
Biol. Cybern. 71, 123-135 (1994) 

�9 Springer-Verlag 1994 

Optimal control of antagonistic muscle stiffness during voluntary movements 
Ning Lan, Patrick E. Crago 
Applied Neural Control Laboratory, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA 

Received: 5 October 1991/Accepted in revised form: 18 November 1993 

Abstract. This paper presents a study on the control of 
antagonist muscle stiffness during single-joint arm move- 
ments by optimal control theory with a minimal effort 
criterion. A hierarchical model is developed based on the 
physiology of the neuromuscular control system and the 
equilibrium point hypothesis. For point-to-point move- 
ments, the model provides predictions on (1) movement 
trajectory, (2) equilibrium trajectory, (3) muscle control 
inputs, and (4) antagonist muscle stiffness, as well as 
other variables. We compared these model predictions to 
the behavior observed in normal human subjects. The 
optimal movements capture the major invariant charac- 
teristics of voluntary movements, such as a sigmoidal 
movement trajectory with a bell-shaped velocity profile, 
an 'N'-shaped equilibrium trajectory, a triphasic burst 
pattern of muscle control inputs, and a dynamically 
modulated joint stiffness. The joint stiffness is found to 
increase in the middle of the movement as a consequence 
of the triphasic muscle activities. We have also investi- 
gated the effects of  changes in model parameters on 
movement control. We found that the movement kin- 
ematics and muscle control inputs are strongly in- 
fluenced by the upper bound of the descending excitation 
signal that activates motoneuron pools in the spinal cord. 
Furthermore, a class of movements with scaled velocity 
profiles can be achieved by tuning the amplitude and 
duration of this excitation signal. These model predic- 
tions agree with a wide body of experimental data ob- 
tained from normal human subjects. The results suggest 
that the control of fast arm movements involves explicit 
planning for both the equilibrium trajectory and joint 
stiffness, and that the minimal effort criterion best char- 
acterizes the objective of movement planning and control. 

1 Introduction 

A focus of motor control studies emphasizes the impor- 
tance of the muscle spring-like property for movement 
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execution (Rack and Westbury 1969; Nichols and Houk 
1976; Hoffer and Andreassen 1981; Houk and Rymer 
1981). This inherent compliance of the neuromuscular 
system unifies movement control and posture mainte- 
nance in a single scheme. Under steady state conditions, 
the joint can maintain a posture at the equilibrium point, 
at which the net joint torque is zero, but with a certain 
joint stiffness. A movement occurs as a result of changes 
in the equilibrium point of the system, because joint 
stiffness always causes a convergent force toward the 
equilibrium. It is postulated that the higher centers of the 
brain may guide joint movement by a gradual shift in 
equilibrium states, while maintaining a proper joint stiff- 
ness (Feldman 1986; Bizzi et al. 1992). This theory, 
known as the equilibrium point (EP) hypothesis, simplifi- 
es the task of motor control as it can obviate the need to 
calculate the inverse dynamics. In this study, we use 
optimal control theory as a forward dynamics approach 
to investigate (1) how the equilibrium trajectory is for- 
mulated, and (2) how the antagonistic muscles are con- 
trolled to produce the desired joint stiffness and the 
required joint torque for performing a movement. 

According to EP control, a combination of equilib- 
rium trajectory and joint stiffness must be specified to 
produce a movement. The choice for the form of control 
variables must be subject to constraints of neuromuscu- 
lar dynamics and skeletal mechanics. For slow move- 
ments, it is possible to shift the equilibrium trajectory 
linearly in time towards the target position, while the 
joint stiffness is maintained constant throughout the 
movement (Feldman et al. 1990). However, for fast move- 
ments, experimental data obtained from normal human 
subjects indicate that the equilibrium trajectory and joint 
stiffness are not specified independently. The equilibrium 
trajectory appears to alternate about the movement tra- 
jectory with an 'N' shape, and there is a considerable 
amount of increase in joint stiffness during fast move- 
ments (Latash and Gottlieb 1991). Thus, the evidence 
suggests that both the equilibrium trajectory and joint 
stiffness are dynamically controlled to produce fast 
movements. 

In earlier studies, a number of optimal criteria were 
proposed for movement planning and control. The min- 
imal jerk criterion was used to describe the kinematics of 
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movement trajectory, and it captured the details of the 
kinematics of voluntary movements (Hogan 1984). For 
the purpose of controlling a robot manipulator, it was 
proposed that the changes in the total joint torques may 
be minimized for controlling a movement (Uno et al. 
1989). The trajectories of optimal joint torques and 
movement kinematics obtained with this criterion were 
found to be similar to those observed in human move- 
ments. Considering the psychophysical nature of move- 
ment planning, Hasan (1986) proposed that minimizing 
the effort associated only with the nonreflex drives of 
central descending commands may be a plausible cri- 
terion. In the context of EP control, these descending 
commands correspond to the equilibrium trajectory 
and an excitation signal that determines joint stiffness. 
Thus, Hasan (1986) formulated an effort functional as 
follows: 

t f  

J = ~ o'(t),(/~(t)) z dt (1) 
o 

Here tf is the duration of integration, /~(t) is the time 
derivative of equilibrium trajectory, and a(t) is joint stiff- 
ness, which is time-varying in general. The optimal move- 
ments showed a normal looking trajectory with a 
bell-shaped velocity profile, and the optimal criterion 
also predicted the profile of the equilibrium trajectory 
with an alternating 'N' shape and a best constant joint 
stiffness for a movement. 

In this study, we expand the scope of the model used in 
the optimization and investigate whether it is possible to 
determine both the equilibrium trajectory and joint stiff- 
ness simultaneously by minimizing the effort functional 
of (l). The optimization of the effort functional may lead 
to more meaningful results if a model at the muscular 
level is employed, and if the joint stiffness is not con- 
strained to be a constant, since the optimization can then 
prescribe individual muscle stiffnesses and muscle activa- 
tion inputs. Spinal reflexes are an integral part of the 
neuromuscular control system, and models that include 
descending commands to the motoneuron pools should 
also consider the effects of reflexes. The effects of auto- 
genic reflexes are to enhance the stiffness of muscles in 
response to a stretch (Nichols and Houk 1976; Hoffer 
and Andreassen 1981). The effects of heterogenic reflexes 
on joint stiffness were demonstrated in recent experi- 
ments (Nichols and Koffler-Smuleviff 1991; Carter et al. 
1993). Reciprocal inhibition between antagonist muscles 
can more effectively resist a perturbation at the joint. 
Feldman and Orlovsky (1972) further demonstrated that 
the shape of the length-tension property of muscles was 
maintained invariant by reflexes, and that only the thre- 
shold of this length-tension curve was affected by the 
stimulation of various supraspinal brain-stem structures. 

The objective of this study is to develop and validate 
an optimal control model based on the EP hypothesis 
and the minimal effort criterion of (1). This model is then 
used to investigate whether a unique combination of the 
equilibrium trajectory and joint stiffness can be deter- 
mined as a result of minimizing the effort functional for 
a given movement. Numerical solutions of the optimal 

control problem are obtained and compared with experi- 
mental data for model validation. The results obtained 
from this model can predict major features of voluntary 
movements observed in normal human subjects. In Sect. 
2, the model structure is developed based on the physi- 
ology of neuromuscular control. The optimal control 
problem is formally formulated in Sect. 3, and the 
method used to obtain numerical solutions of the opti- 
mal control problem is briefly described. The results are 
analyzed in Sect. 4. In Sect. 5, the implications of the 
results are discussed in comparison with experimental 
data of voluntary movements. 

2 Model development 

2.1 General description 

The hierarchical order of movement control is shown 
in Fig. 1. It is composed of an optimization algorithm, 
a spinal cord circuit that integrates descending and 
afferent signals, and a joint acted upon by a pair of 
antagonistic muscles. The higher center issues instruc- 
tions to the control system, which specify the initial and 
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Fig. 1. The structure of the model. The control system comprises a pair 
of antagonistic muscles acting at a joint, a spinal cord integration 
circuit, and an optimization algorithm. The control inputs to the 
muscles, uf and ue, are the outputs of the spinal cord circuit that 
translates the descending motor commands into individual muscle 
activations. The descending commands to the spinal cord are the 
excitation signal, N(t), and the equilibrium state, fl(t). The optimization 
program computes these descending commands based on the instruc- 
tions from the higher center of the brain, which indicates the initial and 
final positions, Po and Pf, and the maximal level of the excitation, Ph. 
The joint is modeled as a hinge, and muscles have constant moment 
arms. The joint angle 0 is defined such that it increases with flexion. The 
null angle corresponds to full extension of the joint 



final joint positions (Po, Pf) of movement and the maximal 
level of motoneuron pool excitation (Ph)- These instruc- 
tions are transformed into descending motor commands, 
encoding the equilibrium trajectory, fl(t), and the excita- 
tion signal, N(t). The excitation signal activates the spinal 
motoneuron pools of muscles to the appropriate level. 
The outputs of the motoneuron pools are modified in 
accordance with peripheral events through autogenic 
and heterogenic reflexes, which are mediated by way of Ia 
afferents. Muscle proprioceptors (spindles and Golgi 
tendon organs) supply the spinal cord circuit and the 
optimal control algorithm with necessary peripheral in- 
formation, such as muscle lengths, forces, and hence joint 
angles and torques. It is assumed that the effect of the 
autogenic reflexes is to regulate the muscle torque-angle 
relation, so that this torque-angle relation takes an invari- 
ant form. Thus, the autogenic reflexes can be accounted 
for by the muscle invariant property. The heterogenic 
reflexes act to modulate activities of the opposing muscle 
through reciprocal inhibition (RI) by way of the spinal 
interneurons. This coupling between antagonist muscles 
is explicitly considered in the model, because it reinforces 
EP control. The intensities of both reflexes are 
modulated by the background excitation of motoneuron 
pools (Gottlieb and Agarwal 1971; Matthews 1986). 
From a systems viewpoint, muscle torque-angle and 
torque-velocity properties can be equated as a nonlinear 
spring and a nonlinear damper. The mathematical model 
presented in the following section is based on this view of 
the neuromuscular motor system. 

2.2 Invariant characteristics of  reflexive muscles 

Voluntarily contracting muscle with intact reflexes shows 
a linear relation between its stiffness and the torque (or 
force) it generates (Cannon and Zahalak 1982; Kearney 
and Hunter 1990; Carter et al. 1993). This linear relation- 
ship holds for a large range of muscle torque and stiffness, 
such that 

Tf =mfKf + bf; Te =meKe +be (2) 

Here Tf and Te are the torques, Kf and Ke are the 
stiffnesses, bf and be are two constants, and mf and me are 
constant coefficients. In the Appendix, it is shown that 
these relations, after integration with respect to the joint 
angle, define the exponential torque-angle invariant 
characteristics (ICs) for reflexive muscles, and that 
muscle activations change the threshold angle of the IC 
c u r v e s .  

Muscle stiffness is assumed to be proportional to its 
activation a~(t): 

Ki(t) = xi ai(t) 0 <~ ai(t) <~ 1; for i = f, e (3) 

Here x~ is muscle stiffness at maximal activation. Sub- 
script 'f '  denotes the flexor muscle and subscript 'e', the 
extensor muscle. It is also shown in the Appendix that 
changes in muscle activation shift the muscle IC curve on 
the angle axis and consequently define a new equilibrium 
position. 
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Joint stiffness er is the sum of individual muscle stiff- 
nesses, and joint torque T is the net torque of antagonis- 
tic muscles as: 

a = K f + K e  and T =  T f - T  e (4) 

2.3 Muscle activation dynamics 

Since muscle stiffness is proportional to its activation 
[see (3)], we characterize muscle activation here as the 
ability to produce a torque (or force) under a unit stretch. 
A stretch at the joint affects the activations of the flexor 
and extensor muscles by both autogenic and heterogenic 
reflexes. In this model, the contribution of autogenic 
reflexes is accounted for by the muscle invariant curve 
(IC) of (2), and the effect of heterogenic reflexes is de- 
scribed later in Sect. 2.4. 

A first-order differential equation describes the 
muscle activation dynamics as follows: 

dai(t) l a i ( t )+ lu i ( t )  0~<udt)~<l; f o r i = f , e  (5) 
dt zl zi 

Here u~(t) is the muscle neural input or the output of the 
corresponding motoneuron pool, a~(t) is the muscle ac- 
tivation, z~ is the time constant for the muscle activation 
dynamics. The range of muscle input is confined between 
[0, 1]. With this constraint, muscle activation is also 
limited within the range [0, 1]. 

2.4 Co-activation and reciprocal inhibition of antagonists 

Reciprocal activation and inhibition of antagonistic 
muscles are expressed as follows in this model: 

Ur(t) = c(t) [0.5 + rf(fl(t) - 0(t))] (6a) 

ue(t) =c(t)[0.5 -re(fl(t ) -0( t ) ) ]  0 ~< c(t) ~< 1 (6b) 

dc(t_~) 
= - - l c ( t ) +  J--U(t) O<~N( t )<l  (7) 

dt zN ZN 

Here c(t) represents the background activation of the 
motoneuron pools for both flexor and extensor. This 
background activation is determined by the descending 
excitation signal, N(t), as in (7). zs is the time constant of 
excitation; rf and r e are two positive constants for recip- 
rocal inhibition gains. 

Equations (6a) and (6b) emulate the physiological 
functions of spinal interneurons that mediate RI to the 
opposing muscle. The amplitude of inhibition is propor- 
tional to the difference between the equilibrium angle 
and the actual joint angle. If the joint angle coincides 
with the equilibrium angle, then there is no inhibition to 
the opposing muscle, but there could be a co-contraction 
if the background activation of the motoneuron pools is 
not zero, i.e. c(t) ~ O. However, an angular perturbation 
at a joint will elicit different spindle responses for the 
flexor and extensor, because of their anatomical attach- 
ments around the joint. An increase in joint angle, O(t), 
will cause the firing rates of flexor spindles to decrease 
because of shortening, but the firing rates of extensor 
spindles to increase because of lengthening. Thus, the 
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afferent from the two muscles varies in opposite sign with 
changes in the joint angle. The net effect of RI is to 
enhance joint stiffness to resist a perturbation (Nichols 
and Koftler-Smulevite 1991). 

This spinal circuit can also facilitate the control of 
joint movement if the equilibrium angle, fl(t), is the vari- 
able. When the equilibrium angle is greater than the joint 
angle, a positive difference causes the flexor input, uf(t), 
to increase, while the extensor input, ue(t), is reduced. The 
net action is to move the joint towards the equilibrium 
angle. When the equilibrium angle is smaller than the 
joint angle, a negative difference suppresses flexor activa- 
tion, but increases extensor activation. The net action is 
again to move the joint towards the equilibrium. Thus, 
RI guarantees a convergent force towards the equilib- 
rium. In the limiting case, a large deviation of the equilib- 
rium position from the joint position can completely 
suppress the opposing muscle and elicit a single muscle 
activation, as demonstrated in decerebrated cats (Nichols 
1987). It is seen that co-contraction and reciprocal activa- 
tion of antagonists are regulated by the descending exci- 
tation signal, N(t), and the equilibrium trajectory, fl(t). 
There is also evidence that co-activation and reciprocal 
activation command centers exist in the brain of primates 
(Humphry and Reed 1983). 

2.5 Limb dynamics 

The dynamics of the forearm is of second order with 
a nonlinear viscosity. The arm is assumed as a rigid body 
with a rotational inertia. The joint is modeled as a hinge 
with a fixed center of rotation. Muscles are assumed to 
have constant moment arms. Joint dynamics are de- 
scribed by a second order nonlinear differential equation: 

d20 BdO 
I-d-~ + dt = T (8) 

Here I is the moment of inertia, T is the net muscle 
torque, and B is the coefficient of viscosity. It was ob- 
served in human subjects that the viscosity changes with 
muscle stiffness (Cannon and Zahalak 1982; Lacquaniti 
et al. 1982; Kearney and Hunter 1990). However, differ- 
ent forms of relation between the coefficient of viscosity 
and muscle stiffness were suggested from the experi- 
mental data. Kearney and Hunter (1990) reported 
a square root relationship. Other data seemed to show 
a linear relationship (Cannon and Zahalak 1982). Both 
relations were found to yield movements with good 
agreement to experimentally observed trajectories (Flash 
1987). In this study, a linear relation is used to simplify 
the model. The values of the model parameters used in 
the optimization are listed in Table 1. 

2.6 Constraints 

Constraints for this optimization problem are concerned 
with the range of joint movements, the activation thresh- 
old of the motoneuron pool, and the numerical range of 
neural signals. The range of movement is defined such 
that joint movement is possible. For the elbow joint, its 
work space may be limited to: 

0 ~ ~< 0(t) ~< 160 ~ (9) 

The physiological constraint considered here is the range 
of muscle stiffness that can be achieved. In this model, 
muscle stiffness is limited to being positive. Muscle in- 
puts, thus, must also be positive, i.e. ui(t)/> 0 (i = f, e), as 
expressed in (6a) and (6b). However, this type of con- 
straint is difficult to implement in numerical algorithms 
of optimization because of its discontinuous nature. 
However, an equivalent constraint of the form: 

1 1 
- 2r--~f <<" fl(t) -O(t) <<. 2r-~ (10) 

can be easily implemented in the numerical algorithm. As 
a consequence, the equilibrium trajectory may saturate at 
the boundary to ensure the positiveness of muscle stiff- 
ness. Physiologically, when the equilibrium trajectory 
goes beyond the boundary, it produces no actual mo- 
toneuron pool output; thus, it is no longer valid. Within 
the boundary, the equilibrium trajectory obtained from 
the solution is the true optimization of the problem. 

A final constraint considered here is the numerical 
range of the excitation signal, N(t), which is limited 
within: 

O<.N(t)<.Ph; f o r 0 < P h ~ < l  (11) 

Here Ph denotes the maximal amplitude of the excitation 
signal. The physiological significance of the pulse height 
is that it limits the portion of the motoneuron pool which 
can be activated to perform a movement. These three 
constraints in (9), (10), and (11) together guarantee that 
the constraints in (3), (5), (6a), (6b), and (7) are satisfied, 
and they improve the numerical solvability of the opti- 
mal control problem. 

3 Method of numerical solution 

3.1 Problem formulation 

A dynamic optimization problem has four parts that 
must be formulated (Kirk 1970; Bryson and Ho 1975). 
The essential part is the objective functional to be mini- 
mized. The second part is a mathematical description of 
the system, or a model. The complexity of the model 

Table 1. Model parameters 

Parameters me me zf ze zN xf ~% I B 
(rad) (rad) (ms) (ms) (ms) (Nm/rad) (Nm/rad) (kg  m 2) (Nm- s/rad) 

Values 0.3 0.3 50 50 29 250 250 0.1 0.03a 



depends on whether the solution will yield meaningful 
interpretations. In our case, a model at the muscular 
level, as described in the previous section, is necessary. 
The third part of the problem is a set of constraints that 
define admissible solutions. The final part is a method to 
obtain the analytical, or numerical, solution. 

To solve the optimal control problem, it is necessary 
to transform the above problem into the standard form 
of state-space representation. Reformulation of the prob- 
lem is straightforward and can be done by properly 
defining state and input variables for the model. Let x(t) 
be the vector of states: 

X(t) = [0(t), 0(t), fl(t), Kf(t), Kr c(t)] t 

and U(t) be the vector of inputs: 

U(t) = E/~(t), N(t)3' 

The state-space equations for the system can then be 
expressed as: 

--- f(X, U) (12) 

Here f(X, U) is a nonlinear vector function of states and 
inputs. The objective functional is rewritten in terms of 
states and inputs by: 

t r  

J = ~g(X,U)dt (13) 
o 

Here g(X, U) is the nonlinear cost function. The general 
form of constraints may be given by: 

ak~<dk(X,U)~<bk f o r k =  1,2,3 (14) 

Here dk(X,U) are the functions of states and inputs, 
respectively, and ak and bk are constants. 

Let us define ~ as the set of all admissible controls 
within [0, tfJ, such that: 

n = {U(t)rak ~< dk(X,U) ~< bk; for k = l, 2, 3} 

The optimal control problem can then be stated as to 
find the optimal control policy U*(t) e fl for the system 
of (12) within [0, tf], such that it minimizes the cost 
functional of (13) and also satisfies the initial and final 
conditions: 

X(0) = Xo and X(tf) = Xf (15) 

3.2 Nonlinear programming technique 

A nonlinear programming (NP) algorithm, GAMS/ 
MINOS (general algebraic modeling system and modu- 
lar incore nonlinear optimization system; The Scientific 
Press, Redwood City, Calif.), is used to solve the dynamic 
optimization problem, since it permits constraints in the 
form of nonlinear equalities and inequalities as specified 
in (14). Before solving the dynamic optimization prob- 
lem, it must be transformed into a static optimization 
problem, because the NP algorithm works only for static 
optimization. The numerical solutions were obtained on 
a CRAY supercomputer using the GAMS/MINOS soft- 
ware package. 
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The concept that GAMS/MINOS uses to solve dy- 
namic optimization problems is briefly introduced below. 
The basic idea is to discretize the system (12), as well as 
the cost functional (13), and to linearize the system 
around an initial guess, U k, With this linearization, the 
cost functional and state variables are expressed as fun- 
ctions of inputs U and uk; the former is to be optimized, 
and the latter is taken from the previous kth iteration. 
The state equation of (12) can then be reduced to a set of 
nonlinear algebraic equations that enter into the NP 
problem as equality constraints. GAMS/MINOS solves 
the problem using a quadratically convergent algorithm 
(Robinson 1972). The search for a minimum is performed 
at two levels, the major iterations and minor iterations. 
In a major iteration, a number of linearly constrained 
subproblems are solved. Each subproblem constitutes a 
minor iteration. Minor iterations will stop if the sub- 
problem is optimized. The solution is then returned to 
the major iteration. If the nonlinear constraints are satis- 
fied, the major iteration stops, and an optimal solution is 
found. 

In general, there is no guarantee that the algorithm 
will converge from an arbitrary starting guess. If it con- 
verges, the solution is likely to be a local minimum. 
However, in a region defined by the constraints and 
bounds of variables, if the objective functional and con- 
straints are all convex, any optimal solution obtained will 
be a global minimum. In this problem, it is difficult to 
check the convexity of constraints because of its large 
dimension. However, the algorithm is always able to find 
a solution for a given movement. 

3.3 Numerical analysis 

The control of elbow movements at normal speeds is 
analyzed with this model. Model parameters used in the 
optimization are listed in Table 1. The flexor and ex- 
tensor muscles are assumed to be symmetric and have the 
same biomechanical properties. The torque/stiffness ra- 
tios, mf and m~, are constants, having the same value of 
0.3 (rad). The moment of inertia of the joint, I, is chosen 
to be 0.1 (kg m 2) in agreement with the literature (Hasan 
1986). Joint viscosity is proportional to joint stiffness 
(B = 0.030). The maximal stiffnesses for the flexor and 
extensor muscles, /(f and xe, are chosen to be 250 
(Nm/rad) (Cannon and Zahalak 1982). Activation and 
excitation time constants are selected according to the 
literature (Winters and Stark 1987). 

In the model, the initial and final positions and the 
maximal level of excitation (Po, Pf and Ph) enter into 
optimization as externally applied constraints. For 
a movement specified by the initial and final positions, it 
is apparent that a different Ph may produce a different 
movement. Furthermore, a different gain for RI may alter 
the way the movement is performed. Sensitivity analysis 
is performed to investigate the effects of changes in model 
parameters on movement trajectories and muscle control 
inputs. Movements of very fast speed, about 0.2 (s) in 
duration, are solved first with the maximal level of excita- 
tion, i.e., with Ph = 1. Then the RI gains, re and re, are 
varied to show their effects on movement control. 
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We have also investigated how to produce a class of 
movements with different durations and distances by 
changing the upper bound of the excitation signal. In 
order to sort out the organizational base for behavioral 
regularities, different movements are normalized to a ref- 
erence movement by scaling their velocity profiles in time 
and amplitude (Atkeson and Hollarbach 1985). Let us 
denote the amplitude of the reference movement as d~f 
and its peak velocity as VP,~f. For an arbitrary move- 
ment with an amplitude denoted as d and a peak velocity 
as VPm,,, normalization is performed according to the 
following rules: 

V' = (VPrer /VPma,) ,  V(t') {16) 

t' =- (VPmax/VPref) ,(dref/d ) ,  t {17) 

Here V' and t' are the normalized velocity and time, 
respectively. In this normalization, the fastest movement 
with Ph = 1 is chosen as the reference movement. Behav- 
ioral regularities arising from the velocity scaling are 
further explored. 

4 Results 
Numerical solutions for single joint movements are pre- 
sented and analyzed in this section. The general charac- 
teristics of optimal movements are described first in 
Sect. 4.1. The effects of RI gain and the amplitude of the 
excitation signal on the formation of movement trajecto- 

ries and muscle control signals are investigated in 
Sects. 4.2 and 4.3, respectively. Section 4.4 demonstrates 
that movements with different amplitudes and durations 
can be achieved with a scaled velocity profile by properly 
modulating the excitation signal only. 

4.1 Characteristics of optimal movements 

A fast, point-to-point, optimal movement is presented in 
Fig. 2. The movement amplitude is 36 ~ with a duration of 
about 0.2 (s). The speed is comparable to that of a ballis- 
tic movement by humans. Thus, the maximal amplitude 
of the excitation signal is used for this speed, i.e., Ph = 1. 
Joint movement and equilibrium trajectories are depic- 
ted in Fig. 2A. The joint movement shows a normal- 
looking sigmoidal trajectory, similar to that observed in 
voluntary movements. The equilibrium trajectory leads 
the movement trajectory initially to accelerate the joint, 
but then lags behind it to brake the movement. Overall, 
the equilibrium trajectory appears to show an 'N'-shaped 
profile. An overshoot of the equilibrium trajectory at the 
end of the movement establishes a steady-state terminal 
posture. This overshoot is less with slower movements. It 
is noted in Fig. 2A that the equilibrium trajectory has 
reached the boundary of constraint, as expressed in (10), 
during both acceleration and deceleration. 

The velocity of joint movement (Fig. 2B) displays an 
asymmetrical, bell-shaped profile and is characterized 
by a shorter acceleration phase followed by a longer 
deceleration phase. The bell-shaped velocity is a well- 
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Fig. 2A-F.  The optimal solution for a fast movement with a duration 
of about 220 ms. The movement amplitude is 36 ~ . The maximal pulse 
height (Ph = 1) is used to generate the movement. A The movement 
trajectory, equilibrium trajectory; B joint velocity; C joint torque; 

D joint stiffness plus the flexor and extensor stiffnesses; E the muscle 
activation inputs; and F the excitation signal. Note that muscle inputs 
are all positive variables. The extensor activation is plotted with a nega- 
tive sign to contrast with the flexor activation, 



documented feature for single-joint arm or head move- 
ments (Nagasaki 1989). The torque responsible for 
accelerating the joint is much larger than that required 
to brake the joint (Fig. 2C). The imbalance in acceler- 
ation and deceleration efforts arises from the presence of 
joint viscosity, which is also a function of joint stiffness. 
Since viscous torque impedes movement acceleration but 
assists movement deceleration (Lestienne 1979; Wu et al. 
1990), a greater flexor (agonist) input is often required 
to initiate the movement, and a smaller extensor 
(antagonist) input is necessary to stop the movement 
(Fig. 2E). Consequently, it leads to the asymmetric velo- 
city profile. 

Muscle activation inputs, uf and ur are shown in 
Fig. 2E. They clearly display a triphasic burst pattern as 
in the EMG activities observed in voluntary movements. 
The first flexor burst is to accelerate the joint. The second 
burst of the extensor attempts to stop the joint motion. 
The third burst of the flexor establishes a steady-state 
joint stiffness for posture maintenance. An increase in 
joint stiffness occurs during the movement (Fig. 2D), 
which coincides with the rhythm of the triphasic muscle 
activation pattern. The optimal form of the excitation 
signal is a three-pulse signal (Fig. 2F), whose timing sets 
the rhythm of the triphasic muscle activities. The 
triphasic activation pattern and the three-pulse excita- 
tion signal are obtained with no prior assumption about 
their shape. These features are solely the prescription of 
the optimal criterion. Thus, it is significant that this 
model can predict the major features of voluntary move- 
ments. 
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4.2 Effects of reciprocal inhibition gain 

RI plays an important part in translating the descending 
motor commands, N(t) and fl(t), into muscle control 
inputs, uf(t) and u~(t). Simulations were performed with 
a range of RI gains from 0.5 to 5.0 for the fast movement 
(0.22 s and 36 ~ to see how RI gain changes affect move- 
ment control. The movements with various RI gains are 
presented in Fig. 3. It is found that the absolute value of 
RI gain has little effect on the movement kinematics and 
muscle controls, except for the equilibrium trajectory 
(Fig. 3A, B). As illustrated in Fig. 3D, E, and F, joint 
stiffness, muscle control signals, and excitation pulses are 
virtually unaffected by changes in the RI gain. For 
a smaller gain, a larger excursion in equilibrium tra- 
jectory is specified to compensate and the movements 
performed are virtually identical. When the difference 
between the equilibrium and movement trajectories is 
multiplied by the RI gain, it is found that this quantity is 
invariant (Fig. 3C). The value of the cost functional de- 
creases with increased RI gain. This is attributed to the 
reduced excursion in equilibrium trajectory. These re- 
suits show that movement control is insensitive to RI 
gain changes. Thus, the choice for the RI gain is irrel- 
evant to the minimization of the cost functional. It could 
be specified to cope with other objectives of motor control. 

4.3 Effects of excitation pulse height 

The pulse height sets a limit on the extent to which 
the motoneuron pool can be maximally activated. To 
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investigate the impact of this limit on movement control, 
sensitivity analysis is carried out with respect to cha- 
nges in the pulse height. The movement used is of an 
amplitude of 36 ~ and duration of 0.4 s. The height of the 
excitation pulse is varied from 1.0 to 0.2, and the numer- 
ical solutions are shown in Fig. 4. 

It is apparent from Fig. 4 that the qualitative features 
of optimal movements are not altered by the pulse height. 
Muscle controls and velocity profiles still show the 
triphasic pattern and the bell-shaped appearance. Never- 
theless, these movements show significant quantitative 
differences in movement trajectories, amplitude of muscle 
activation, and joint stiffness. In general, a greater pulse 
height tends to induce a quicker acceleration (Fig. 4B). 
Joint stiffness (Fig. 4C) and muscle activations (Fig. 4D) 
are elevated with increased pulse amplitude. A greater 
pulse height also elicits a higher level of co-contraction 
(Fig. 4D). The duration of excitation pulses is generally 
elongated when the pulse height is decreased (Fig. 4E). 
The cost decreases monotonically with the increased 
pulse height (Fig. 4F). While qualitative features of move- 
ment and control are preserved, quantitative details of 
kinematics and muscle activation are strongly affected by 
the height of the excitation pulse. This phenomenon may 
render the higher centers of the brain a simple and 
effective means for tuning motor behaviors. It further 
implies that the pulse amplitude could be chosen to serve 
other purposes, rather than minimizing the cost func- 
tional. 

To compare the kinematic features of these move- 
ments with the fast movement, (16) and (17) are used to 

scale these movements with respect to the fast movement 
shown in Fig. 2. The normalized velocity profiles are 
presented in Fig. 5 together with the reference velocity. It 
is clear that the deceleration phase of all velocities line up 
very well with each other. The difference occurs mainly in 
the acceleration phase of movements. As the pulse height 
decreases, the rising edge of velocity rotates counter- 
clockwise about that of the reference velocity. It is found 
that the velocity profile of a pulse height of 0.3 scales 
better with the reference velocity, among others. This 
indicates the existence of a movement whose velocity 
profile will superimpose best with that of the reference 
movement, and the pulse height of that movement should 
be in the neighborhood of 0.3. It appears that a congru- 
ent velocity profile may serve to normalize the otherwise 
widely different behaviors in movement kinematics and 
to simplify movement control. 

4.4 Pulse height and duration modulation 

The unique role of the excitation pulse in regulating the 
kinematic behavior offers the possibility to generate 
a class of movements with similar velocity profiles. Simu- 
lations were conducted to elucidate how the excitation 
pulse should be modulated to achieve similar velocity 
profiles. In the first set of simulations, movements of 
constant distance (36 ~ were performed with a range of 
durations from 0.22 to 0.5 (s). For each movement, the 
pulse amplitude is adjusted until the scaled velocity 
profile superimposes well with that of the reference. 
These movements are presented in Fig. 6. It is shown 
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that all movement trajectories are similar to each other, 
except for the timing difference. The scaled velocity pro- 
files superimpose well with the reference velocity. As the 
movement duration increases, the joint stiffness decreases 
as expected. The triphasic pattern of muscle control 
signals is preserved, but the magnitude of muscle activa- 
tion decreases monotonically with the pulse height. The 
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Fig. 5. Result after scaling the velocities of the movements  in Fig. 
4 with a reference movement.  The reference movement  is the fast 
movement  presented in Fig. 2. The velocities are scaled both in time and 
in size. Only velocities of four pulse heights are shown along with the 
reference velocity. The velocity of a pulse height of 0.3 scales best with 
the reference movement  among others. 
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pulse duration is generally elongated for a smaller pulse 
height. It is shown that scaled movements with different 
durations can be achieved by pulse height modulation. 

Another set of simulations was conducted to produce 
scaled movements of different distances by keeping the 
pulse height at 0.3 while adjusting the duration of the 
movement, which is equivalent to modulating the pulse 
duration. In these simulations, the movement distance 
ranges from 24 ~ up to72 ~ For each amplitude, the move- 
ment duration is adjusted until the scaled velocity pro- 
files superimpose well with the reference velocity. These 
movements are shown in Fig. 7. Clearly, all movements 
are indeed well scaled and have the sarrie rate of initial 
acceleration, which is due to the fixed amplitude of the 
excitation pulse. For movements of a larger distance, the 
movement duration is generally increased, and so is the 
duration of the excitation pulses (Fig. 7F). The joint 
stiffness and magnitude of muscle activation are slightly 
different to make a movement of greater distance. This 
shows that it is not necessary to use a greater pulse height 
for moving a larger distance. Thus, it is possible to 
generate movements of different distances and durations 
by modulating the amplitude and duration of the excita- 
tion pulse. 

5 D i s c u s s i o n  

In this paper, we presented a model that is capable of 
predicting a wide variety of features of point-to-point, 
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single-joint arm movements, including (1) movement tra- 
jectory, (2) equilibrium trajectory, (3) muscle control in- 
puts, and (4) muscle stiffness. The validity of the model 
predictions can be verified by comparing the qualitative 
features of optimal movements to published data from 
normal human subjects. However, caution must be taken 
when interpreting model predictions in comparison with 
experimental data. This is not to say that the actual neuro- 
muscular control takes place in the exact way the model 
suggests. Instead, the comparison only implies that our 
model is able to replicate the qualitative behaviors of 
voluntary movements, and thus, the results make inference 
about the strategies that may be employed by the central 
nervous system (CNS) for movement planning and control. 

The effort criterion of (1) used in this study penalizes 
unnecessarily high joint stiffness during movement and 
thus limits excessive co-contraction of antagonistic 
muscles. However, an intriguing result from our model is 
that the level of co-contraction is not solely determined 
by the optimal criterion, but is strongly affected by the 
pulse height as well. This is clearly shown in Fig. 4, in 
which the same movement is performed with different 
values of pulse amplitude, ranging from 0.2 to 1.0. The 
level of co-contraction increases with the pulse height, as 
does the joint stiffness accordingly. Thus, the joint stiff- 
ness is minimized only in the sense for a given maximal 
level of pulse height. The movements with a properly 
tuned pulse height are consistent with the observation 
that skilled voluntary movements in humans display 
little or no co-contraction in the antagonists (Gottlieb 
et al. 1989). 

Sensitivity analysis shows that the pulse height is also 
the key parameter in regulating movement kinematics 
and joint stiffness. The choice of pulse height is indepen- 
dent of the optimal criterion but is dictated by the speed 
of movement. This independence lends the higher centers 
of motor control another degree of freedom to influence 
movement control. For example, the pulse height can be 
selected so as to generate a class of movements with 
scaled velocity profiles, as is shown in Fig. 6 and 7. The 
manner in which the amplitude and duration of the pulse 
height are modulated to generate the class of scaled 
movements is consistent with the dual strategy hypothe- 
sis (Gottlieb et al. 1989). Velocity scaling is a well- 
documented feature of voluntary movements in humans 
(Atkeson and Hollarbach 1985). This model, although 
simple, is able to distinguish the process of movement 
control from that of movement organization. The fact 
that an independent variable is required to normalize 
movement velocities indicates that movement scaling is 
not an inherent property of the minimal effort criterion. 

Point-to-point arm movements carried out at normal 
speeds frequently display a triphasic activation pattern, 
where the agonist first fires strongly, followed by a slight- 
ly smaller burst in the antagonist, and ending with 
a small burst of activity in the agonist (Lestienne 1979; 
Marsden et al. 1983; Mustard and Lee 1987; Gottlieb 
et al. 1989; Karst and Hasan 1987). This pattern is clearly 
obtained in the muscle activation inputs of optimal 
movements (Fig. 2E). This feature remains unchanged for 
movements of different durations and amplitudes at nor- 
mal speeds, as well as different pulse heights. This feature 



corresponds to the three-pulse pattern in the excitation 
signal, N(t). The model also duplicates the qualitative 
relation between EMGs and movement speeds observed 
under experimental conditions, which is characterized by 
monotonic functions of the EMG amplitude with respect 
to movement speed (Lestienne 1979; Marsden et al. 1983; 
Karst and Hasan 1987; Mustard and Lee 1987; Flanders 
and Herrmam 1992). A higher speed is always associated 
with an increased agonist activation. This monotonic 
relationship is clearly shown for movements of different 
durations (Fig. 6) and amplitudes (Fig. 7). Another note- 
able feature of optimal movements is the asymmetrical, 
bell-shaped velocity profile, which is a central character- 
istic of voluntary movements (Nagasaki 1989). This 
asymmetry arises from the presence of joint viscosity and 
may not be dominated by the optimal criterion. These 
regularities in motor behaviors reflect, in a large part, the 
necessity to move the joint in the most efficient way. 

The model also predicts a dynamically modulated 
pattern of joint stiffness during movement, which in- 
creases during the movement and coincides with the 
rhythm of the triphasic muscle activations. In addition, 
the temporal variation of the EP during movement dis- 
plays the 'N' shape. First, the EP leads the joint position. 
The difference between the EP and joint position pro- 
vides acceleration of the joint. Then it lags behind the 
joint position to exert a braking torque at the joint. 
Finally, there is a small overshoot of the EP with respect 
to the final position, to restore the joint stiffness neces- 
sary to maintain the terminal posture. Such temporal 
variations of stiffness and equilibrium trajectory can be 
expected from the optimal criterion. This is apparent 
from (1), since a reciprocal variation between the joint 
stiffness and equilibrium trajectory is favorable for min- 
imizing the effort functional. Thus, when a large variation 
in the equilibrium trajectory occurs, such as at the begin- 
ning and end of the movement, the joint stiffness is low. 
However, when the change in the equilibrium trajectory 
is small, such as in the middle of the movement, the joint 
stiffness increases rapidly. Consequently, this leads to the 
'N' shape of the equilibrium trjectory. This shape is also 
necessary to alternate the activations of the antagonist 
muscles for acceleration and braking. 

These outcomes of optimization are in agreement 
with available experimental measurements in subject-in- 
itiated elbow movements. In an attempt to reconstruct 
equilibrium trajectory and joint stiffness, Latash and 
Gottlieb (1991) designed an experiment in which subjects 
were asked to move their elbow joint against a bias load 
with a 'do-not-intervene' instruction. An EP control 
model was used to recover the equilibrium trajectory and 
joint compliance (the inverse of joint stiffness). For fast 
elbow movements, they found that the equilibrium tra- 
jectory led the joint angle initially but lagged behind the 
joint movement toward the end of the movement, show- 
ing a 'N'-shaped profile. Experimental results reveal 
a large phasic increase in joint stiffness in the middle of 
the movement. This empirical evidence substantiates our 
model predictions. In quick point-to-point movements in 
the horizontal plane, the initial and final stiffnesses re- 
quired to maintain static postures are small, while the 
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stiffness required to accelerate and decelerate the joint 
may be much higher. Therefore, an increase in joint 
stiffness is expected to occur during the movement. How- 
ever, in slow and cyclic movements, the pattern of joint 
stiffness variation and the shape of the equilibrium tra- 
jectory may be different (Bennett et al. 1991; Latash 
1992). 

The CNS may use a motor program to compute the 
descending excitation signal, N(t), and the equilibrium 
trajectory, fl(t). The inputs to the motor program are the 
initial and final positions and the pulse height; the latter 
is related to the speed of the movement. In essence, the 
motor program maps the target position into a trajectory 
of the EP that is associated with a temporal pattern of 
joint stiffness. The temporal variation of the joint stiffness 
is determined by the equilibrium trajectory and the exci- 
tation signal. These two descending commands are fur- 
ther translated into neural control inputs to individual 
muscles by a spinal neural network, where the RI plays 
an important role for this transformation. Equations (6a) 
and (6b) indicate that the mechanism of RI guarantees 
a convergent force towards the equilibrium. RI also en- 
hances the efficacy of movement control, because it tends 
to reduce the co-activation of antagonists during move- 
ment. If RI were not present, an equilibrium trajectory 
could still be specified by the motor program, but the 
movement would be performed with a higher degree of 
co-contraction in the antagonists as (6a) and (6b) suggest. 
This is consistent with the observation that deafferenta- 
tion in monkeys did not impair their ability to perform 
movements, but the movements were performed with 
a higher degree of co-contraction in the antagonists 
(Bizzi et al. 1978). This suggests that the overall structure 
of the model corresponds well to the neuromotor control 
system in vertebrates. The model is also useful as a motor 
program for the restoration of movements in neurologi- 
cally impaired patients by functional electrical stimula- 
tion. 
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Appendix. Muscle torque-angle relationship 

In this appendix, the torque-angle relationship of muscle 
is discussed in relation to the equilibrium point control. 
In (2), muscle torque is linearly related to its stiffness. 
This relation implies a nonlinear torque-angle relation. 

To see this clearly, let us take the flexor as an example, 
whose torque-stiffness relation is given by: 

Tf = rrtf Ky + bf (A. 1) 

Since 

dTr 
K f -  

dO 



134 

Joint Torque 

a~ > af IC fora~ 
K'f > Kf 

K f ~  IC for a t 

0 Joint Angle 

The equa t ion  clearly shows the dependence  of 2[ on 
muscle  act ivat ion.  If muscle ac t iva t ion  is increased 
(a~ - af), then 2[ is smal ler  than  2f, which means  tha t  the 
muscle  IC curve is shifted towards  the left, as shown in 
Fig. 8. Similarly,  a decrease in muscle ac t iva t ion  will 
cause the IC curve to shift t owards  the right. 
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