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Abstract. Fundamental principles and recent methods for investigating the non-
linear dynamics of legged robot motions with respect to control, stability and
design are discussed. One of them is the still challenging problem of produc-
ing dynamically stable gaits. The generation of fast walking or running motions
require methods and algorithms adept at handling the nonlinear dynamical ef-
fects and stability issues which arise. Reduced, recursive multibody algorithms,
a numerical optimal control package, and new stability and energy performance
indices are presented which are well-suited for this purpose. Difficulties and open
problems are discussed along with numerical investigations into the proposed gait
generation scheme. Our analysis considers both biped and quadrupedal gaits with
particular reference to the problems arising in soccer-playing tasks encountered
at the RoboCup where our team, the Darmstadt Dribbling Dackels, participates
as part of the German Team in the Sony Legged Robot League.

1 Introduction

RoboCup and Dynamics of Legged Robot Motion. The RoboCup scenario of soccer
playing legged robots represents an extraordinary challenge for the design, control and
stability of bipedal and quadrupedal robots. In a game, fast motions are desired which
preserve the robot’s stability and can be adapted in real-time to the quickly changing
enviroment. Existing design and control strategies for bipedal and quadrupedal robots
can only meet these challenges to a small extent.

During the nineties, both trajectory planning methods relying on nonlinear robot
dynamics and model-based control methods have evolved into the state-of-the-art for
developing and implementing fast and accurate motions for industrial manipulators.
Successful control of the nonlinear robot dynamics is also the key to fast and stable
motions of bipedal and quadrupedal robots. Many subproblems remain unsolved in
fulfilling this objective. This paper contributes to this ambitious goal by discussing fun-
damental principles and recent methods in the modeling, simulation, optimization and
control of legged robot dynamics.

Nonlinear Dynamics of Legged Robot Motion. A precise modeling of fast moving
legged locomotion systems requires high dimensional nonlinear multibody dynamics
which can accurately describe the nonlinear relationships existing between all linear
and rotational forces acting at each joint and the feet on the one hand and the position,
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velocity and acceleration of each link in the kinematic tree-structure on the other hand.
It is thus a complex task to generate and control stable motions for such systems. Biped
and quadruped constructions generally consist of a minimum of five bodies with two
to six degrees of freedom (DoF) per leg in addition to the six DoF corresponding to
the base body in order to give the necessary amount of motion dexterity necessary for
a wide range of movement. Dynamic model simplifications in previous work, however,
have generally ranged from pendulum models [22] to multi-link planar models [5, 6, 14,
16] for bipeds and for quadrupeds [17] or to multi-link spatial models [20, 27]. Though
these simplifications allow one to analyze certain predominant behaviors of the dynamic
system, many other important features are lost. A complete and complex dynamical
system description will contain much more of the significant dynamical effects, yet a
control solution for these models based on an analytical approach is usually not possible
and results must be sought for numerically.

The dynamic effects characterizing bipedal and quadrupedal motion may be further
complicated by external disturbance factors and forces, quickly changing system goals,
low friction conditions, a limited power source, and inexact sensor information resulting
from fast movements and a highly dynamic environment. These are all characteristics of
the difficulties encountered in the Four-Legged and Humanoid Leagues of the RoboCup
soccer challenge.

Solutions for Multibody Dynamics of Legged Robot Models. Multibody dynamical
models for real legged systems are typically characterized by a high number of DoF,
relatively few contact constraints or collision events, and a variety of potential ground
contact models, actuator models, and mass-inertial parameter settings due to changing
load conditions. Such detailed multibody dynamical models are generally required for
the realistic reproduction of legged system behavior in gait optimization (Sect. 4.2), tun-
ing of construction design parameters (Sect. 6), or in simulation and feedback control
(Sect. 5). Closed-form dynamical expressions are the most efficient form of evaluating
the dynamics, but are not well-suited to legged systems due to the many changing kine-
matic and kinetic parameters. Recursive, numerical algorithms are also highly efficient
for large systems and permit the easy interchangeability of parameters and the intro-
duction of external forces without repeated extensive preprocessing (Sect. 2.2). This
approach has been used here. Reduced dynamical approaches appropriate for legged
robots are additionally presented in Sect. 2.2.

Dynamical Stability of Legged Robot Motion. There exists a wide spectrum of previ-
ously presented approaches for generating dynamically stable motions in bipeds and
quadrupeds. Analytical methods [14, 19, 22] usually rely on simplified models and are
not yet at a stage where the many influencing dynamical effects previously mentioned
can be considered. More complete 3-D modeling approaches [20, 27] for bipeds gen-
erally rely on heuristic schemes to construct dynamically stable motions. The dynamic
stability criterion is usually based on the Zero-Moment-Point [35] yet this criterion is
limited in its ability to classify stability [12] during, for example, periods of rolling
motion of the feet, which for fast-moving systems can be considerable. In the case
of quadrupeds with point contacts, a similar problem occurs. Such gait planning tech-
niques also rarely consider the stabilizing potential of the torso sway motion or that of
arm swinging which can be advantageous for increasing robustness and reducing power
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consumption. Nonetheless, 3-D bipeds and quadrupeds have been constructed which
perform dynamically stable walking and running [18, 34, 37]. Though due to excessive
power consumption they were either not autonomous or required a substantial battery
supply for only a short operational period. In Sect. 3, alternative stability as well as
energy-based performance measures suited for bipedal and quadrupedal gait generation
are presented.

Numerical Optimization and Feedback Control of Bipedal and Quadrupedal Robot
Motions. Algebraic control strategies for legged systems cannot yet handle the high
dimension and many modeling constraints present in the locomotion problem. Heuristic
control methods, on the other hand, tend to have poor performance with respect to
power efficiency and stability and require much hand-tuning to acquire an acceptable
implementation in a fast-moving legged system. The remaining proven approach is the
use of sophisticated numerical optimization schemes to generate optimal trajectories
subject to the numerous modeling constraints. The resulting trajectories may later be
tracked or used to approximate a feedback controller in the portion of state space of
interest.

In our efforts to achieve dynamically stable and efficient gaits for the Sony RoboCup
quadruped (Figure 1) and our own competition biped currently under construction, we
explore in this work a numerical optimization approach which minimize performance
or stability objectives in the gait generation problem. Numerical optimization tools have
advanced sufficiently [2, 11, 32] such that all the above-mentioned modeling and stabil-
ity constraints can be incorporated into the problem formulation together with a rela-
tively complete dynamical model so as to obtain truly realistic energy-efficient, stable
and fast motions. The optimization approach described in Sect. 4.1 has been developed
during the last decade and has already been successfully applied for gait planning in
bipeds in two dimensions [16] and for quadrupeds [17].

2 Dynamic Modeling of Legged Locomotion

2.1 Two Case Studies for Biped and Quadruped Dynamics

Two models of a bipedal and a quadrupedal robot are treated here. The presented ap-
proach, however, is applicable to any other legged robot design.

Our model for the Sony quadruped (see Fig. 1) consists of a 9-link tree-structured
multibody system with a central torso attached to a relatively heavy head at a fixed
position and four two-link legs. Each leg contains a 2 DoF universal joint in the hip and
a 1 DoF rotational joint in the knee. A (almost) minimum set of coordinates consists
of 19 position and 19 velocity states � q � t ��� q̇ � t ��� which include a four-parameter unit
quaternion vector for the orientation, a three-dimensional global position vector, and
their time derivatives for the torso, and additionally three angles and their velocities
for each leg. The 12 control variables u � t � correspond to the applied torques in the
legs. The required kinematic and kinetic data for each link (length, mass, center of
mass, moments of inertia) have been provided by Sony. A refined model will be used in
further investigations which also includes the three motion DoF for the head.
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Fig. 1. Four-legged Sony robots
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Fig. 2. Design of humanoid robot prototype

The physical dimensions for our biped protype fall under the specifications set for
the 80 cm category of the RoboCup competition1. The biped (Fig. 2) has six DoF (hip
3, knee, 1, foot 2) in each leg and 2 DoF in the shoulder so that a coordinate set con-
sists of 23 position and 23 velocity states � q � t � � q̇ � t ��� including 7 position states with a
quaternion and position vector to describe the torso orientation and position. There are
16 actuated joints whose input torques are represented in the control vector u � t � . Dif-
ferent to quadruped gaits where in many cases a foot contact model may be sufficient,
a foot contact area must be considered for a biped.

In both cases, the structure of the equations of motion are those for a rigid, multi-
body system experiencing contact forces,

q̈ � M � q � � 1
�
Bu � C � q � q̇ ��� G � q ��� Jc � q � T fc �

0 � gc � q � �
(1)

where N equals the number of links, M 	�
 N � N is the positive-definite mass-inertia
matrix, C 	

 N contains the Coriolis and centrifugal forces, G 	�
 N the gravitational
forces, and u � t ��	�
 m are the control input functions which are mapped with the con-
stant matrix B 	�
 N � m to the actively controlled joints. The ground contact constraints
gc 	�
 nc represent holonomic constraints on the system from which the constraint Ja-
cobian may be obtained Jc

� ∂gc
∂q 	�
 nc � N , while fc 	�
 nc is the ground constraint force.

2.2 Robotic Dynamic Algorithms

Many methods exist for evaluating multibody robot dynamics. Symbolic methods con-
struct efficient, closed form dynamics for the specific multibody systems through sym-
bolic simplifications [28]. This approach is not well-suited though to legged systems
due to the switching characteristic of the dynamics in different contact states, varying

1 " ����������������������������������� ����� ���������"!����������)��� " ��������� ���������#!�� " ��������� ��� � " ���

4



parameter and exterior load conditions. The Composite Rigid Body Algorithm (CRBA)
[36] numerically solves the equations of motion efficently by first assembling the entire
mass matrix M and then solving the resulting system. It is used in many commercial
packages, and it permits an easy change of parameters or the introduction of additional
external forces directly. These solution methods are, in general, superceded in modu-
larity and in efficiency for systems with more than 7–8 links by the articulated body
algorithm (ABA) of O � N � complexity [9].

The ABA [8, 31] is a very exact and numerically stable multibody algorithm supe-
rior to the CRBA as it introduces less cancellations [29]. It exploits the linear relation-
ship between accelerations and applied forces in a rigid-body system. The definition of
the articulated body inertia, the inertia of the ‘floppy’ outboard chain of rigid bodies not
subject to applied forces, permitted the construction of a recursive forward dynamics
algorithm [8]. Similarities to the Kalman filtering algorithm then led to an alternative
decomposition of the mass-inertia matrix and, consequently, to an O � N � recursive algo-
rithm for calculating the inverse mass matrix M � 1 [31]. A description of the original
algorithms may be found in [8, 31] with improvements found in [15, 25, 29].

For numerical reasons, it is often convenient to work with a dynamical system free
of contact constraints. Many standard discretization or integration schemes found in
optimization or simulation software can then be applied. It is generally possible to con-
vert the contact dynamics in legged systems into a reduced-dimensional, unconstrained
equation by projecting (1) onto a set of independent states. The resulting ODE can be
evaluated efficiently using a recursive multibody algorithm [16]. The approach requires
solving the inverse kinematics problem for the dependent states. A closed-form solution
exists for common leg constructions with knowledge of the relative hip and foot contact
locations by defining the contact leg states as the dependent states.

The position state vector q may be partitioned into independent position states q1

and dependent position states q2 obtained from q via a linear transformation, q1
� Zq.

The transformation Z 	�
�� N � nc � � N is in the case of legged systems a constant full-rank
matrix consisting of unit vectors or 0. The dependent position states q2 are calculated
from q1 with the inverse kinematics function i ��� � , q2

� i � q1 � , which for legged systems
can generally be expressed in closed-form [15]. One may partition the constraint veloc-
ity equation Jcq̇ � 0 with respect to the independent q̇1 and dependent velocity states
q̇2, Jc � 1q̇1 � Jc � 2q̇2

� 0. This similarly provides a change of variables for the velocity
states,

q̇1
� Zq̇ � q̇2

� � J
� 1
c � 2 Jc � 1q̇1 � (2)

Substituting q1, q2, q̇1, and q̇2 into (1) and multiplying (1) by Z then gives an ODE of
size � N � nc �

q̈1
� ZM � q1 � i � q1 � � � 1

�
Bu � C � q1 � i � q1 ��� q̇1 � � J

� 1
c � 2 Jc � 1q̇1 � � G � q1 � i � q1 ��� � JT

c fc � � (3)

The principal advantage of this approach is that one need only perform the opti-
mization on the reduced dimensional state. The state must then be monitored such that
it remain within a well-defined region of the state space. In Sect. 4.2, where the optimal
amble gait is investigated for a quadruped, there are always two legs in contact. As a
result, instead of the full 36 states � q � q̇ � , 24 states can describe the system.
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2.3 Constraints

An important aspect of formulating a gait optimization problem is establishing the many
constraints on the problem. Legged systems are examples of general hybrid dynamical
systems [17] as they periodically enter different discrete states with each new contact
state which (discontinuously) switch the dynamical model. The numerical solution of
hybrid optimal control problems is in its early stages [3, 33], yet when the discrete
trajectory (contact events) is previously specified, current numerical solution techniques
have been shown to work well [5, 16].

Specifying the order of contact events for a biped is easy as one need only distin-
guish between walking and running. The range of different quadruped gaits, however,
can be quite large. The problem of searching over all possible gaits in a gait optimiza-
tion problem has not yet been completely solved [17]. Biological studies, however, can
provide a good indication as to which quadrupedal gaits are the most efficient at differ-
ent speeds [1]. A numerical advantage for considering gaits with the left and right legs
of a pair with equal duty factors is that the problem can be completely formulated within
half a gait cycle. This is not a severe restriction as both symmetric and asymmetric gaits
fit within this framework; the relative phases of each leg are free.

Summary of the modeling constraints for a complete gait cycle in � 0 � t f � :
Periodic gait constraints (enforced during gait optimization):
1. Periodicity of continuous state and control variables: q � t f � � q � 0 � � q̇ � t �f � � q̇ � 0 � ,

where q̇ � t �f � : � limε � 0 � ε � 0 q̇ � t f � ε � .
2. Periodicity of ground contact forces: fc � t �f � � fc � 0 � .

Exterior environmental constraints:
1. Kinematic constraints on the height (z-coordinate) of the swing leg tips.

The leg tip height qtip,z is calculated from a forward kinematics function FK ��� � of
the position states q:

qtip,z
� FK � q � t ����� 0 � (4)

In the case of unlevel ground, the 0 may be replaced by a ground height function of
the horizontal position of the swing leg tips. We consider here only level ground.

2. Ground contact forces lie within the friction cone and unilateral contact constraints
are not violated [10, 30]. In the case of point contact, ground linear contact forces
F � � Fx Fy Fz � T must satisfy (otherwise a slipping contact state is entered)

�
F2

x � F2
y � µt Fz � Fz � 0 (5)

with friction coefficient µt . The contact force vector fc which appears in (1) is com-
posed of all the contact linear force vectors 	 F j 
 from each contact leg j.
In the case of multiple contact, such as a foot lying flat on the ground, the rotational
contact force vector T j

� � Tj � x Tj � y Tj � z � T is additionally constrained
�
Tx
�
� 0 � 5Fzly �

�
Ty
�
� 0 � 5Fzlx �

�
Tz
�
� µdFz (6)

where µd is a friction coefficient, and lx and ly are the length and width of the foot.

Interior modeling constraints:
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1. Jump conditions in the system velocities due to inelastic collisions of the legs with
the ground. If the exterior constraint (4) is violated, a collision occurs. The resulting
instantaneous jump in the state velocities at the k-th such collision event is

q̇ � t �S � k � � Jumpq � q � � q � t �S � k ��� q̇ � t �S � k � � (7)

where q � t �S � k � and q̇ � t �S � k � indicate the values of q just before and after the collision
event respectively. The function Jump calculates the jump in the state velocities
resulting from the point of collision instantaneously reaching a zero velocity. The
jump is physically modeled as the consequence of an impulsive force propagating
throughout the system which may be calculated using the law of conservation of
angular momentum. This form is an approximation to real collision phenomena and
is better tractable numerically than using mixed elastic-inelastic collision models.

2. Magnitude constraints on states, controls and control rates:
Lq � q � Uq � Lq̇ � q̇ � Uq̇ � Lu � u � Uu � Lu̇ � u̇ � Uu̇ .
L � � � and U � � � are constant vectors of length equal to their arguments.

3. Actuator torque-speed limitations. The applied torque at the actuated joint i is con-

strained by the characteristic line of the motor-gear train:
�
ui
�
� � θ̇max � i � � θ̇i

� � G2
i ηi
mi

�
where ui is the applied torque at joint i, θ̇i and θ̇max � i are the joint i velocity and
maximum absolute joint velocity respectively, Gi is the gear ratio, ηi is the gear
efficiency, and mi is the slope of the motor characteristic line.

Numerical simulation of legged locomotion must not only enforce the interior con-
straints and robot dynamics but must also supervise the environmental constraints.
When the latter can no longer be enforced, the system enters a new discrete state often
leading to a switch in the system’s state and dynamics, which in turn must reflect the
interior modeling constraints.

3 Dynamic Stability and Performance

3.1 Measures of Stability

There exists a general agreement on the definition of static stability for legged systems:
the ground projection of the center of mass (GCoM) lies within the convex hull of its
foot-support area. Various forms of static stability margins have been defined usually
concerning the minimum distance between the GCoM and the support boundary which
have served to develop statically stable walking motions in all types of legged systems.
There exists, however, no general consensus on a mathematical description for dynamic
stability other than “its negation implies a lack of static stability and an unsustainable
gait” [12]. In [19], dynamic stability was categorized into postural stability and gait sta-
bility. Postural stability is maintained when the posture (torso orientation and position)
remains within a bounded range of values. Gait stability refers to the dynamical system
definition of stability for limit cycles in periodic gaits. Numerical methods for classify-
ing or acquiring stable gait trajectories are presented in [21] and [26] respectively. Due
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to the nonconvexity of the problem and the high dimensional nonlinear dynamics, di-
rect optimization methods cannot be readily applied to the full-dimensional dynamical
model and, thus, we do not consider this problem here.

The zero-moment-point (ZMP) and its relationship with the support polygon is often
used for measuring postural stability [18–20, 27, 35]. The ZMP is that point on the
ground where the total moment generated due to gravity and inertia equals zero or
equivalently the point where the net vertical ground reaction force acts. As pointed out
in [12], this point cannot leave the support polygon and, in the case when the foot is
rotating about a point, it lies directly on the edge of the support polygon. That is during
periods of single foot support in biped walking when the foot is rotating about the heel
or the toe, the ZMP does not provide information as to the amount of instability in
the system. This period can amount to up to 80% of a normal human walking gait.
Evidently, fast dynamically stable biped walking and running requires foot rotation for
stability and efficiency. The alternative measure proposed in [12], the foot-rotation-
indicator (FRI), coincides with the ZMP during periods of static equilibrium of the foot
and otherwise provides information as to the foot’s rotational instability. Foot rotation
instability measured by the FRI is a more complete measure of postural instability, but
it still does not provide any information as to gait stability/instability.

Within all possible quadrupedal gaits [1] (pace, gallop, amble, etc.), there exist
many configurations where the ZMP provides little useful information. The FRI can
also be extended to the quadrupedal case though other similar measures specialized to
quadrupeds have been introduced. In [24], the angular momentum about the support
edges was used to define a postural stability index. Like the FRI, this method provides
both directional information and a reference stability quantity that can be used to quan-
tify system instability. Though postural stability measures are not rigorous dynamical
system stability measures, these measures provide a means to monitor the stability or
instability present in legged systems. Another advantage is that these measures may be
directly incorporated into controllers for on-line use and, additionally, they can treat
aperiodic gaits, a necessity in an environment containing obstacles.

3.2 Performance Specifications

The minimization of several, alternative performance functions measuring (in-)stability
and/or efficiency of the periodic motion enables (at least locally) optimal and unique
trajectories for the states q � q̇ and controls u.

Stability Performance 1: The FRI point may be computed as that point S for which
the net ground tangential impressed forces (FIx, FIy) acting on the foot are zero. These
forces are the acting forces and may differ from the constraint forces F � � Fx Fy Fz � T
[12]. If N f feet/leg-tips are in contact with the ground, S may be considered as the net
point of action for all ground impressed forces resulting from the robot gravity and
inertial forces. It may be computed using the rotational static equilibrium equation for
the feet,

N f

∑
j � 1

�
n j � SO j

� f j � SG j
� m jg �

T

� 0 � (8)
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where n j and f j are the moment and linear force vectors from contact foot j acting
on its connecting point O j to the remainder of the robot, SO j and SG j are the vectors
from S to O j and the foot center of mass G j respectively, m j is the foot mass, and g is
the gravity vector. The subscript T indicates that only the ground tangential x- and y-
coordinates must satisfy the equation. A stability performance index which may be used
for maximizing postural stability is the average distance in the ground plane between
the point P and the ground projected center of mass GCoM.

Js1 � q � q̇ � u � � � t f

0
� � GCoMx � Sx � 2 � � GCoMy � Sy � 2 � dt (9)

Stability Performance 2: The measure proposed in [24] is an alternative measure based
on the angular momentum and it takes into consideration the momentum of the swing
legs. It is however limited to gaits with at least two legs in contact with the ground. The
stability/instability margin is equal to:

SH � t � � min 	 Sl
H � t ��� l � 1 � � � � � nl 
 � t 	 � 0 � t f � � (10)

where nl is the number of edges in the support polygon. The stability values Sl
H for each

edge depend on whether the edge is a diagonal or non-diagonal edge.
In the case of a non-diagonal support edge, Sl

H
� H ref

l � Hl where the reference an-
gular momentum H ref

l about edge l is defined as the minimum angular momentum to tip
over the edge if the system were an inverted pendulum H ref

l
� � rl,CM

� mtotalvref � � êl and Hl

is the rotational tendency about that edge Hl
� HP � êl. Here, rl,CM is the orthogonal vector

from edge l to the system center of mass CoM, mtotal is the total system mass, vref is the
reference velocity vector computed from the kinetic energy required to attain the higher
potential energy at which the system CoM would lie above edge l, HP is the angular
momentum about a point P on the support edge, and êl is a unit vector along the edge.

In the case of a diagonal support edge, Sl
H
� 	 min � Hl � H ref

l � Hmax
l � Hl � : two legs in

contact & GCoM before diagonal edge, Sl
H
� Hmax

l � Hl : two legs in contact & GCoM
past diagonal edge, Sl

H
� Hmax

l � Hl : third support leg behind diagonal support edge,
Sl

H
� H ref

l � Hl : third support leg in front of diagonal support edge 
 , where the maximum
angular momentum about êl is defined as Hmax

l
� � rl,CM

� mtotalvmax
tip � � êl and vmax

tip is the
maximum velocity vector of the swing leg’s tip.

A worst-case stability measure is defined as the minimum value of SH over the entire
gait cycle which should be maximized to find the best worst-case performance. Intro-
ducing an additional control parameter p1, the min-max objective may be transformed
to a standard Mayer-type, p1 : � min0 � t � t f SH � t � , where an additional inequality con-
straint is needed, SH � t ��� p1 � 0 � 0 � t � t f � , and the performance index becomes

Js2 � p � � � p1 � (11)

Energy Performance 1: In the case of robots where a high torque is generated by a
large current in the motor, the primary form of energy loss is called the Joule thermal
loss [23]. Define Ri, Gi, and Ki as the armature resistance, gear ratio, and torque factor
for link i respectively. Also let dS be the forward distance traveled during one gait cycle,
then the normalized average energy loss to be minimized is

Je1 � u � � 1
dS

� t f

0

N

∑
i � 1

Ri � ui

GiKi � 2

dt � (12)
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Energy Performance 2: In [13], the specific resistance ε was used to measure efficiency
or more precisely an average power consumption normalized over distance traveled.
It is a dimensionless quantity, and by minimizing its integral over the gait cycle, a
normalized form of the kinetic energy is minimized. Let mg be the system weight of the
system, θ̇i � t � is the joint i angle velocity contained within the velocity state vector q̇ � t � ,
and v � t � is the forward velocity. The performance index to be minimized is

Je2 � q � q̇ � u � � � t f

0

∑N
i � 1

�
uiθ̇i

�
mgv � (13)

Summary: Stability performance 1 delivers a solution with a minimum average level of
postural instability during the gait while stability measure 2 is intended towards improv-
ing the worst-case unstable configuration occurring in a gait. Energy performance 1 is
a direct measure of energy loss in the joints normalized over the distance traveled, and
energy performance 2 measures average power consumption.

4 Trajectory Optimization and Numerical Investigations

The optimization of the stability or energy performance functions of Sect. 3.2 with re-
spect to the controls u � t � over a period of time � 0 � t f � and subject to the system dynamics
and constraints of Sect. 2 leads to optimal control problems. Although the computation
of the optimal, state feedback control is the ultimate goal where the control is a function
of the system state vector x, u � � x � , it cannot be computed directly because of the sys-
tem’s high dimension, nonlinearity and constraints. However, with the help of numerical
optimization methods developed during the last decade, optimal open loop trajectories
x � � t � , u � � t � , 0 � t � t f , can nowadays be computed efficiently [2, 32].

4.1 Trajectory Optimization Framework

The optimization we are faced with is to find the unknown open-loop state and control
trajectories (x � t � � u � t � ) which minimize a performance function J (Sect. 3.2) subject to
a set of possibly switching differential equations f k (resulting from the legged robot
dynamics of Sects. 2.1–2.3, i.e., x � � q � q̇ � ), nonlinear inequality gk

i and equality hk
i

constraints, and boundary conditions rk
i (resulting from the constraints and conditions

of Sect. 2.3). All constraints of the dynamic optimization problem are formulated in the
general first order form

ẋ � t � �
�� � f 1 � x � t � � u � t ��� d � t ��� p � t � � t 	 � 0 � tS � 1 � �

f k � x � t ��� u � t � � d � t � � p � t � � t 	 � tS � k � 1 � tS � k � � k � 2 � � � � � m � 1
f m � x � t � � u � t ��� d � t � � p � t � � t 	 � tS �m � 1 � t f � �

gk
i � x � t � � u � t ��� d � t ��� p � t � � 0 � t 	 � tS � k � 1 � tS � k � � i � 1 � � � � � ngk

m
� k � 1 � � � � � m �

hk
i � x � t � � u � t ��� d � t ��� p � t � � 0 � t 	 � tS � k � 1 � tS � k � � i � 1 � � � � � nhk

m
� k � 1 � � � � � m �

r1
i � x � 0 ��� u � 0 � � d0 � p � 0 � x � t f � � u � t f � � d f � t f � � 0 �

rk
i � x � t �S � k � � u � t �S � k � � d � t �S � k � � p � tS � k � x � t �S � k ��� u � t �S � k � � d � t �S � k ��� � 0 �

i � 1 � � � � � rk
m �

k � 2 � � � � � m � 1 �
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The integer-valued discrete state trajectory d � t � is assumed to be constant in each phase
� tS � j � 1 � tS � j � and describes the sequence of switches of the system dynamics, i.e., a
quadrupedal gait, and must generally be provided. The program DIRCOL [32] uses
the method of sparse direct collocation to approximate the piecewise continuous states
x, controls u, and constant parameters p of the optimal control problem. This leads to a
multiphase optimal control problem to be solved in all phases � tS � j � 1 � tS � j � through adap-

tively selected grids tS � j � 1
� t j

1 � t j
2 � � � � � t j

nG � j
� tS � j in each subinterval t 	 � t j

k � t j
k � 1 �

by the approximation

ũapp � t � � β � û � t j
k � � û � t j � 1

k ��� � β � linear
x̃app � t � � α � x̂ � t j

k ��� x̂ � t j � 1
k ��� f j

k � f j
k � 1 ��� α � cubic

(14)

where f j
k
� f j � x̂ � t j

k � � û � t j
k ��� p � t j

k � [32]. The infinite-dimensional optimal control prob-
lem is thereby converted to a finite dimensional, but large-scale and sparse, nonlinearly
constrained optimization problem containing the unknown values for x � u at the dis-
cretization grid as well as p � tS � i � t f . The problem is then solved using an SQP method
for sparse systems SNOPT [11]. The resulting optimal control method is thus equipped
to handle the complexities of the walking problem: unknown liftoff times tS � i, different
ground contact combinations for the legs d � t � , discontinuous states at collision times
tS � k of the legs with the ground, switching dynamics, and actuation limits.

This method of generating optimal reference trajectories was also used in [7, 16, 17].
It may be applied to much higher dimensional systems than finite-element approaches
as used for example in [4], and the numerical package is more general than that for
example used in [5].

4.2 Numerical Investigations for the Quadruped

The goal in our numerical investigations is to plan and implement efficient, stable, and
rapid periodic motions for our test platforms of the Sony four-legged robot and our
humanoid robot currently under construction (Sect. 6). To obtain starting values when
setting up the iterative optimization procedure from scratch, a series of optimal solu-
tions for subproblems was computed. First the problem was solved in two dimensions
with most parameters fixed, then all constraints were gradually relaxed using the pre-
vious solution to start the subsequent problem. Optimization run times for a single
subproblem ranged from 5 to 20 minutes on a Pentium III, 900 MHz PC.

In our investigations, dynamically stable quadruped gaits were investigated with
Stability Performance 2. Energy efficiency is not as important for the quadruped in
RoboCup competition (Fig. 1) since the robot’s battery provides sufficient power for the
duration of half a regulation match. An optimization over this min-max performance
will optimize the worst-case configuration, thereby facilitating a more robust closed-
loop implementation.

The solution displayed in Fig. 3 is for a desired forward velocity of 40 m/min or 0.67
m/s. The optimal gait stride is 0.416 m and the gait period is 1.25 seconds. Fig. 3 shows
the evolution of the optimized stability index SH over one gait period. A negative value
of SH indicates an unstable configuration while the more positive SH is, the more stable
the system. The large variations in the index are caused by the changing of support legs
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Fig. 3. Stability index SH for an optimized amble gait of a quadruped moving forward at 0.67
m/s and duty factor β � 0 � 5 based on a full, spatial dynamical model. The first sharp drop in
the stability index occurs at the instant when the RR (right rear) leg initially makes contact and
the (left rear) leg breaks contact. At that time the diagonally opposed legs support the body and
a minimally sufficient amount of forward momentum exists to bring the system CoG over the
support edge. As the CoG approaches the support edge, the stability index increases then falls
again once this point has been passed. The second half of the gait is symmetric to the first half.

in the robot. The gait displayed is an amble gait between walking and running with the
legs having a duty factor of β � 0 � 5 which is a demanding, fast-moving gait. The order
of support leg order is (LF-LB, LR-RR, RF-RR, RF-LR: LF=left front, RR=right rear)
so that the system alternates between having two support legs on one side and diagonal
support legs. The steepest drop in SH occurs when the system switches from a side pair
of support legs to a diagonal pair. At that point the angular momentum of the system
about the diagonal edge is slightly greater than the required angular momentum for the
CoM to “roll over” the diagonal edge and not fall backward. A conservative value of 2
m/sec was chosen for the attainable velocity of the swing leg tip vmax

tip .
Our investigations are continuing with a thorough investigation and comparison of

the stability/energy performances and their combinations as presented in Section 3.2.
Furthermore, they will be evaluated using gait stability tools, tested with a real-time
legged system simulator currently under development in our group. At RoboCup 2002
we plan to present optimized motion primitives implemented on the actual quadruped
using trajectory-following controllers.

5 Control of Bipedal and Quadrupedal Robot Motions

Today, most all feedback walking control strategies that have been implemented suc-
cessfully in three-dimensional humanoid robots or quadrupeds are based on trajectory
following control. Reference trajectories for the body posture, ZMP, or foot flight paths
are developed off-line (e.g. through extensive simulations) and implemented on the
bipedal robot using standard controllers such as PID to follow the reference trajectories
which have been transformed to desired position (and velocity) information for each of
the leg and foot joints (Fig. 4). This control strategy cannot easily nor automatically be
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Fig. 4. Structure of a decentralized tra-
jectory tracking control scheme: The
local feedback control loops operate
within milliseconds and are imple-
mented using a microprocessor for each
joint. The reference trajectories are pro-
vided or generated by an onboard pro-
cessor, usually a mobile PC or simi-
lar, and are updated within seconds or
tenths of a second.
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Fig. 5. Structure of a centralized, nonlinear model-
based feedback control scheme: Its implementation re-
quires the solution of the full nonlinear dynamic model
described in Sect. 2 in real-time. Thus, strict require-
ments are imposed on the computational power and
on the efficient coding of the dynamic equations. The
reference trajectories are updated by an onboard pro-
cessor (mobile PC) and are updated within seconds or
tenths of a second for each new step while considering
constraints and performance specifications.

adapted to a changing environment and can only handle relatively small changes to the
reference data. However, it can be realized using decoupled, decentralized conventional
control strategies in each of the joint motors. This strategy has been applied, e.g., to the
Honda humanoid robot [18], the Humanoid H6 [27], [20], or [37] for a quadruped.

Feedback linearization techniques (computed torque) are also based on trajectory
tracking techniques yet it takes full advantage of a nonlinear dynamical model to arrive
at asymptotically stable closed-loop controllers. In contrast to simpler trajectory track-
ing schemes, these controllers are not decentralized nor decoupled. An example of this
type of implementation may be found with Johnnie at the TU Munich [10].

In order to meet the challenge of producing fast and stable motions for bipedal and
quadrupedal robots that can quickly adapt to a changing environment, nonlinear, model-
based feedback control methods must be developed which can generate completely new
motion trajectories through adaptation within a few seconds and ensure stability within
milliseconds (Fig. 5). To achieve this goal, fast and robust modeling and simulation
methods for legged robot dynamics are needed. Contributions have been described in
this paper. Furthermore, a more centralized control scheme is needed. Decentralized
joint controllers with standard control schemes, as provided with the often used servos,
cannot satisfy these requirements.

6 Robot Design and Dynamics of Legged Locomotion

To achieve optimal motion performance of an autonomous legged robot, especially a
humanoid robot, a full dynamical study should ideally be made already in the design
phase of the robot. The selection of motors and gears for the hip, knee or foot joints
of a humanoid must be based on the expected applied force at each joint if the robot
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is walking or running while further considering the onboard energy supply and other
hardware. These forces depend not only on the geometry of the robot links and joints
but also on the distribution of masses in each part of the robot’s body. The faster the
robot moves, the stronger the motors and gears that are required. However, stronger
motors and gears are also heavier and require more electrical power and, thus, more
and heavier batteries. The heavier weight, though, will counteract the ability of fast
walking. Thus, the design of a fast walking humanoid must find a good compromise
between the different, counteracting objectives!
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Fig. 6. Motor torque vs. rpm from an 18 kg biped with different motor/gear combinations

A design study was performed for the prototype of a fast walking humanoid (Fig. 2)
using detailed numerical investigations with a nonlinear dynamical model. Numerical
optimizations of Energy Performance 1 in combination with maximum input power
constraints were used to determine the minimum required energy needed while moving
at walking motions with speeds of up to 1.8 km/h. This preliminary analysis served to
identify the most suitable class of motors. The final selection was based on graphing the
torque-rpm workspace of interest for the respective joints during locomotion for a se-
lection of different gear ratios and motors with different voltage ratings in combination
with each motor’s maximum operational characteristic line. The example displayed in
Fig. 6 led to the choice of 42 V motors with 66:1 gear ratios. Minimum power require-
ments is a vital property for rapid locomotion and its autonomous functionality.

Ongoing joint work with the Control Systems Group of M. Buss at the Technische
Universität Berlin is directed towards the completion of the construction, controller
design, and remaining components such that this new humanoid robot may be presented
in the 80 cm humanoid league at RoboCup.

7 Conclusion and Extensions

In this paper, the modeling, simulation and optimization of nonlinear dynamics and
its role in the development and control of bipedal and quadrupedal robots is investi-
gated. A discussion is provided explaining the choice of robotic dynamics algorithms
that are well-suited to legged systems together with efficient reduced dynamics algo-
rithms to be used for increased numerical stability. A powerful and efficient numerical
optimization framework is also presented which has been thoroughly tested in previous
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work in optimal gait planning. Several performance criteria have been presented which
serve to either optimize energy or stability in legged systems. Much of this work has
been geared towards the demanding setting of RoboCup where many external factors
influence the robot’s movement in a fast-changing dynamic environment. A minimax
performance stability criteria is used for generating maximally stable quadruped gaits.
The investigated dynamic stability criterion is well-suited to a changing environment
and on-line stability assessment for closed-loop control design. The results must then
be combined with trajectory tracking controllers which may additionally incorporate
the stability index. At other times energy concerns are equally important such as in au-
tonomous humanoid biped design. Efficient multibody algorithms combined with pow-
erful numerical optimal control software solve energy-based performance criteria to aid
in the humanoid construction design.

Acknowledgement. The authors thankfully acknowledge the information and help in using the
Sony quadrupeds provided by Sony Corporation and its Open-R Support Team for this research.
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