexity. Previously described functions were compared with novel functions to determine the best 
description of the experimental data for each of the elements in the model. 

Introduction 

Mathematical models of muscle help us to under- 
stand and develop strategies for motor control, both 
for pure research and for clinical restoration of 
movement to paralysed limbs through functional 
electrical stimulation (FES) (see Chizeck, 1992). Open 
loop controllers for FES require a muscle model that 
can predict the activation needed to achieve a desired 
force output from muscle under various kinematic 
conditions. Very few models, however, have been 
able to describe accurately a muscle's response to 
activation even for the architecturally simple muscles. 
A common problem with most models is that they do 
not describe muscle behaviour adequately over their 
full physiological range of kinematics. Muscles are 
active over a range of lengths, and also over a range 
of shortening and lengthening velocities (Goslow et 
al., 1973; Walmsley et al., 1978; Loeb, 1985; Chanaud 
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et al., 1991). The very few models that have attempted 
to describe activated muscle under lengthening 
conditions (Mashima et al., 1972; Hatze, 1977), were 
based on fragmentary data from a few diverse 
preparations including cat whole muscle, frog single 
fibres and frog fibre bundles (Joyce et al., 1969; 
Mashima et al., 1972; Sugi, 1972). 

In a series of studies, a more complete set of 
experimental data was generated for cat soleus using 
modem instrumentation that permitted precise con- 
trol of whole muscle length, velocity and activation 
plus accurate measurements of the lengths of 
fascicle, aponeurosis and tendon (hereafter collec- 
tively referred to as connective-tissues) during force 
generation (Scott & Loeb, 1995; Scott et al., 1996). 
Data were collected under both passive and maxi- 
mally (steady-state) active conditions. In the present 
study, the various components of the general model 
of muscle and connective-tissues suggested by Zajac 
(1989) were modelled with various mathematical 
functions. Some of these functions were suggested 
from previous studies, but others were newly 
generated to capture better the particular relation- 
ships observed in this new data-set. This paper 
compares the best-fits that could be obtained for 
these functions for both passive and steady-state, 
maximally active muscles. 
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The model elements chosen for this study are shown 
schematically in Fig. 1A. The model contains anato- 
mically distinct elements. A series-elastic element (SE) 
represents the connective-tissues and a passive elastic 
element (PE) in parallel with an active contractile 
element (CE) represents the muscle fascicles. The 
properties of all three elements were examined in this 
study. 

The SE was modelled as a non-linear spring 
(Zajac, 1989). The aponeurosis and tendon (also 
known as the internal and external tendons) were 
lumped together into one spring because their 
properties have been observed to be similar (Scott 
& Loeb, 1995). 

The PE, as shown in Fig. 1B, has two spring-like 
components. When tlae slack is pulled out of the 
ideal, bendable, fixed-length linkage that connects 
spring PE1, it exerts a tensile force. At shorter 
fascicle lengths, the compression spring PE2 comes 
into play with a separate spring function that resists 
compression. The PE2 spring was included in the 
model in order to separate the active and passive 
components of muscle force output. There is 
substantial evidence that the active force in muscle 
is produced by the cumulative effect of multiple 
independent cross-bridge interactions (see Huxley, 
1971). We assumed therefore that the shape of the 
active isometric force-length (FL) curve should be 
proportional to the total number of sites available for 
cross-bridge formation. By ,explicitly following this 
definition, the FL curve should look as shown in Fig. 
2A (solid line), and not like the curve used by most 
authors (e.g. Gordon et al., 1966) (dotted line). The 
discrepancy only occurs at short lengths on the 
ascending limb of the FL curve. The very steep 
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Fig. 1. (A) Schematic of muscle model elements (based on 
model from Zajac, 1989). (B, C) Parallel Elastic element. 
PE1 is well recognized non-linear spring resisting stretch, 
while PE2 is a non-linear spring resisting compression. 
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Fig. 2. (A) 'Old' active FL curve with steep portion of 
ascending limb and 'new' active FL curve with FpE2 
removed. (B) Data from active FL trial (+). Solid line is an 
extrapolation of data from between 0.75 L0 and 0.95 L0. 
Difference between original data (+) and extrapolation is 
used as passive force (~). 

relationship measured on the ascending limb was 
explained by Gordon and colleagues to occur 
because the myosin filaments push against the Z- 
disks at short sarcomere lengths, thus producing a 
resistive force and reducing the total force. This 
pushing-resistive force produced by the myosin 
filaments on the Z-disk is presumably passive in 
nature because it is not produced directly by the 
cross-bridges. Two observations made by Allen and 
Moss (1987) in maximally activated skinned muscle 
fibres (Ca 2+ activation) support this conclusion. The 
Shape of Allen and Moss' recorded FL curve 
included a steep portion similar to that recorded 
by Gordon and colleagues indicating that the steep 
portion is not due to a decrease in activation (i.e. 
calcium release). Secondly, the ratio of stiffness-to- 
tension remained approximately constant as length 
decreased from L0 (fascicle length at which maximal 
isometric force is observed) until - 0.75 L0 at which 
point the ratio increased dramatically. Including this 
passive force as part of the active FL curve leads to 
errors under non-isometric conditions, because active 
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force is highly dependen t  u p o n  cross-bridge velocity 
and  activation while  passive force is not. 

The mathemat ica l  outline of the CE is s u m m a r i z e d  
in Equat ion 1. The CE is a s s um ed  to be affected by  
three independen t  factors represented  b y  the follow- 
ing functions: FACT (u(t), L?, V?), FL(L), and  FV(L, 
V). FACT is a unitless measu re  be tween  0 (passive) 
and  1 (maximal ly  active) of the muscle  fascicles' 
activation. It depends  on  bo th  the n u m b e r  of fibres 
act ivated and  their transient state of act ivat ion as 
de te rmined  by  the neuronal  input  (u(t)). Activat ion 
kinetics and  hence FAC T m a y  depend  also u p o n  
fascicle length (L) a n d / o r  fascicle velocity (V) 
(personal  observat ion;  Scott et al., 1992). FL is the 
FL curve  for the muscle  fascicles (dependent  u p o n  
fascicle length), and  FV is the force-velocity curve for 
the muscle  fascicles (dependent  u p o n  bo th  fascicle 
length and  velocity; Scott et al., 1996). The inclusion 
of length as a variable in the FV curve is required to 
account  for the observat ion that  the act ive-lengthen- 
ing and  act ive-shortening regions of the force 
velocity curve cannot  be scaled congruent ly  for all 
lengths. 

FCE = FACT(U(t), L?, V?) * FL(L) * FV(L, V) (1) 

Normal isa t ion  constants for the force, length and  
velocity data  were  chosen as sugges ted  b y  Zajac 
(1989) to facilitate scaling be tween  different muscles.  
All fascicle data  were  normal ized  in te rms  of L0 for 
length, and  F0 for force (the force p roduced  dur ing  
an isometric contraction at L0). For consistency wi th  
the chosen length units, fascicle velocity was  normal-  
ized to L0s -1. Al though tradit ion wou ld  have  
velocity posi t ive in the shortening direction, mathe-  
matically it should  be def ined as posi t ive in the 
lengthening direction and was  so def ined for this 
model .  Because FCE has units of F0, FACT * FL * FV 
mus t  also have  units  of F0. FACT was defined to be  
unitless and  FL was  chosen to have  units of F0 thus 
the ' force '  in the FV curve was  defined as a unitless 
' force index'.  The connective-tissue lengths were  also 
normal ized  to facilitate scaling be tween  muscles  but  
in a manne r  some wha t  different f rom the approach  
used  by  Zajac (1989) and  other  previous  studies 
(Hubbard  & Chun,  1988; Lieber et al., 1992). 
Connective-t issue (T) data were  normal ized  in te rms 
of F0 for force and  L~ for length (connective-tissue 
length at F0) as opposed  to the more  c o m m o n l y  used  
L T (connective-tissue slack length). The assumpt ions  
required to choose these normal iza t ion  factors were  
that  bo th  the material  proper t ies  of connective-tissue 
and  the ratio of connective-tissue cross-sectional area 
(CSA) to muscle  physiological  cross-sectional area 
(PCSA) mus t  be specimen independen t  (as per  Zajac, 
1989). The reasons for choosing Lo T over  Ls ¢ are 
discussed below. 

Materials and methods 

Data from in vivo experiments on cat soleus muscle 
(originally reported by Scott et aL, 1996) were used as the 
basis to develop and test model relationships. The data 
records consisted of connective-tissue lengths, fascicle 
lengths (from which fascicle velocity was calculated) and 
forces. Force was recorded by a strain gauge in series with 
the tendon and muscle puller while direct measurements 
were taken of the connective-tissue and fascicle lengths by 
the transit time of ultrasound pulses between piezoelectric 
crystals glued to the surface of the different structures. All 
data used in this study were obtained while the muscle was 
in a steady-state of activation at the end of a supra-maximal 
tetanic stimulus (400 ms train at 50 PPS, 4 × threshold 
applied to the muscle nerve), except as described below for 
determining the FSE curve. Data used in this study included 
both passive and active trials for whole-muscle isometric 
trials (FL trials) over the physiological range of motion 
(ROM) and for whole-muscle isovelocity trials (FV trials) 
over a range of velocities and a range of lengths. In two of 
the experiments reported by Scott and colleagues (1996), the 
maximum active force recorded during the FL trials was 
from the FL trials' longest length, so that an L0 was not 
definitively observed. Data included in this study were 
from the other three cats for which an L0 was definitively 
observed so that proper scaling and comparisons between 
the data-sets could be made. For the rest of this paper, an 
active trial (FL or FV) simply refers to a trial in which the 
muscle was maximally activated, so that force records 
include both active AND passive components. 

Data were combined from all of the active FL trials for 
each animal to determine the FSE curve for the connective- 
tissues. Because of the artifacts encountered in using whole 
aponeurosis length discussed by Scott and Loeb (1995), 
only data collected from the distal portion of the 
aponeurosis were used. All subsequent references to 
aponeurosis data in this manuscript refer only to the 
distal portion of the aponeurosis, with the assumption that 
the proximal portion would produce similar results. The 
data used in this portion of the study were obtained 
throughout the rising phase of force production as the 
muscles were activated from a passive state to a 
maximally active state. 

Data from the passive FL trials were used to determine 
the FpE1 curve. The characterization of the FpE2 force was 
indirect because direct measurements of the FpE 2 resistive 
force are not possible. The difference between the recorded 
force from active FL trials at lengths <0.75 L0 and a linear 
extrapolation of force from data between 0.75 and 0.95 L0 
was used as a first approximation of FpE2 force (sample 
shown in Fig. 2B). 

The FL curve was determined by using data from active 
FL trials. To remove the passive component of the total 
force, the FpE1 and FpE2 curves were subtracted from the 
total force recorded in the active FL trials. 

The FV curve was determined in several steps. First, 
both passive forces were subtracted from the total 
recorded force followed by normalization to the active 
(isometric) FL curve. As mentioned previously, the 
lengthening half of the FV relationship measured by Scott 
and colleagues (1996, Fig. 6) had a residual length 



224 

dependency after normalizing to the isometric FL curve. 
Because the shortening half does not have any residual 
length dependency, the logical step was to model these 
two halves independently with separate functions. This 
had the added effect of keeping the FV relationship 
continuous but allowing its first derivative to be discontin- 
uous, which is consistent with the separate physiological 
mechanisms that account for these two domains of the FV 
relationship. The shortening half of the FV curve was 
determined by combining the previously normalized data 
from FV trials at different lengths. The lengthening half of 
the FV curve was determined by using data from FV trials 
at only one length (-L0) and subsequently adding a 
length-dependent term to account for the different plateau 
levels of the FV curve at different lengths. 

The procedure for choosing the best fit equations was 
the same for all of the curves modelled in this paper. 
Previously used equations from the literature were fit 
using the Levenberg-Marquardt algorithm (Press et al., 
1986; Kaufman et al., 1989), a least-squares non-linear 
curve-fitting technique. The convergence criteria set for this 
iterative algorithm was a 0.01% improvement in the 
numerical error of fit. The data from each cat were fit 
separately. The errors from the fits were then plotted as a 
function of the independent variable to determine whether 
the equations tended to fit poorly over any particular 
range. If no equation produced an even distribution of 
error over the entire range, then new equations were 
developed and tested. To restrict the complexity of the 
model, candidate functions were arbitrarily limited to three 
fittable parameters. The total numerical error produced by 
the fitting algorithm was then compared among those 
equations producing an even distribution of error, and the 
function producing the smallest numerical error was 
identified as the preferred function. 

Results  

FSE curve  

Two equations (2, 3) were tested for the FSE curve. As 
can be seen in Fig. 3 (a graph of the fits and errors) 
equat ion 3 provides  a superior  fit and so was chosen 
for the FSE function. Also shown in Fig. 3D, E are 
graphs of the best fits to the five SE data sets (two 
tendon data sets and three aponeurosis  data sets), 
using two different scaling parameters  for length. In 
Fig. 3D, length was scaled using the traditional L T as 
est imated f rom the original length data, while in Fig. 
3E length was scaled using L T. It appears  that using 
L T as the length scaling factor produces  more  
congruent  curves. 

FsE(L T) = c T • {exp [k w • (L T - LT)] -- 1} (2) 

(Hatze, 1977) 

FsE(LT) = cT * kW * ln{exp  [ (LT~TLT)1 + 1 }  (3) 

L T - connective tissue length. 
There was a second reason for choosing Equation 
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3 to model  the FsE curve beyond the better fit that it 
provides. Equation 3 has the form of an exponential  
at lengths <L T, fol lowed by  a smooth transition to a 
straight line at lengths >L  T. Many researchers have 
observed that both  the FpE1 and the FSE have this 
exact form, bu t  have  used two separate equations 
over  the different ranges to model  the curves (Otten, 
1987; Zajac, 1989). The use of equat ion 3 removes the 
need for two separate equations while still retaining 
the desired shapes over  the different ranges. A 
sample of the curve is shown in Fig. 4 with the 
effects of each parameter  demonstrated;  'c' defines 
the end-slope of the curve (stiffness), 'k'  defines the 
curvature,  and 'Lr' defines the x-axis position 
(length). 

Note that for the SE, use of the normalizat ion 
constants F0 and L T defines FSE = 1 when  L T = 1. 
Therefore one of the parameters  in Equation 3 is 
redundant .  It is trivial to show that for c T • k T 

< 0.20, the approximat ion 

1 
Lr T = 1 - c- f (4) 

produces  an error  in L T of less than 0.04%. 

FpEI curve 

Two equations of the same form as equations 2 and 3 
(replacing L x with L and the parameters  with Cl, kl 
and Lrl) were tested for the FpE1 curve. As can be 
seen in Fig. 5 (a graph of the fits and errors) the two 
equations fit very  similarly. Equation 3 had a slightly 
smaller numerical  error and so was chosen as the 
equation to describe FpE 1. As described above, the 
second reason for choosing equation 3 to model  the 
FpE1 curve is because its shape provides  a better fit 
over  a wide  range with a single equation. 

FpE 2 curve 

Unlike the FpE1 curve, only one equation (5) was 
tested for the FpE2 curve. The resulting fit and errors 
are graphed in Fig. 6. All errors were <0.005 F0 and 
were  equally distr ibuted over  the entire range so no 
other equations were  tested. 

FpE2(L) = C2 * {exp [k2 * (L - Lr2)] - 1} (5) 

FL curve  

Equations 6--9 were  fit to the active FL data. The fits 
and errors p roduced  by  these equations are shown in 
Fig. 7. 

FL(L) = a • (L - 1) 2 + 1 (6) 

(Woittiez et al., 1983) 

FL(L) = sin (a * L 2 q- b * L + c) (7) 

(He et al., 1991; note: FL(L = 1 .0 ) -  1.0 was forced) 
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Fig. 3. FSE data, fits and errors. (A) SOL10 aponeurosis data and equations 2 and 3 fit. (B, C) fitting errors (all three cats, 
including two sets of tendon data and three sets of aponeurosis data, pooled together) from equations 2 and 3 
respectively. (D, E) the best fits for the five SE data sets using equation 3 with length scaled by L T and L~ respectively. 

F L ( L ) = e x p  - , p = 2  (8) 

(Kaufman et al., 1989) 

FL(L) e x p {  abs C f ~ - I  P} = - - -  (9) 
o9 

(Otten, 1987). 
Visually from the error plots in Fig. 7 one can see 

that equation 9 produced the most  accurate fit, and 
was consistent over the entire range. 

FV curve, shortening half 

Equations 10 and 11 were fit to the active shortening 
FV data (with data from all lengths combined as 

ment ioned in Materials and Methods). The fits and 
errors produced  by  the equations are shown in Fig. 8. 

(101 - -  a l  * V) 
FVcoN(V) - (10) 

(V + bl)  

(Hill 1938, note: V is defined as positive during 
stretch) 

FVcoN(V) = al * [exp (bl * V) - 1] + 1 (11) 

(mathematically equivalent to Aubert,  1956, as cited 
by  Hatze, 1977). 

Both equations p roduced  a similar distribution of 
error (as shown in Fig. 8) and a similar numerical 
error (with equation 11 perhaps slightly better). 
However ,  in all three fits for equation 11 the 
parameter  'al '  was calculated to be <1, resulting in 
an infinite max imum speed of shortening (Vm~) as 
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together) from equation 5. 

suggested in Fig. 8. Studies investigating the short- 
ening of muscles at long lengths (where large 
passive tension occurs) have shown that muscles 
can contract at speeds >Vma× (Seo et al., 1994). The 
high speeds occur only because of the high passive 
tension. A calculation of the FV force index from 
these results, however,  produces  a negative number.  
Equation 11 would  never  be able to model  this effect 
with al < 1, and so equation 10 was chosen to 
describe the shortening half of the FV curve. 

FV curve, lengthening half 

Equations 12-15 were fit to the active lengthening FV 
data at one particular length ( - L 0 ) .  The fits and 
errors p roduced  by these equations are shown in Fig. 
9. 

(b2 - a2 * V) 
FVEcc(V) - (12) 

(V + b2) 

(mathematically equivalent to Mashima et al., 1972) 

FVEcc(V) =a2 * [exp(b2 * V) - 1] + 1 (13) 

FVEcc(V) =1 + a2 * tanh (b2 * V) (14) 

FVEcc(V) =1 + a2 * arctan (b2 • V) (15) 
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Fig. 7. FL data, fits and errors. (A) SOL12 data and equations 6-9 fit. (B-E) fitting errors (all three cats pooled together) 
from equations 6-9, respectively. 

As can be seen in Fig. 9, all four fits produce  
slightly different curvatures. An examination of the 
error distributions suggests that equations 12 and 15 
p roduced  the most  even distributions of error over  
the entire range. However ,  equat ion 12 consistently 
p roduced  the least numerical  error  of all four 
equations and so was chosen as the best function 
for the lengthening FV curve. 

As mentioned earlier, the lengthening half of the 
curve had  a length dependency  associated with it 
beyond  that of the isometric length dependency.  The 
determinat ion of equat ion 12 as being the best fit for 
the lengthening half of the FV curve assumed that 
the choice of best fit equat ion was not  length 
dependen t  itself - i.e. the basic curvature remained 
constant. Examination of equat ion 12 reveals that the 



228 BROWN, SCOTT and LOEB 

1.o  m 

Q 

o 
I I  m 

0.0 

A 

I I I 

-4.0 0.0 
Fascicle Velocity (Lo/s) 

eq. (10) 

. . . . . .  eq. (11) 

0.15 "7 B "~" 0.15 C 

4 
--#+ + 

. .00 0.00 

_o15 _o15 r 

- 4 . 0  0 . 0  - 4 . 0  0.0 
Fascicle Velocity (Lo/s) Fascicle Velocity (Lo/s) 

Fig. 8. FV shortening data, fits and errors. (A) SOL12 data and equations 10 and 11 fit. (B, C) fitting errors (all three cats 
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maximum force index is determined solely by the 
constant 'a2'. To simplify the length dependency of 
the FV curve, it was assumed that only a2 was 
affected by length and not 'b2'. This assumption is 
neither supported nor refuted by the data as there 
were not enough points to test the assumption, 
rather it was incorporated for simplicity. To deter- 
mine this extra length dependence, b2 was first 
calculated at the length that had the most FV data 
points. Ideally, this length would have been Lo for a 
consistent starting point, but the number of data 
points available at Lo was too few to produce a 
satisfactory fit. Subsequent to the calculation of b2, 
a2 was calculated for each length at which a data set 
existed using equation 12 with the previously 
calculated value of b2. A simple parabola (equation 
16) was fit to the a2 to provide a mathematical 
description of the length dependence of the FV curve 
(subsequently called the FImax curve). 

a2 = p *L 2 + q * L + r  (16) 

Some comparisons with previous models were 
made to demonstrate the improvement that could be 
produced by including a length dependence in the 
FV curve. Figure 10 compares errors from four 
equations used previously in the literature (equations 
17-20) to those produced by our model. As before, 
each cat was fit separately and the errors from all 
cats were plotted on the same graph. A comparison 
of both the numerical errors (not listed) and the 
graphs (Fig, 10) demonstrates that the inclusion of 
length as a variable in the FV curve provides a 
much improved fit. 

fOol - -a l*V)  V < 0 
J ( V  + b l )  ' - FV(V) (17) 

002 -- a2 * V) 
" t (v-VT -2 , v > o  
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Fig. 9. FV lengthening data, fits and errors. (A) SOL12 data (one trial) and equations 12-i5 fit. (B-E) fitting errors (single 
trials from all three cats pooled together) from equations 12-15 respectively. 

(mathematically equivalent  to Mashima et al., 1972) 

FV(V) = a0*[1 + tanh [a],(V - a2)}] (18) 

(Hatze, 1977) 

f (h i  - al*V) 
j 7V ~- b--K;--' 

FV(V) = / (c - 1) 

I c -  

v < o  

z = b *  ( c - 1 )  V < 0  
(a + 1) 

(Fitzhugh, 1977) 

FV(V) = 1 + arctan(a*V 3 + b*V 2 + c,V) 

(He et al., 1991). 

(19) 

(20) 

A summary  of the best fit parameters  for each 
curve's  best fit equat ion is presented in Table 1. 
Because the propert ies  of the FpE2, FL, FV and FImax 
curves are associated with the actin and myosin  
filaments within sarcomeres, these curves should be 
consistent among different cats if the data are 
normal ized to propert ies associated with sarcomeres 
(L0 and F0). Similarly, if one assumes both  that the 
material propert ies of connective-tissue and the ratio 
of connective-tissue CSA to muscle PCSA are speci- 
men  independent  (Zajac, 1989), then FSE curves f rom 
different animals also should be congruent  if normal-  
ized to Lo T and F0. Thus  the data f rom all three cats 
were pooled  together to calculate the best fit 
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Fig. 10. FV errors. (A-E) fitting errors (all three cats pooled together) from equations 17-20 and 10 and 12 respectively. 

parameters for each of these curves. It is not clear, 
however, whether FPE1 would also be expected to 
normalise between specimens. Magid and colleagues 
(1984) have shown that in frog semitendinosus 
muscle, passive tension up to sarcomere lengths of 
3.8pm is due to a third intra-sarcomere myofila- 
ment called connectin. Others (Hatze, 1977; Zajac, 

1989) suggest that both inter- and intra-fibre factors 
may play a role, with the contributions from inter- 
and intra-fibre factors varying between individual 
muscles. Irrespective of the actual mechanism of 
passive force, it is independent of actin and myosin 
overlap, and hence there is no a priori reason for 
passive force to scale between muscles or cats when 
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Table 1. Best fit constants for best fit equations. 

Curve Constants 

FsE-equation 3 c T k T L T* 
27.8 0.0047 0.964 

FpEl-equation 3 Cl kl Lrl 
SOL10 355 0.040 1.35 
SOL11 76.4 0.053 1.40 
SOL12 67.1 0.056 1.41 

FeE2-equation 5 c2 k2 Lr2 
-0.020 -18.7 0.79 

FL-equation 9 to [3 p 
1.26 2.30 1.62 

FV--equations 10, 12 as bl b2 
0.17 -0.69 0.18 

FIma×-equation 16 p q r 
-5.34 8.41 -4.70 

*As stated earlier, I T is r e d u n d a n t  and  in this case can be 
calculated u s ing  equa t ion  4; the  inc lus ion  of its va lue  in this table 
was  s imp ly  for ease of use. 

normalized with L0 and F0. The data (as presented 
by Scott et al., 1996, Fig. 4A) used in this study 
obviously do not scale between cats, which is 
consistent with previous findings (Woittiez et al., 
1983; unpublished personal observations). FpE1 was 
thus fit separately for each cat. 

Discussion 

The model described here incorporates the salient 
features, according to objective criteria, from both 
previously described as well as new model equations. 
These features are shown graphically in Fig. 11 which 
contains two three-dimensional plots of muscle force 
versus fascicle length and velocity based upon the 
equations and parameters listed in Table 1; the first 
plot shows active force, whereas the second shows 
total force (active + passive). Improvements over 
previous models as well as the limits of this model 
are discussed below. While many of these improve- 

A B 
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Fig. 11. Three-dimensional views of force produced by the 
muscle fascicles as a function of length and velocity: (A) 
active force FLV surface. (B) total (active + passive) force 
FLV surface. 
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ments are small, they often involve regions of the 
surface shown in Fig. l lB that are steeply sloped and 
hence have important implications for motor control. 

The model omits two elements that have been 
included in many previous models: series elasticity 
within the muscle fascicles (Pierrynowski & Morri- 
son, 1985) and velocity dependence (viscosity) within 
the PE (Hatze, 1977). The series elasticity within the 
muscle fascicles is thought to reside within the cross- 
bridges and perhaps myosin (Pollack, 1983; Pollack 
& Sugi, 1984) and therefore can act over only a very 
short range. The velocity-dependent passive force 
observed in this data set was extremely small, less 
than 1% of F0 at the highest velocities (Scott et al., 
1996). Both elements would add more complexity 
than accuracy to a model designed for most 
physiological conditions, and so neither element 
was included in this model. However, it may be 
necessary to include a small viscosity as well as a 
realistic inertial mass when using any such models 
to simulate step changes in activation in order to 
avoid mathematical instability (W. S. Levine, perso- 
nal communication). 

We selected L T as the scaling factor for connective- 
tissue length rather than the traditional L T. L T can be 
difficult to measure precisely due to the shape of the 
FSE curve. Furthermore, Hubbard and Chun (1988) 
observed that a single stretch of 6% strain can shift 
L~ by 1%, while at higher forces ( -F0)  the shifts 
were only 0.2%. To demonstrate the problems 
associated with using L T, we plotted the same five 
SE curves in Fig. 3D, E, scaled by L T and L T 
respectively. The variability shown in Fig. 3D 
compared to Fig. 3E demonstrates the potential for 
errors when estimating strain using Ls T. The common 
past use of L T as a scaling factor could perhaps 
explain the wide variability of connective-tissue 
strains reported in the literature for a given stress. 

Zajac (1989) explained the rationale for choosing 
the CE scaling factors L0 and F0, which included the 
critical requirement that the CE be related exdu- 
sively to the muscle fascicles. This relationship is 
intuitively correct because it makes L0 the length of 
the anatomical contractile component and F0 the 
force produced by the anatomical contractile compo- 
nent (which is proportional to its CSA, assuming 
negligible pennation angle). Previous models, how- 
ever, have often related the properties of the CE 
either to the muscle belly (Woittiez et al., 1983; 
Kaufman et al., 1989) or to the entire muscle 
(Fitzhugh, 1977; Baratta et al., 1993; Durfee & Palmer, 
1994). The contractile components and scaling factors 
of these models are therefore related to the anato- 
mical contractile component PLUS connective-tissue, 
and so Zajac's arguments for choosing L0 and F0 as 
appropriate scaling factors cannot be used. If L0 and 
F0 are used as scaling factors for muscle belly or 
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whole muscle (as opposed to muscle fascicles), then 
one should theoretically expect dissimilar results 
when comparing FL data from different muscles. 
This problem can be seen clearly in the isometric FL 
data published by Baratta and colleagues (1993) and 
Woittiez and colleagues (1983). Woittiez and collea- 
gues (1983) solved this problem (for muscle belly) by 
introducing an anatomically based index of architec- 
ture to account for the change in shape of the FL 
curve. Unfortunately, their paper did not discuss 
how the index of architecture could be extended to 
the FV curve, which seems likely to require more 
complex dynamic corrections. 

A second major problem with the index of 
architecture is that it assumes an infinitely stiff 
aponeurosis. Scott and Loeb (1995) observed that the 
stiffness of aponeurosis is similar to that of tendon. 
In muscles such as soleus, the aponeurosis is often 
much longer than the tendon. A model that assumes 
an infinitely stiff aponeurosis predicts incorrectly the 
fascicle length and fascicle velocity. This problem is 
avoided by developing a model that uses anatomi- 
cally-based components, including an aponeurosis 
with an accurate stiffness and length. 

A limitation in our model's basic design, which is 
found in all of the models mentioned previously, is 
the elimination of pennation angle. Zajac (1989) 
argued that the effects of pennation angle are small 
enough to be considered negligible for almost all 
muscles due to their generally small pennation 
angles and the shape of the sine function that 
determines this effect. We chose zero pennation 
angle over varied pennation angle because it is much 
simpler, and over constant pennation angle because 
Scott and Winter (1991) showed that assuming a 
constant pennation angle could produce larger errors 
than neglecting pennation angle. 

The model presented here was designed to capture 
the salient features of the experiments upon which it 
was based. As with any model, caution should be 
exercised in extrapolating it to other muscles and 
operating conditions. This particular model is limited 
to the macroscopic response of slow twitch muscle 
fascicles operating within the ROM of the cat soleus 
muscle under steady-state conditions of maximal 
activation. The ROM of some muscles extends to at 
least 1.5 L0 (Chanaud et al., 1991; unpublished 
observations); it remains to be seen if the relation- 
ships for soleus (ROM 0.6-1.1 L0) can be extra- 
polated to these longer sarcomere lengths. Most 
muscles are composed of more than one fibre type. 
Although it has not been tested, we hope that the 
equations developed here could be applied to more 
typical muscles with mixed fibre types using differ- 
ent parameters for other fibre types and appropriate 
weighting coefficients. The practical application of 
these models to predict force during modulated 

BROWN, SCOTT and LOEB 

physiological recruitment awaits the development of 
models that represent the kinetics of the activation 
process, which may themselves have length and 
velocity dependencies. 
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