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Abstract. In order to control voluntary movements, the 
central nervous system (CNS) must solve the following 
three computational problems at different levels: the 
determination of a desired trajectory in the visual 
coordinates, the transformation of its coordinates to 
the body coordinates and the generation of motor 
command. Based on physiological knowledge and 
previous models, we propose a hierarchical neural 
network model which accounts for the generation of 
motor command. In our model the association cortex 
provides the motor cortex with the desired trajectory 
in the body coordinates, where the motor command is 
then calculated by means of long-loop sensory feed- 
back. Within the spinocerebellum - magnocellular red 
nucleus system, an internal neural model of the 
dynamics of the musculoskeletal system is acquired 
with practice, because of the heterosynaptic plasticity, 
while monitoring the motor command and the results 
of movement. Internal feedback control with this 
dynamical model updates the motor command by 
predicting a possible error of movement. Within the 
cerebrocerebellum - parvocellular red nucleus system, 
an internal neural model of the inverse-dynamics of the 
musculo-skeletal system is acquired while monitoring 
the desired trajectory and the motor command. The 
inverse-dynamics model substitutes for other brain 
regions in the complex computation of the motor 
command. The dynamics and the inverse-dynamics 
models are realized by a parallel distributed neural 
network, which comprises many sub-systems comput- 
ing various nonlinear transformations of input signals 
and a neuron with heterosynaptic plasticity (that is, 
changes of synaptic weights are assumed proportional 
to a product of two kinds of synaptic inputs). Control 
and learning performance of the model was inves- 
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tigated by computer simulation, in which a robotic 
manipulator was used as a controlled system, with the 
following results: (1) Both the dynamics and the 
inverse-dynamics models were acquired during con- 
trol of movements. (2) As motor learning proceeded, 
the inverse-dynamics model gradually took the place 
of external feedback as the main controller. Concomi- 
tantly, overall control performance became much 
better. (3) Once the neural network model learned to 
control some movement, it could control quite differ- 
ent and faster movements. (4) The neural network 
model worked well even when only very limited 
information about the fundamental dynamical struc- 
ture of the controlled system was available. Conse- 
quently, the model not only accounts for the learning 
and control capability of the CNS, but also provides a 
promising parallel-distributed control scheme for a 
large-scale complex object whose dynamics are only 
partially known. 

1 Introduction 

Although the neural connections in the brain are 
basically stable and rigid after their formation at an 
early developmental stage, some of them have plastic- 
ity. This "plasticity" is thought to be the neural basis 
for adaptive behavior. Most voluntary movements, 
which are executed at will, are learned movements. It is 
very important and interesting to investigate how the 
central nervous system (CNS) acquires the ability to 
control movements by making use of synaptic plastic- 
ity, not only from the standpoint of neuroscience but 
also from that of robotics. 

Based on detailed knowledge on the neural circuits 
in the cerebellum, Marr (1969) and Albus (1971) 
proposed learning network models of the cerebellum. 
In these "perceptron" models, the efficacy of a parallel 
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fiber-Purkinje cell synapse was assumed to change 
when conjunction of the parallel-fiber input and the 
climbing-fiber input occurs. Ito et al. (1982) demon- 
strated the presence of the putative heterosynaptic 
plasticity of Purkinje cells in the flocculus of the 
cerebellum, which plays an essential role in the adap- 
tive control of the vestibulo-ocular reflex. Although the 
Marr-Albus model of the cerebellum as a spatial 
pattern discriminator does not give a sufficient account 
of the processing of temporal patterns, which is 
essential for the control of movement, Fujita (1982a) 
expanded the Marr-Albus model and proposed an 
adaptive filter model of the cerebellar cortex. His 
model reproduced several experimental features in an 
adaptive modification of the vestibulo-ocular reflex 
(Fujita 1982b). Consequently, a splendidly compre- 
hensive understanding of the adaptive control of the 
vestibulo-ocular reflex was provided by these works 
(see Ito 1984 for a review), which accounts for all of the 
following three levels for understanding complex 
information-processing systems proposed by Marr 
(1982): (1) computational theory, (2) representation 
and algorithm, and (3) hardware implementation. 

The investigation of neural mechanisms involved 
in the control and learning of voluntary movement 
seems much more difficult than that of the vestibulo- 
ocular reflex for the following reasons. First, the 
control object of voluntary movement (e.g. hand, leg or 
trunk) has highly nonlinear dynamics with multiple 
degrees of freedom. Second, many neural networks and 
pathways are hierarchically involved (Allen and 
Tsukahara 1974). Third, volition participates in the 
highest level. 

We propose a computational model of voluntary 
movement in Fig. 1, which accounts for Marr's first 
level (1982). Consider a thirsty person reaching for a 
glass of water on a table. The goal of the movement is 
moving the arm toward the glass to reduce thirst. First, 
one desirable trajectory in the task-oriented coordi- 
nates must be selected from out of an infinite number of 
possible trajectories which lead to the glass, whose 
spatial coordinates are provided by the visual system 
(determination of trajectory). Second, the spatial co- 
ordinates of the desired trajectory must be reinterpre- 
ted in terms of a corresponding set of body coordi- 
nates, such as joint angles or muscle lengths (trans- 
formation of coordinates). Finally, motor commands 
(e.g. torque) must be generated to coordinate the 
activity of many muscles so that the desired trajectory 
is realized (generation of motor command). We do not 
adhere to the hypothesis of the step-by-step informa- 
tion processing shown by the three straight arrows in 
Fig. 1. Rather, Uno et al. (1987) proposed a learning 
algorithm which calculates the motor command di- 
rectly from the goal of the movement represented by 
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some performance index (broken and curved arrow in 
Fig. 1). Further, asshown by a curved arrow in Fig. 1, 
motor command can be obtained directly from the 
desired trajectory represented in the task-oriented 
coordinates by an iterative learning algorithm 
(Kawato et al. 1987). In this respect, our model differs 
from the three-level hierarchical movement plan pro- 
posed by HoUerbach (1982). However, several lines of 
experimental evidence suggest that the information in 
Fig. 1 is internally represented in the brain. First, Flash 
and Hogan (1985) provided strong evidence to indicate 
that movement is planned at the task-oriented coordi- 
nates (visual coordinates) rather than at the joint or 
muscle level. Second, the presence of the transcortical 
loop (i.e. the negative feedback loop via the cerebral 
cortex; Evarts 1981) indicates that the desired trajec- 
tory must be represented also in the body coordinates, 
since signals from proprioceptors are expressed in the 
body coordinates. Finally, Cheney and Fetz (1980) 
showed that discharge frequencies of primate cor- 
ticomotoneuronal cells in the motor cortex were fairly 
proportional to active forces (torque). Consequently, 
the CNS must adopt, at least partly, the step-by-step 
strategy for the control of voluntary movement. 

The problem of the determination of the trajectory 
was investigated by Uno et al. (1987), and the problem 
of the transformation of the coordinates will be dealt 
with in our next paper (Kawato et al., in preparation). 
In this paper, we concentrate on the problem of the 
generation of motor command. First, a hierarchical 
neural network model with heterosynaptic plasticity is 
proposed for the control and learning of voluntary 
movement. Second, the capability of learning control 
of a robotic manipulator is demonstrated by computer 
simulation. 



2 Hierarchical Neural Network for the Control 
of and Learning of Voluntary Movement 

In learning a movement, we first execute the movement 
very slowly because it cannot be adequately prepro- 
gramed. Instead, it is performed largely by cerebral 
intervention with use of long-loop sensory feedback. 
With practice, a greater amount of the movement can 
be preprogramed and the movement can be executed 
more rapidly. Ito (1970) proposed the hypothesis that 
the cerebrocerebellar communication loop is used as a 
reference model for the open-loop control of voluntary 
movement. Allen and Tsukahara (1974) proposed a 
comprehensive model, which accounts for the func- 
tional roles of several brain regions (association cortex, 
motor cortex, lateral cerebellum, intermediate cerebel- 
lum, basal ganglia) in the control of voluntary move- 
ment. Tsukahara and Kawato (1982) proposed a 
theoretical model of the cerebro-cerebello-rubral 
learning system based on recent experimental findings 
of the synaptic plasticity in the red nucleus, especially 
on the sprouting phenomena (see Tsukahara 1981, for 
a review). Expanding on these previous models, we 
propose a hierarchical neural network model for the 
control of and learning of voluntary movement, shown 
in Fig. 2. This model provides concrete algorithms and 
neural networks for the problem of the generation of 
motor command, raised in Fig. 1. In this section we 
explain the global structure of the model and the 
information flow in it. 

In our model, the association cortex sends the 
desired motor pattern, that is trajectory xd expressed in 
the body coordinates, to the motor cortex, where the 
motor command, that is torque u to be generated by 
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muscles, is then somehow computed. Here, for simplic- 
ity, we identify the motor command with the active 
torque based on the experimental data of Cheney and 
Fetz (1980) that discharge frequencies of primate 
corticomotoneuronal cells in the motor cortex were 
fairly proportional to active forces. The motor com- 
mand is transmitted to muscles via spinal 
motoneurons. The musculoskeletal system interacts 
with its environment and realizes some kind of motor 
pattern, x. In general, x does not coincide with xd. The 
actual motor pattern (x) and its time derivative (dx/dt) 
(e.g. muscle length and its derivative) are measured by 
proprioceptors and sent back to the motor cortex, for 
example via the transcortical loop. Then, feedback 
control can be performed utilizing error in the move- 
ment trajectory (xa-x). However, severe limitations 
are imposed on the biological feedback system. There 
are substantial delays in the feedback loop; for 
example, the transcortical loop requires 40-60ms 
(Evarts 1981). Further, experimental results indicate 
that the contribution of the supraspinal loop to load 
compensation is insubstantial (Evarts 1981). Feedback 
delays and small gains both limit controllable speeds of 
motions. Consequently, in learning a movement, we 
first must execute the movement very slowly, because 
otherwise the control system becomes unstable. 

The spinocerebellum (vermis and intermediate par t  
of the hemisphere) - magnocellular part of the red 
nucleus system receives information about the results 
of the movement (x) as afferent input from the pro- 
prioceptors, as well as an efference copy of the motor 
command (u). Within this spinocerebeUum - mag- 
nocellular red nucleus system, an internal neural model 
of the musculoskeletal system is acquired. Once the 
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Fig. 2. A hierarchical neural network model 
for control and learning of voluntary 
movement. The model is composed of the 
following three parts: (1) The main 
descending pathway and the transcortical 
loop designated by heavy lines, (2) The 
spinocerebellum - magnocellular red nucleus 
system as an internal nerual model of 
dynamics of the musculoskeletal system, (3) 
The cerebrocerebellum - parvocellular red 
nucleus system as an internal neural model 
of inverse-dynamics of the musculoskeletal 
system. See text for detail 
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internal model is formed by motor learning, it can 
provide an approximated prediction x* (see Appendix) 
of the actual movement x when it receives the motor 
command u. A predicted possible movement error 
Xd--X* is transmitted to the motor cortex and to 
muscles via the rubrospinal tract. Since the loop time 
of the cerebro-cerebellar communication loop is 
10-20 ms (Eccles 1979) and is shorter than that of the 
supraspinal loop, the performance of the feedforward 
control with the internal model and the internal 
feedback loop is better than that of long-loop sensory 
feedback. In summary, the spinocerebellum - mag- 
nocellular red nucleus system updates the motor 
command by predicting a possible error of movement. 

The cerebrocerebellum (lateral part of the hemis- 
phere) - parvocellular part of the red nucleus system, 
which develops extensively in primates, especially in 
man, receives its input from wide areas of the cerebral 
cortex and does not receive peripheral sensory input. 
That is, it monitors both the desired trajectory xd and 
the motor command u but it does not receive inform- 
ation about the actual_ movement x. Within the 
cerebro-cerebellum -parvoceUular red nucleus system, 
an internal neural model of the inverse-dynamics of the 
musculoskeletal system is acquired, with practice, by 
making use of the synaptic plasticity. The inverse- 
dynamics of the musculoskeletal system is defined as 
the dynamical system whose input and output are 
inverted (trajectory x is the input and motor command 
(i. e. torque) u is the output). Note that the spinocerebel- 
lum - magnocellular red nucleus system provides a 
model of the dynamics of the musculoskeletal system 
(motor command (i.e. torque) u is the input and 
trajectory x is the output). The inverse-dynamics 
model is not a model of the external world; rather it is a 
model of the information processing done in other 
brain regions such as the motor cortex and the 
spinocerebellum which computes the motor command 
from the desired trajectory. A germ of this idea can 
already be seen in Ito (1970). Once the inverse- 
dynamics model is acquired by motor learning, it can 
compute a good motor command u* directly from the 
desired trajectory xd. This motor command is trans- 
mitted to the motor cortex via the ventrolateral 
nucleus of the thalamus. In summary, the cerebroce- 
rebellum - parvocellular red nucleus system substitues 
for other brain regions in the complex computation of 
motor commands. 

The neural network model shown in Fig. 2 is based 
on various physiological and morphological informa- 
tion (Ito 1984; Ghez and Fahn 1985), especially on the 
importance of synaptic plasticity (Gilbert and Thach 
1977) and of the cerebro-cerebellar communication 
loop (Sasaki et al. 1982; Sasaki and Gemba 1982) in the 
motor learning of voluntary limb movements. The 

model predicts that if the rubro-olivo-cerebellar loop is 
destroyed, the internal model would be destroyed also, 
and motor performance would be severely disturbed. 
This prediction is in accord with the frequently re- 
ported symptoms of "tremor" after lesions anywhere in 
the rubro-olivary pathway (Poirier et al. 1969). This 
may be interpreted as being the oscillation due to the 
delay of feedback. Another prediction of the model is 
that after lesions of the rubro-olivo-cerebellar loop, 
motor learning does not take place. This, of course, is 
the deficit of motor learning as reported by Ito and his 
collaborators (Ito et al. 1974, 1982) and also by Llinfis 
(Llinfis et al. 1975), although the interpretation of this 
deficit has been related to Marr's hypothesis in the case 
of Ito's paradigm (Ito 1984). 

3 Internal Neural Model 
with Heterosynaptic Plasticity 

The internal dynamics model and the internal inverse- 
dynamics model proposed in the previous section can 
be realized by a parallel-distributed-processing neural 
network with hetero-synaptic plasticity. They can be 
regarded, from an engineering point of view, as 
identifiers of unknown dynamics and inverse- 
dynamics of the musculoskeletal system. Arbib (1981) 
pointed out that such a neural identifier is essential for 
motor learning. Let us consider an identifier which 
approximates the output z(t) of an unknown nonlinear 
system by monitoring both the input u(t) and the 
output z(t) of this system (Fig. 3). This type of identifier 
can be realized by a neural network, as shown in Fig. 3 
(Tsukahara and Kawato 1982), which comprises many 
subsystems computing various nonlinear transforma- 
tions of the input u(t), and a neuron with heterosynap- 
tic plasticity. 

The input u(t) to the unknown nonlinear system is 
also fed to n subsystems and is nonlinearly transformed 
into n different inputs xt(O (/= 1,..., n) to the neuron 
with plasticity. That is, instantaneous firing frequen- 
cies of n input fibers to the neuron are designated by 
xl(t)  . . . . .  xn(t). Let w~ denote a synaptic weight of the 
l-th input. Membrane potential y(t) of the neuron is the 
sum of n postsynaptic potential. For simplicity, we 
assume that the output signal of the neuron is equal to 
its membrane potential y(t). In vector notation, we 
have the following equations. 

x(t) = ]-x 1(t), x2(t), ..., x~(t)] r , 

w= [wl, w2, . . . ,wj  T, (1) 
y(t) = wTx(t) = X(t)Tw. 

Here, T denotes transpose. The second synaptic input 
to the neuron is an error signal (e.g. climbing fiber 
input for the Purkinje cell), and is given as an error 



173 

- ~ - ~ - [ f i r s t  subsystem I 

i ~ s e c o n d  subsystem I 

~I n- th subsystem 

_/  

x2(.t)) 

Xn(t)  

1 unknown system I 
u(~) - t  j z(~) 

y(t) 

Fig. 3. A neural identifier of an unknown 
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between the output of the neuron and the output from 
the unknown system, s(t)= z(t)-y(t).  Based on physi- 
ological knowledge of the heterosynaptic plasticity of 
the red nucleus neurons (Tsukahara et al. 1981) and the 
Purkinje cells (Ito 1984), we assume that the l-th 
synaptic weight w~ changes when the conjunction of the 
/-th input xt(t) and the teaching signal s(t) occurs. 
Further, the rate of change of the synaptic weight is 
assumed proportional to the product of the two inputs: 

z dw(t)/dt = x(t)s(t) = x(t) [z(t) - x(t)rw(t)]. (2) 

Here, z is a time constant of change of the synaptic 
weight. This learning rule is closely related to Amari's 
(1977) orthogonal learning, although it was used for 
the association of static spatial patterns. 

If u(t) is a stochastic process, then x(t) and z(t) are 
also stochastic processes and Eq. (2) must be rewritten 
as a stochastic differential equation: 

z dw(t, co)/dt = x(t, co) [z(t, co) 

- x(t, co)a'w(t, 09)]. (3) 

Here, co is a sample point in a stochastic space. Let us 
consider the following averaged equation of(3), which 
is obtained by taking an expected value. 

zdm(t)/dt = E Ex(t, co)z(t, co)] 

-- E [-x(t, co)x(t, co) a'] m(t). (4) 

Here, m is an averaged vector of w. We can prove the 
following theorem about the convergence of the synap- 
tic weight w(t) using Geman's (1979) result, if x and z 
are mixing random processes (see Appendix for proof). 

Theorem 1. I f  the time constant z of  change of  the 
synaptic weight is sufficiently long compared with the 
"rate" of mixing of x and z, then the synaptic weight w 
converges in mean to the value for which a mean square 
error of the output EE(z-y)  2] is minimum. 

Because the time constants of physiologically 
known synaptic plasticities are sufficiently long (from a 
few hours to a few weeks) compared with temporal 
patterns of movement (several hundreds ms), the 
assumption of the theorem is satisfied. It is worthwhile 
to note that the averaged Eq. (4) gives the steepest 
descent method and the convergence is global (i.e. 
there is no local minimum: see Appendix). The basic 
organization of the neural identifier shown in Fig. 3 is 
the same as the LMS (Least Mean Square) adaptive 
filter of Widrow (Widrow et al. 1976) and the adaptive 
filter model of Fujita (1982a), although they dealt with 
a linear system and the proof of convergence was 
different. 

Although the best synaptic weights can always be 
obtained by the learning rule (2) within a given set of 
subsystems, Theorem I does not necessarily guarantee 
that the output error tends to become zero as learning 
proceeds. Asymptotic performance of the neural 
identifier critically depends on the selection of the set of 
subsystems (see Appendix). 

4 Control of Robotic Manipulator 
by Model Neural Network 

We examined whether the proposed neural-network 
model is efficient in learning control of an object with 
highly nonlinear dynamics and multiple degrees of 
freedom. In computer simulation, a usual industrial 
robotic manipulator was chosen as a controlled sys- 
tem. Although it is much simpler than musculo- 
skeletal systems such as the human arm, they both have 
several essential features (nonlinear dynamics, multiple 
degrees of freedom, and interactions between different 
freedoms) in common. 

By computer simulation, Furukawa (1984) and 
Miyamoto (1985) showed that the internal neural 
model for the dynamics of a robotic manipulator with 
two degrees of freedom was actually acquired during a 
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2000-5000 s learning period while monitoring both the 
input torque [u(t) in Fig. 3] and the output joint angles 
[z(t) in Fig. 3] of the manipulator. In both studies, the 
learning rule in (2) was used. However, as subsystems 
of the neural identifier, Furukawa used Wilson- 
Cowan's neuronpool models (1972) with different 
synaptic-connection parameters, while Miyamoto 
chose different models of the manipulator dynamics 
with different viscosity-coefficient parameters at the 
joints. Once the dynamics model was obtained by 
learning, the internal feedback loop with this internal 
model was found to control the manipulator much 
better than the long-loop feedback via the external 
world (see the last paragraph of Appendix). 

4.1 Hierarchical Control of Manipulator 
by Inverse-Dynamics Model 

To examine learning and control performance, exten- 
sive computer simulations were made of the hierarchi- 
cal neural network model, excluding the spinocerebel- 
Ium - magnocellular red- nucleus system (dynamics 
model). We omitted the internal dynamics model 
because of the limitation of computer resources. This 
part of the model is the most time consuming because 
we need to numerically integrate many differential 

equations which describe the subsystems of the dy- 
namics model. 

Figure 4a shows a block diagram of a simulated 
neural network model and a manipulator. Let T(t), 
T~(t), and Ty(t) denote a torque fed to the manipulator, a 
torque calculated by the inverse-dynamics model and a 
feedback torque, respectively. The total torque was a 
sum of the feedforward and the feedback torques: 

Z(t) = Ti(t ) + TAt ) . (5) 

The inverse-dynamics model receives the desired tra- 
jectory qa(t) represented as joint angles as an input [u(t) 
in Fig. 3] and monitors the total torque T(t) as the 
output of the unknown dynamical system [z(t) in 
Fig. 3]. If the simulated neural network would be 
related to the perceptron, the total torque might 
correspond to the teaching singnal. From (5), the error 
signal s(t) in the previous section equals the feedback 
torque Ty(t), and it is expected that Ty(t) tends to zero as 
learning proceeds. But this is by no means guaranteed 
because we cannot simply take out an unknown 
dynamical system from the block diagram of Fig. 4a. In 
other words, the inverse-dynamics model does not 
receive the real trajectory q(t) represented as joint 
angles; instead, it receives only the desired trajectory 
qd(t). Consequently, it is very important to examine the 
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Fig. 4. a Block diagram of a simulated neural 
network model and a manipulator, b A robotic 
manipulator with three degrees of freedom. Lk, $k, 
Mk, Ikx, Iky, and Ik= represent the length, the position 
of the center of mass, the mass, the three inertial 
moments of the k-th link, respectively. See Table 1 
for values of these physical parameters, e Detailed 
structure of the internal neural model for inverse- 
dynamics of the manipulator with three degrees of 
freedom 



learning and control performance of the hierarchical 
control system shown in Fig. 4a. 

The configuration of the three-link manipulator 
shown in Fig. 4b was chosen so that it resembles a 
human arm (see Table 1 for physical parameters). Let 
qk(k = l, 2, 3) denote the k-th joint angle and 
Tk(k= 1,2, 3) denote the torque fed to the k-th joint. 
Using the Lagrangian, we can derive the following 
dynamics equation of the manipulator. 

R(q)f l-  (~  gl~R/aq~)il 

- (1/2)ilT(~R/~q)/l + B/1 + G(q) = T(t), (6) 

where, 

q=(qt,  q2,q3) T and T=(T1, T2, T3) r .  

R(q) is a 3 x 3 inertia matrix, which is not diagonal. B is 
a 3 x 3 diagonal matrix representing viscosity coeffi- 
cients, B = diag(bk). G(q) is a 3-dimensional nonlinear 
vector function and represents gravitational forces. 
The first term represents the inertia force, the second 
and third terms represent the centripetal and Coriolis 
forces, the fourth term is the frictional force and the 
fifth term is the gravitational force. It can be seen that 
the manipulator dynamics is nonlinear and there are 
interactions between different freedoms. 

Figure 4c shows the detailed structure of the 
internal model for the inverse-dynamics of the manipu- 
lator. It receives the three inputs [qal(t), qd2(t), qaa(t)] 
and the three error signals IT.el(t), Tyz(t), Ty3(t)], and 
outputs the three torques [Ta(t), Ti2(t), Ti3(t)]. qek(t), 
Tyk(t), and Tik(t) (k= 1,2, 3) denote the desired joint 
angle, the feedback torque and the torque generated by 
the inverse-dynamics model, respectively, regarding 
the k-th joint. This is an expansion of the neural 
identifier of Fig. 4a to the multiple inputs-outputs case. 
Each subsystem receives the three inputs qaa, qa2, and 
qe3, and nonlinearly transforms them into its output  
f~(qa~, qa2, qa3) for the first joint, or gt(qdt, qd2, qaa) for 
the second and the third joints. The subsystems f~ and 
g~ were conveniently chosen as shown in Table 2 from 
manipulator dynamics Eq. (6). That is, each subsystem 
corresponds to an expanded term of the left-hand side 
of (6). Although, in general, different sets of subsystems 
need to be prepared for different outputs T~k(k = 1, 2, 3), 
the same set of subsystems g~(l = 1 . . . .  ,13) were used in 
common by the second and the third outputs since 
their subsystems almost overlap with each other. In 
summary, the torques generated by the inverse- 
dynamics model are expressed as follows. 

13 

T~(t) = E 'wl,fz(qai(t), qa2(t), qa3(t)) 
/ = 1  

~3 (7) 
Tik(t) = E Wk,g,(qal(t), qa2(t), qa3(t)) (k = 2, 3). 

l - - 1  
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Table 1. Values of physical parameters of the robotic manipu- 
lator shown in Fig. 4b. bk is a viscosity coefficient at the k-thjoint. 
See explanation of Fig. 4 for definitions of other symbols 

Parameter First link Second link Third link 

La(m) 0.4 0.4 0.4 
Sa(m) - 0.15 0.15 
Mk(kg) 15.0 7.0 3.0 
Ik=(kg - m 2) - 0.589 0.251 
Iky(kg- m 2) - 0.584 0.253 
Ik=(kg- m z) 0.0170 0 .00673  0.00340 
bk(kg- m/s) 20.0 15.0 5.0 

Mass of payload (kg) 1.0 

TaMe 2. Nonlinear transformations of 26 subsystems used in the 
inverse-dynamics model shown in Fig, 4c. qek is simply denoted 
as q, here 

/ •  fl(ql, q3) g,(ql, q3) q2, @, 

2 sinZqz" ql q3 
3 cosZqz "ql cosq3-0z 
4 sinZ(q2+qa)'ql cosq3.03 
5 cosZ(qz+q3)'01 sinq2" c0sq2"42 
6 sin q2 sin(q2 + q3)" 01 sin(q2 + q3) cos(q2 + q3)" ql z 
7 sinqz cosq2, q10z sinqz cos(qz + q3)" ql z 
8 sin(q2+q3)cos(q2+q3).OzOz cosq2sin(q2+q3).~ 
9 sinq2cos(q2+q3).0102 sinqa'022 

10 cosq2sin(q2+qa).q102 sinq3"q32 
11 sin(q2+qa)cos(q:+q3).qlOa sinq3-4243 
12 sinq2cos(qz+q3).qlq3 q2 
13 ql q3 

Here Wkl is the weight of a synapse from the /-th 
subsystem to the k-th output neuron. If a perfect 
inverse-dynamics model is formed, Eq. (7) must coin- 
cide with Eq. (6). Let the left-hand side of (6) be 
expanded by the same functions fl and g~ as in (7), and 
w~'z denote a coefficient of the/-th function f~ or gt in this 
expansion of the k-th torque. If uniqueness of conver- 
gence ofw holds (see Appendix), we expect that each wkt 
converges to w*z as learning proceeds. 

The fourth order Runge-Kutta-Gill method with a 
time step of 2 ms was used to numerically integrate the 
learning Eq. (2) and the manipulator dynamics Eq. (6). 
The first and the second time derivatives of joint 
angles, which were used in nonlinear transformations 
of subsystems, were calculated by central difference 
methods. Initial values of the synaptic weights WkI at 
the beginning of learning were all set at 0, that is, the 
inverse-dynamics model did not output any torque at 
the beginning of learning. The program was written in 
Fortran 77 for a ACOS 1000 computer at Osaka 
University. 
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Fig. 5. Time courses of the three joint angles during the desirable movement pattern. The realized trajectory after 20 min learning is also 
plotted but can not be separately seen 

4.2 Learning with Repeated Movement Pattern 

We first studied control performance of the neural 
network model when one movement pattern was 
repeatedly learned. A desired trajectory, shown in 
Fig. 5, with a duration of 30 s was given for 20 rain (i.e. 
for 40 times). In this pattern, the three joints moved 
cooperatively at a maximum speed of about 500 deg/s, 
which was quite fast for industrial robotic manipu- 
lators. As can be seen in Fig. 5, the time course of each 
joint angle qdk(t) was smooth, since it was composed of 
trigonometric functions smoothly jointed with const- 
ant parts, while the manipulator held a fixed posture. 
The time constant z of learning was chosen as 1000 s. 
For simplicity, the graviational force G(q) in (6) was 
compensated beforehand. 

The feedback torque was made of a proportional 
component and a local derivative component: 

+ K~kdqk(t)/dt, k = 1, 2, 3, 

Kok = 0 unless [qk(t)-- qdk (objective point)l < e. 

Proportional and derivative feedback gains Kpk and 
K~k were selected as (517.2, 746.0, 191.4) and (16.2, 37.2, 

8.4) so that the natural angular frequency o& = 20 and 
the damping ratio ~ = 0.7 were attained. These values 
were calculated based on a linearization of the manipu- 
lator dynamics Eq. (6). The velocity feedback was 
applied only around the stopping points (i.e. only after 
the joint angle got into some small bounds of the 
objective point). Organisms hold a posture by the 
cocontraction of flexor and extensor muscles around 
the same joint, which induces an increase of viscous 
friction of the muscles. The local velocity feedback 
simulates this effect and reduces overshoots of 
movements. 

Figure 6 compares the total torques fed to the third 
joint (T3, top), feedback torques (Tia, middle) and the 
torques generated by the inverse-dynamics model (T~a, 
lower), during the first 30 s at the beginning of learning 
(left) and during the final 30 s at the end of 20 min 
learning (right). At the beginning of learning, T3 was 
composed mainly of Te3 and was considerably spiky. 
As the learning proceeded, Tea decreased while Ti3 
gradually increased. After 20 rain of training, Tea was 
very small and was composed only of the local velocity 
feedback; hence T3 was almost identical to T~3. The 
time course of T3 was smoother at the end of learning 
than at the beginning. 
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Fig. 6. The total torque (T3), the 
feedback torque (T!3) and the torque 
computed by the inverse-dynamics 
model (TJ, which were fed to the third 
joint during the first 30 s of learning 
(left) and the last 30 s (right) 

Changes of mean square errors of the outputs (i.e. 
mean square of feedback torques) during 20 � 9  of 
learning are semilogarithmically plotted in Fig. 7, top; 
and mean square errors of the joint angles are plotted 
in Fig. 7, bottom. They were averaged values over 30 s 
of one training session. Note that scales of the ordi- 
nates for the three different joints were different. The 
mean square errors of both the torques and trajectories 
decreased gradually, but those of the first joint de- 
creased more rapidly than the second and the third 
joints. At the end of 20 min of learning, the errors of 
trajectory were considerably small. Figure 5 actually 
plots not only the desired trajectory but also a realized 
trajectory during the last 30 s of the learning. But 
desired and real trajectories almost overlapped and 
could not be seen separately at this resolution. 

Figure 8 shows a change of the synaptic weight wt4 
during the first 5 min of learning. The synaptic weight 
gradually approached an asymptotic value while 
showing a damped oscillation with a 30 s period of one 
training session. Table 3 compares the values of the 
synaptic weights wlz at the end of 20 � 9  training with 
the corresponding expansion coefficients w~'l of (6), 

which were calculated from physical parameters in 
Table 1. Some synaptic weights (e.g. w14, w16, w19, 
wla3) have already converged quite closely to the 
corresponding values of wk*~; but some other synaptic 
weights (e.g. w11, wl3, wl7) were still considerably 

Table 3. Comparison of synaptic weights wit at the end of 20 min 
training with the corresponding expansion coefficients w~'z of (6) 

l W I !  W ~ I  

1 0.526 0.017 
2 0.976 0.382 
3 - 0.451 0.007 
4 0.478 0.480 
5 0.048 0.003 
6 0.655 0.680 
7 0.655 2.75 
8 1.955 0.953 
9 0.718 0.680 

10 0.817 0.680 
11 0.466 0.953 
12 1.040 0.680 
13 19.917 20.0 
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Fig. g. Change of the synaptic 
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different from them. These discrepancies could, of 
course, be ascribed to insufficient learning time; but 
they were partially due to the linear dependency of 
outputs of different subsystems (e.g. ft =f2 +f3). This 
linear dependency is irrelevant, since our concern is not 
whether Wkt converges to w'z, but whether the inverse- 
dynamics model generates good torque (see 
Appendix). 

We then examined whether the neural network 
model after 20 rain of learning a single pattern could 
control a quite different movement which was about 
twice as fast as the training pattern. Figure 9 shows the 
desirable trajectory of this test movement (the third 
joint angle, broken curve), and trajectories (solid 

curves) realized by the neural network model without 
learning (top), and after learning (bottom)�9 Before 
learning, delays and overshoots were often observed, 
and the realized trajectory deviated considerably from 
the desired trajectory�9 However, after learning, the 
actual trajectory almost coincided with the desired 
trajectory. This control capability for quite different 
and faster movements than the training pattern is one 
of the most outstanding features of our neural network 
model (see Discussion). 

In the above experiments, we incorporated the 
local velocity feedback into the feedback torque, and 
hence we could set comparatively high feedback gains. 
So, the feedback control before learning was reason- 
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ably good (see Fig. 9 top). We examined whether the 
neural network model could learn movements even 
when the feedback was poorer. The feedback torque 
was generated only by the proportional term, and the 
feedback gains Kpt, Kp2, and Kps were set (309.4, 120.6, 
52.3) so that the damping ratio ~ was 0.5. The resulting 
natural frequencies co, were between 8 and 15. With 
this poorer feedback, the neural network model could 
not learn the desirable movement shown in Fig. 5; that 
is, the synaptic weights diverged. However, when a 
training movement pattern the same as that shown in 
Fig. 5 but with a duration of 1 min was chosen (i.e. the 
speed of the movement was reduced by half), the 
learning went well. After 40min of learning, the 
network controlled the test pattern shown in Fig. 9 
quite well. Consequently, even if the feedback was 
poor, the neural network model could learn slow 
movements, and after learning, it could also control 
different and faster movements. 

Although the gravitational force was compensated 
for beforehand in almost all computer simulations, this 
is not indispensable. When additional subsystems 
which correspond to expanded terms of the gravi- 
tational fogce G(q) were prepared in the inverse- 
dynamics model, the neural network model without 
gravity compensation could learn the movement 
shown in Fig. 5. 

4.3 Learning with Quasi-Periodic Movement Pattern 

The movement pattern in Fig. 5 contained various 
elements of coordinated multi-joint movements. But, 
in general, it is not easy to determine such a pattern; 
and further, it is very unnatural for organisms to learn 
movement by repetitions of a single pattern. We 
examined a learning performance when a simple and 
quasi-periodic movement pattern was given as a 
desirable trajectory. In this pattern, the three joint 
angles changed as sin(cokt ) and the ratio of angular 

frequencies col :092:co 3 were set as l :V~:] /3 ,  so that 
various coordinated movements were experienced 
during learning. The feedback gains, the time constant 
of learning and the learning duration were the same as 
the first simulation experiment (Figs. 6--8). However, 
since the manipulator did not hold a constant posture 
in this training pattern, the local velocity feedback did 
not work during learning. 

Figure 10 shows changes of mean square errors of 
the output (i.e. the mean square of the feedback 
torques) during 20 min of learning. The mean square 
errors about the three joints all decreased monotoni- 
cally and the learning went well. Since the final 
feedback torques were smaller than those in Fig. 7 by 
order of 102-s, it first appears that the learning with 
the quasi-periodic pattern was much more efficient. 
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However, we can not compare control performances lO 3 

using the two different training patterns. Thus, we 
examined control performance using the test pattern of ~-- 
Fig. 9 after 20 min of quasi-periodic learning. The %E 
trajectory realized was almost identical to the desired - 102 
trajectory, and we could not simply determine whether ~ �9 
this result was better than the result shown in Fig. 9 ~ 
(repetitive learning). Regarding the first and the second ~ ~o 
joints, the quasi-periodic learning seemed better; while ~ ~ 101 
for the third joint, the repetitive learning seemed better. ~ _~ 

4.4 Learning with Redundant Subsystems 

We conveniently chose necessary and sufficient subsys- 
tems, as shown in Table 2, from an expansion of the 
manipulator dynamics Eq. (6) (although some of them 
were linearly dependent; see Sect. 4.2 and Appendix). 
From an engineering point of view, we sometimes need 
to control a very complex system, even when its 
fundamental dynamical structure is unknown. Fur- 
thermore, as a neural network model, it is too idealistic 
to assume that necessary and sufficient subsystems are 
inherently prepared in the CNS. Thus, we examined 
learning performance when 20 extra subsystems, 

Table 4. Nonlinear transformations of 20 extra subsystems which 
were added to the original subsystems of Table 2 

Z ~ . . .  fz(q 1, q2, qa), gl(q 1, q2, qa) 

14 0.01.4~ 

16 0.01.~ 
17 q2 
18 q,~ 
19 q2 
20 sinq2 cos(q2 + q3) 
21 cosq2 sin(q2 + q3) 
22 sinq2 COS q3 
23 cosq2 sin qa 

Fig. 10. Changes of mean squares 
of the feedback torques during 
20 min of learning with the quasi- 
periodic training pattern 
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Fig. 11. Changes of the mean square of the feedback torque fed to 
the third joint (left) and the mean square error of the third joint 
angle (right) when the extra subsystems were added to the 
original subsystems 

shown in Table 4 (f~ and gz were the same) were added 
to those of Table 2. The idea is that the CNS can 
inherently prepare a very large number of subsystems 
which are highly redundant but which include a 
relatively small number of the essential subsystems. 

The feedback torques, the feedback gains, the time 
constant of learning and the desirable trajectory were 
the same as the first simulation experiment (Figs. 5-7). 
Figure 1 a shows changes of the mean-square feedback 
torque fed to the third joint (left), and the mean square 
error of the third joint angle(right) during 20 min of 
learning. Both of them decreased monotonically and 
were not significantly larger than the errors shown in 
Fig. 7. In Table 5, 23 synaptic weights wit at the end of 
learning are shown. The corresponding coefficients w*z 
are the same as in Table 3 for l = 1 - 13 and are 0 for 
/ = 1 4 - 2 3 .  Most of the unnecessary synaptic weights 
were close to zero; but, for example, w 11, was consider- 
ably large. Probably, this did not severely interfere 
with the overall performance of the inverse-dynamics 
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Table 5. Values of 23 synaptic weights wit regradiug the first joint 
at the end of 20 min of learning when the extra subsystems were 
added to the original subsystems 

wit I ~ .  wit 

1 0.440 13 16.472 
2 0.892 14 6.417 
3 - ~452 t5 -- ~350 
4 0.365 16 - 0.575 
5 0.075 17 - E00I 
6 0.933 18 0.099 
7 2.065 19 - ff065 
8 0.516 20 0.240 
9 1.064 21 -- 0.034 

i0 1.506 22 0.142 
11 0.891 23 ~011 
12 0.824 

model as shown in Fig. 11, since the following appro- 
ximation might hold within a working range of the 
manipulator:  20ql = 16.47ql + 6.42q~ (compare 
w*l 3 = 20 and w~14 = 0 with wl i 3 and w~ i4 of Table 5). 
In summary, if a sufficient number of subsystems are 
prepared, which can be done even from a very incom- 
plete knowledge of the dynamics of a controlled 
system, the neural network model can efficiently learn 
and control movements. 

4.5 Change of Manipulator Dynamics during Learning 
We studied the control performance of the neural 
network model when a physical parameter of the 
manipulator suddenly changed. The feedback torques, 
the feedback gains, the time constant of learning and 
the desirable trajectory were the same as the first 

simulation experiment (Figs. 5-7). After 20rain of 
learning, the mass of the payload changed from 1 kg to 
3 kg, and the simulation was continued for another 
20 min. Figure 12 shows a change of the mean square of 
the feedback torque fed to the first joint (rectangles), 
and that of a naive neural network model without pre- 
learning (triangles). As can be seen, with pre-learning, 
the error quickly returned to a previous level within 
5 min, and it was significantly smaller than the error 
without preqearning. It can be said that the model has 
good adaptability to changes of the physical para- 
meters of the manipulator. 

5 Discussion 

A hierarchical neural network model was proposed, 
based on physiological information and previous 
models. It contains internal neural models of dynamics 
and inverse-dynamics of the musculoskeletal system as 
essential learning parts. The potential of this model to 
control a complex nonlinear object was demonstrated 
by computer simulation with the following results. 

(1) The dynamics model (spinocerebellum - mag- 
noeellular red nucleus) was acquired by learning while 
monitoring the motor  command and the resulting 
movement. 

(2) The inverse-dynamics model (cerebrocerebellum 
- parvocellular red nucleus) was acquired by repeti- 
tively experiencing a single motor  pattern, while 
receiving the desired trajectory and monitoring the 
feedback torque as an "internal" error signal. 

(3) As motor  learning proceeded, the inverse- 
dynamics model gradually took the place of the 
external feedback as a main controller. 
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(4) Once the neural network model learned some 
movement, it could control quite different and faster 
movements. So, the present model is totally different 
from previous "table look-up" learning proposed by 
Albus (1975) or Raibert (1978), because of its capability 
of generalizing learned movements. The reason is 
because the present model learns the dynamics and 
inverse-dynamics of a control object instead of a 
specific motor command for a specific movement 
pattern. 

(5) The total torque fed to the manipulator was by no 
means a good teacher at the beginning of learning; 
hence, quick movements could not be realized by it. 
However once the inverse-dynamics model was ac- 
quired while being supervised by this teacher, it could 
control fast movements smoothly. The student eventu- 
ally surpassed the teacher. 

(6) The model had adaptability to a sudden change in 
the dynamics of the controlled system. 

(7) Even when redundant subsystems were added to 
the inverse-dynamics model, learning performance 
remained essentially unchanged. 

Although we did not simulate the leaming perfor- 
mance of the whole neural network model shown in 
Fig. 2, as learning proceeds, the internal feedback loop 
is first expected to take the role of the external feedback 
loop as the main controller; then the inverse-dynamics 
model is expected to take the part of the internal 
feedback loop. This upward shift of a dominant 
controller in the hierarchical neural network might 
reflect the phylogenesis of the motor nervous system in 
vertebrates. If a perfect inverse-dynamics model is 
formed, neither the internal nor the external feedback 
controls function, since movement error is absent. On 
the other hand, even when a perfect dynamics model is 
formed, the internal feedback loop suffers from limi- 
tations inherent in feedback control. So, at first sight, 
the dynamics model seems to do things by halves. 
However, it plays an essential role in providing the 
inverse-dynamics model with a good teaching signal. 
In the second simulation experiment described in Sect. 
4.2, the synaptic weights diverged because the feedback 
torque was too poor. In order to avoid the failure of 
learning, either the training movement must be slowed 
down, the time constant of learning must be length- 
ened or the teaching signal must be improved. Conse- 
quently, the dynamics model makes it possible for the 
inverSe-dynamics model to learn a relatively quick 
movement during a relatively short time. 

In this paper, we have mainly studied free move- 
ments. It is worthwhile considering constrained move- 
ments also, such as carrying a book or exerting a force 
against a door, since most of our voluntary movements 

are related to the manipulation of external objects. In 
Fig. 13 we propose an expansion of the inverse- 
dynamics model of Fig. 4c. Figure 13 shows the single 
input-output case; but it is easily expanded to the 
multiple inputs-outputs case. The basic idea is that 
several sets of subsystems are prepared for different 
situations of movement. The selection of the sets used 
in control and learning of a certain movement is 
specified by higher motor centers (e.g. association 
cortex). During free movement, only a fundamental set, 
which is equivalent to Fig. 4c, is used both for control 
and learning. On the other hand, during movement 
when holding a light-weight object, the second set of 
subsystems is also recruited, and only the synaptic 
weights of this set are subjected to modification, while 
the synaptic weights of the fundamental set remain 
unchanged. The second set compensates for torques 
necessary to carry a light-weight object. When the 
hand releases the object, the second set of subsystems is 
instantaneously suppressed (or not excited); then, the 
inverse-dynamics model can control free arm- 
movement as well as before. Similarly, during move- 
ment while gripping a heavy object, the third set is 
recruited (it might be even more efficient if higher 
motor centers transmit the estimated mass of a gripped 
object to the inverse-dynamics model). Further, if a 
hand needs to exert a force on an object, a quite 
different set of subsystems is recruited, which receives 
informations about the desirable forces as well as the 
desirable trajectory, and generates torques necessary 
to exert the required force at the hand. The merit of 
possessing several sets of subsystems is twofold. First, 
the internal model can preserve various dynamical 
information about the musculoskeletal system com- 
bined with its different environments (e.g. grasped 
objects or the knob of a door) as synaptic weights (on 
the contrary, dynamical information about free move- 
ment was lost in Fig. 12 after the payload changed). 
Second, a good motor performance is instantaneously 
realized as soon as an experienced behavioral situation 
is once again given. 

For control of the 3 degrees of freedom (d.g.f.) 
manipulator, 3 output neurons and 26 subsystems 
were used in the inverse-dynamics model. In general, n 
output neurons are required to control an object with n 
d.g.f. For a 6 d.g.f, manipulator, about 900 subsystems 
are required (Setoyama 1987). The number of neces- 
sary subsystems is expected to increase in an order of 
n 4. A human arm has 7 d.g.f, but the number of muscles 
is much higher. So, the number of necessary subsys- 
tems for the inverse-dynamics model of a human arm 
may reach astoronomical figures. Based on these 
considerations we can predict possible divergence and 
convergence of neural projections within the internal 
neural models. Each subsystem needs to receive the 
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desirable time courses of lengths of several muscles 
whose contractions interact with each other in move- 
ments. Hence, input signals to the subsystems (desir- 
able trajectory) extensively diverge with moderate 
convergence. Then, the outputs of the subsystems 
intensively converge onto a relatively small number of 
output neurons. There are two possibilities about how 
the CNS computes nonlinear transformations of the 
subsystems. One is that they are realized by neural 
circuits. The other is that they are computed by 
nonlinear information processing within the dendrites 
of neurons (Poggio and Torte 1981; Kawato et al. 
1984). Although it is possible that the subsystems are 
genetically prepared, the other possibility, that the 
subsystems themselves are acquired by the synaptic 
plasticity of the Purkinje cells is appealing, since within 
the internal neural models both the Purkinje cells and 
red nucleus neurons have heterosynaptic plasticity. In 
this case, we need to investigate the performance of 
learning in the two-layered adaptive neural network. 
This is one of our problems for the future. 

Finally, we assess the present model from an 
engineering point of view. Feedback controls have 
been nearly adequate for the slow control of usual 

industrial robotic manipulators with high reduction 
ratios between joints and actuators, which dramati- 
cally reduces the nonlinearity of manipulator dy- 
namics and interactions between different freedoms. 
However, for a directdrive manipulator such as used in 
the present simulation study, new control methods 
have been demanded. Although several learning and 
adaptive control schemes were proposed (model re- 
ference adaptive control: Dubowsky and DesForges 
1979; betterment process: Arimoto et al. 1984a and 
1984b; table look-up method: Albus 1975; Raibert 
1978) they were at most perturbation-learning 
schemes. That is, experiences obtained during learning 
can not be used for the execution of a quite different 
movement. The method of computed torque (Luh et al. 
1980; Hollerbach 1980) requires both strict modelling 
of the manipulator dynamics and the precise esti- 
mation of physical parameters, which are difficult in 
practice. In contrast, the present method requires 
neither an accurate model (see Sect. 4.4) nor parameter 
estimation. Further, it posseses a great ability to 
generalize learning. We also note that it can be easily 
implemented in a parallel distributed processing ma- 
chine, since both the nonlinear transformations in sub- 
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systems and the synaptic modificat ions are essentially 
in parallel. Consequently,  the computa t ion  time in 
a parallel machine using the present control  scheme is 
expected to be m u c h  shorter  (shorter than 1/100) than 
the serial methods  such as the recursive scheme for 
computed  torque of  Luh  et al. (1980). Moreover ,  it does 
no t  require the enormous  m e m o r y  size of the table 
look-up method  (only 925 synaptic weights are neces- 
sary for a 6 d.g.f, manipula tor ;  Se toyama 1987). 
Miyamoto ,  K a w a t o  and Suzuki  (1987) has successfully 
applied the present me thod  to control  an industrial 
robot ic  manipu la to r  (Kawasaki -Unimate  P U M A  260) 
with the neural ne twork  model  in a mic rocompute r  
(Hewlett Packa rd  9000-300-320). In  summary,  the 
present me thod  is one of  the promising schemes for the 
future control  of  no t  only a direct drive manipulator ,  
but  also of  a large-scale complex system, whose 
dynamics  is only partially known.  
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Appendix 
.L  

In this appendix we prove the convergence of the synaptic 
weights to optimal values, for which the mean square error of the 
output of the neural identifier shown in Fig. 3b is minimum. We 
assume that u(t, m), and hence x(t, o~) and z(t, ~) of Fig. 3b, are 
strongly mixing stochastic processes (stochastic processes for 
which the "past" and the "future" are asymptotically indepen- 
dent). This assumption seems sufficiently reasonable when we 
consider the "randomness" of our voluntary movements. Geman 
(1979) showed that when the "rate" of mixing is rapid relative to 
the rate of change of the solution processes, the averaged 
deterministic Eq. (4) is a good approximation of (3). Geman 
proved the following theorem in a general manner. 

Theorem. For all ~ sufficiently large, sup E[W(t, co) 2l < ~ ,  and 
lira sup E [{M(t)-W(t, co)}2] = 0. t_~o 

~ o o  t ~ 0  

Consequently, we only need to study the averaged Eq. (4) if the 
time constant z of synaptic modification is sufficiently long. Let P 
denote the cross-correlation vector between the input signals 
X(t, oJ) and the desired output z(t, co): 

P = E [ x,(t, o~)z(t, r T . 

Q denotes the symmetric and positive definite correlation matrix 
of the input signals X(t, ~). 

O = {q~A- {E [x,~t, co)x,~t, co)]}. 

Then, Eq. (4) can be rewritten as follows. 

zdM(t)/dt= P - Q M ( t ) .  

For simplicity, P and Q are assumed to be constant in time. This 
is equivalent to assuming the stationarity of the stochastic 
processes X(t, co) and z(t, co). Further, if Q is inverfible, the 
averaged equation has the following solution. 

M(t) = {1 - e x p ( -  Qt/z)} e - 1  p.  

Therefore, M(0 asymptotically converges to Q-1p since Q is 
positive definite. From the above theorem, the synaptic weights 
W(t, r also converge to Q-1 p in mean. 

The mean square error of the output is given as follows: 

re.s.c. = E [s(t) 2] = E [{z(t, oJ)- X(t, r eg)} 2] 

= E [z 2] - 2prw + WrQW. 

Substituting the solution M(t) into this equation we obtain: 

m.s.e.mca,= E[zZ] -  pr  { 1 - e x p ( -  2Qt/z)} Q-1P.  

It may be observed that the m.s.e, performance is a quadratic 
function of the synaptic weights, that is, a "bowl-shaped" surface. 
The gradient at any point of the performance surface is obtained 
by differentiating the m.s.e, with respect to the synaptic weights as 
follows. 

V= - 2 P + 2 Q W .  

From this equation, it is easy to see that the averaged Eq. (4) gives 
the steepest descent method. The optimal synaptic weights W* 
and the minimum m.s.e, are obtained by setting V=0. 

W * = Q - I p ,  

m.s.e.mi n = E [z z] - PQ- 1 p.  

Consequently, we can conclude that the synaptic weights con- 
verge in mean to the optimal values for which the mean square 
output error is minimum. 

It is worthwhile to note that the m.s.e.mi= critically depends 
on the choice of subsystems. For example if X(t) = (z(t), 0 . . . . .  0) T 
then the m.s.e.mi~ is zero. On the other hand, if there are no 
correlations between X(t) and z(t), then P equals zero and the 
m.s.e.min equals E [z2]. 

If we feed a delayed input u( t -A t )  to the subsystems and the 
desired output z(t) to the modifiable synapses, then the learning 
rule (3) attains optimal synaptic weights W*,, with which y(t) 
= WTX(t-A t) best approximates z(t). If we feed input u(t) to the 
subsystems after W], is learned and fixed, y(t) clearly approxi- 
mates z(t+At). Consequently, in this case, the internal neural 
model of Fig. 3b acts as a predictor. These two separate steps 
(identifier mode and prediction mode) can be simultaneously 
realized by the following modified learning equation of (2) 

zdW(t)/dt = X(t - A t) [z(t) -- y(t -- A t)] 

= x ( t -  ~t) [z(t)- x ( t -  ~t )rw(t -  ~t)]. 

In this modified learning rule, the rate of change of the synaptic 
weights is proportional to the product of delayed input signal 
X(t--At) and the error signal between desired output z(t) and 
delayed output signal y(t--At). It is worthwhile to note that the 
heterosynaptic modification in the red nucleus is most prominent 
when the conditioned stimulus (u(t)) preceds the unconditioned 
stimulus (z(t)) by about 100 ms (Tsukahara et al. 1981). 
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