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Perhaps the most surprising feature of the motor system
is the ease with which humans and other animals can
move. It is only when we observe the clumsy movements
of a child, or the motor challenges faced by individuals
with neurological disorders, that we become aware of
the inherent difficulties of motor control.

The efforts of systems neuroscientists to understand
how the brain controls movement include studies 
on the physics of the musculoskeletal system, neuro-
physiological studies to explore neural control, and
investigations of motor behaviour (BOX 1). As knowl-
edge continues to grow in each area, it becomes more
challenging to link these levels of the motor system and
to maintain a cohesive framework within which to
describe motor function or to interpret the role of a
brain region.

Take, for example, the primary motor cortex (M1).
It has been known for more than 100 years that M1 is
important for controlling volitional movements, but
more detailed statements on its function vary greatly1.
Studies of neural activity in M1 tend either to relate
neural activity to details of motor output, thereby 
connecting motor cortical function to the motor
periphery, or to relate neural activity to hand motion,
thereby connecting motor cortical function to the goals
of motor behaviour. Which view is correct? Are both
correct, and if so, how?

The goal of this review is to bring all three levels of
the motor system together, to illustrate how M1 is
linked to limb physics and motor behaviour. The key
ingredient is the use of optimal feedback control as a
model of motor control in which sophisticated behav-
iours are created by low-level control signals (BOX 2).
I begin with a brief review of each level of the motor
system, followed by a more detailed description of how
optimal feedback control predicts many features of
neural processing in M1.

Limb mechanics
The peripheral motor system is a complex filter that 
converts patterns of muscle activity into purposeful
movement. The basic building block of motor output is
the motor unit — a motor neuron and the muscle fibres
it innervates. The conversion of patterns of motor unit
activity into muscle force depends on muscle fibre length,
velocity, histochemical type and history-dependencies
such as fatigue2–6. Muscle force is also influenced by 
architectural features, including tendon and fascicle
length, the orientation of muscle fibres (pennation angle)
and passive muscle elasticity7,8. Muscle morphometry
varies widely even across synergistic muscles9,10. The
effective joint torque that is generated by a muscle
depends on its mechanical advantage (moment arm)
about that joint, which often varies with joint angle11.
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where 
1

and 
2

reflect properties of the upper arm and
forearm/hand, respectively, and s and e denote shoulder
and elbow, respectively. Muscular torque at a joint
depends on several parameters that relate to each 
segment’s moment of inertia (I), length (l), mass (m)
and centre of mass (c)1.

These equations of motion mean that there is no
longer a one-to-one mapping between joint motion and
muscular torque, so that torque at one joint can generate
motion at other joints12,13. The mechanics of multi-joint
movements cannot be predicted from the physics of
single-joint movements14,15 (BOX 3). The equations 
of motion expand when more joints are involved and
when joints have multiple degrees of freedom.
Furthermore, a hand-held object or environmental
forces such as ground reaction forces during walking

Skeletal organization has a profound influence on
the conversion of muscle forces into limb motion. Limb
mechanics are relatively straightforward when move-
ment is constrained to occur at only a single joint and
with only one degree of mechanical freedom (flexion or
extension). MUSCULAR TORQUE (T) is defined simply as

, where I equals the moment of inertia, and     is
the angular acceleration of the joint. This angular 
version of the familiar equation, force = mass × linear
acceleration, means that there is a direct relationship
between joint motion and torque. This simple relation-
ship disappears when movement involves more than
one joint. The equations of motion to describe muscular
torque at the shoulder (Ts) and elbow (Te) are 
(equations 1,2):

Box 1 | Three main divisions of motor system research

The musculoskeletal system is made up of
muscles that act on a multi-articulated
skeleton. The translation of limb
movement from muscle activity is
influenced by muscle and limb mechanics.
Motor behaviour describes how the limb or
body moves during a motor task, reflecting
the combined action of the neural circuit
that controls movement and the
mechanical properties of the limb. The
neural basis of movement examines how
different regions of the brain and spinal
cord control motor output.

The CNS is generally viewed as having a
hierarchical organization with three levels
— the spinal cord, brainstem and cortex.
The spinal cord is the lowest level, including
motor neurons, the final common pathway
for all motor output, and interneurons that
integrate sensory feedback from the skin,
muscle and joints with descending
commands from higher centres. The motor
repertoire at this level includes
stereotypical multi-joint and even multi-
limb reflex patterns, and basic locomotor
patterns.

At the second level, brainstem regions
such as the reticular formation (RF) and
vestibular nuclei (VN) select and enhance
the spinal repertoire by improving postural control, and can vary the speed and quality of oscillatory patterns for
locomotion.

The highest level of control is provided by the cerebral cortex, which supports a large and adaptable motor repertoire.
The diagram illustrates some of the key regions that are involved in goal-directed reaching movements. (For more
complete details, see REF. 48.) Motor planning and visual feedback are provided through several parietal and premotor
regions. The primary motor cortex (M1) contributes the largest number of axons to the corticospinal tract and receives
input from other cortical regions that are predominantly involved in motor planning. Somatosensory information is
provided through the primary somatosensory cortex (S1), parietal cortex area 5 (5) and cerebellar pathways. The basal
ganglia (BG) and cerebellum (C) are also important for motor function through their connections with M1 and other
brain regions. (RN, red nucleus; V1, primary visual cortex; 7, region of posterior parietal cortex; dPM, dorsal premotor
cortex; SMA, supplementary motor area; PF, prefrontal cortex.)
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(or moment). Each muscle
generates force from muscle
contraction (active) and elastic
forces (passive). Muscular torque
for a muscle equals its total force
multiplied by its moment arm
(the perpendicular distance
between a muscle’s line of action
and the joint centre of rotation).
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Motor behaviour
Body movements are smooth, despite the complexities
of the peripheral motor system. For example, hand 
trajectories remain relatively straight from start to end,
and hand velocity follows a smooth, bell-shaped pro-
file19,20 (FIG. 1). This smoothness at least partially reflects
the low-pass filter properties of muscle21. Perturbations
of the hand during slow movements are corrected back
towards the unperturbed trajectory, indicating that
feedback is used to maintain a relatively straight hand
trajectory, at least under these conditions22. Such simple
features of hand motion mean that the CNS compen-
sates for the complexities of limb mechanics.

The motor system can also adapt to changes in 
the mechanical environment. Lackner and DiZio23

observed how subjects performed reaching movements
before, during and after they sat in a room that rotated
at 6 rpm, creating a coriolis force on the limb. When
subjects performed their first reaching movements 
with the right arm in the rotating room, after the otolith
organs no longer sensed room rotations, the move-
ments were curved to the right. However, after several
trials, reaching movements returned to relatively
straight trajectories, similar to those seen before the
room began to rotate. When the room stopped rotating,
initial reaches were curved to the left, and subjects 
perceived that a strange force had pushed their limb.
Again, reaching movements quickly returned to near
straight trajectories. When a hand-held robot applied
loads during reaching, the results were similar24.
Many studies have shown that relatively straight hand
trajectories are preserved after various perceptual and
mechanical perturbations25–28.

Although movements are smooth, motor perfor-
mance shows considerable trial-to-trial variability,
which partially reflects inherent noise in the system
related to both sensory and motor signals29–31. However,
some features of motor performance, particularly 
task-relevant features, are tightly controlled32–34.
For example, fluctuations in joint configurations that
influence the orientation of a subject pointing a laser at
a spatial target are reduced, whereas patterns that do not
influence laser orientation are more variable35. There is a
growing body of literature that illustrates how the
motor system considers the influence of noise and 
variability in motor planning and control36–40.

Motor behaviour shows several key features.
Movements are smooth, highly adaptable and show
selective patterns of variability that reflect economy of
task-relevant features of motor performance. In spite 
of the complexities of limb mechanics, a hallmark of
motor performance is smooth and relatively straight
hand trajectories.

Neural centres of sensorimotor control
Sensorimotor function is created from a highly 
distributed circuit that includes the spinal cord,
brainstem and cerebral cortex (BOX 1). The spinal level 
supports the ‘most automatic’ movements, including
reflexes, as well as more complex multi-joint and multi-
limb sensorimotor responses. The cortex supports the

can markedly influence limb mechanics13. This article
largely focuses on proximal-arm movements, but there
are more challenging mechanical problems for hand16,17

and orofacial18 motor function.

Box 2 | Optimal feedback control

For a review of this topic, see REF. 121. The basic principle of optimal feedback control is
that feedback gains are optimized on the basis of some index of performance (see panel a,
modified, with permission, from REF. 187 © (2002) Macmillan Magazines Ltd). Such
controllers correct variations (errors) if they influence the goal of the task; otherwise, they
are ignored. Optimal state estimation is created by combining feedback signals and
efferent copy of motor commands. The latter uses a forward internal model to convert
motor commands to state variables.

A key feature of optimal feedback control can be understood by considering a problem
where a system must attain a value of 2.0 using two control signals (b)38. Nominally, each
control signal could be selected to be 1.0 (X

1
= X

2
= 1.0).When these commands are

implemented, noise in the system might modify the output such that both signals equal
1.1. The best strategy is to reduce both of the control signals towards 1. In another case,
one control signal equals 1.1, but the other equals 0.9. Both values have changed, but the
objective to attain a total of 2.0 has been attained, so it is better not to modify the signals.
The left diagram illustrates how initial errors in control signals (round circle) are corrected
towards a line where X

1
+ X

2
= 2.0 (thick oval). The errors show the effects of the control

signals at four different initial states, all of which point towards the line that defines the
task goal. The right diagram illustrates how initial errors (large round circle) are reduced
equally (thick smaller circle) by a traditional controller. Note that the arrows signifying
corrective signals all point towards the middle of the circle, the nominal control signals.

The middle diagram compares the final errors of the optimal and traditional controllers.
The correct solution falls along the line X

1
+ X

2
= 2.0, and distances perpendicular to this

line reflect errors in overall performance. The traditional controller creates the greatest
errors and the optimal controller minimizes these larger errors.

Another interesting feature of optimal feedback controllers is that desired trajectories do
not need to be planned explicitly but simply fall out from the feedback control laws. The
middle panel of c illustrates the trial-to-trial variability of hand motion when subjects hit a
ping-pong ball. This variability in performance is lost if a controller is optimal for
trajectory tracking, but is captured by an optimal feedback controller that is based on
global task errors.
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The activities of the cerebral cortex can be divided
into two general problems in motor control — planning
and execution. Motor planning reflects a range of issues
that are related to the identification and selection of
goals and strategies. Several cortical regions, including
many parietal and frontal regions, participate in motor
planning47–51.

By contrast, M1 is more important for the execution
of goal-directed and skilled motor tasks42,43. Lesions of
M1 in monkeys initially cause severe difficulties in 
voluntary movement, which remain permanent for
more challenging distal limb motor tasks52. M1 has an
intimate relationship with the motor periphery. It
receives a rich mixture of sensory feedback from the
motor periphery, with many neurons responding
strongly to passive joint movements or skin contact.
Most descending signals from the cortex pass through
spinal interneurons53. However, some neurons in M1
(corticomotor (CM) neurons) form synaptic connec-
tions directly onto spinal interneurons54–56, allowing M1
to have a more direct and selective influence on muscle
activity. CM neurons are more prevalent for distal limb
musculature related to the hand42,57, and their numbers
and influence increase with the level of dexterity across
primate species58,59.

Bridging the gaps
The discussion above describes three features of the
motor system. First, the physics of moving even two
joints is complex. Second, humans can generate a range
of skilled motor tasks. In reaching tasks, the trajectory of
the hand tends to be conserved across conditions, but
there is also considerable trial-to-trial variability in the
path of the hand. Third, motor control is created by a
distributed and interconnected circuit in which M1 has
a crucial role for volitional, goal-directed tasks. An
important problem is to understand the links between
motor behaviour, limb mechanics and neural control.
How do neural circuits create purposeful movements
from the complex, nonlinear musculoskeletal system?
Does the neural activity of M1 reflect the control 
of high-level features related to behavioural goals, or of
low-level features related to the motor periphery? In
effect, this question reflects the age-old problem: does
the primary motor cortex code muscles or movements?

M1 and motor behaviour. Relatively straight hand 
trajectories and bell-shaped velocity profiles during
reaching indicate that the motor system might directly
control hand motion20,22,60,61. Neural signals in some
brain region(s) would explicitly signal hand trajectory,
and these commands would be converted into patterns
of muscle activity, potentially through intermediate 
representations62,63. For the online control of hand
motion, proprioceptive signals would need to be 
converted from muscle to hand space, but it would 
be relatively simple to compute from vision.

The idea that hand trajectory is controlled online 
is consistent with electrophysiological recordings 
from M1 in non-human primates during whole-limb
movements. More than 20 years ago, Georgopoulos and

‘most voluntary’ motor tasks, such as reaching for an
object of interest, and learned associations, such as 
stepping on the car brake when a traffic light turns red.
Voluntary behaviours often include more automatic
components — for example, a voluntary reach of the
hand to a spatial target invokes automatic postural
adjustments to stabilize the body.

Neural recordings from monkeys are often used to
examine how the activity of individual neurons relates
to sensorimotor function. The anatomical and physio-
logical properties of the limbs9,41 and CNS are similar
across primates42,43, and species such as Macaca mulatta
can learn sophisticated motor behaviours (see, for
example, REFS 44–46).

Box 3 | Complexities of multi-joint movements

Point-to-point reaching movements are quite simple with regards to the motion of the
hand in space. Hand motion is relatively straight for reaching movements in different
spatial directions (panel a). Hand movements with similar magnitudes but in different
directions produce large variations (anisotropies) in the magnitude of joint motion,
torque and power.

Panel b shows a polar plot where direction defines the spatial direction of hand motion
and the distance from the origin reflects the magnitude of joint motion.Angular velocity is
greatest at the shoulder (blue) and elbow (green) for movements towards or away from the
monkey, whereas angular motions are small for movements to the right and left. This
variation in joint motion for different directions of movement is a property of limb
geometry. The magnitude of angular motions vary with limb position so that movements
starting from a more extended posture create larger anisotropies in joint motion, whereas
starting positions closer to the body are less anisotropic.Variations in muscular torques do
not simply follow the patterns of joint motions. Peak muscular torque at the shoulder is
greatest for movements to the left and away, and towards and to the right, whereas elbow
muscular torque is greatest for movements in the opposite quadrants (c). The magnitude
of angular motions at the shoulder and elbow are fairly similar, but there is a large
difference in the magnitude of shoulder and elbow muscular torque. Joint power — joint
angular velocity multiplied by muscular torque — reflects the amount of energy that is
transmitted to the limb from muscles at each joint (d). Peak torque is greatest at the elbow
for movements away from and towards the body, whereas it is greatest at the shoulder for
movements in a more clockwise direction. Nm, Newton metres; Rad, radians; W,Watts.
Modified, with permission, from REF. 15 © (2003) American Physiological Society.
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A lively debate remains on the interpretation of
correlates of hand motion taken from neural activity in
M1 (REFS 82–85). Theoretical studies have shown that
neural activity can predict the direction of hand motion
even if neurons code other details of motor performance
such as muscle activity or joint motion86–88.As described
below, neural activity correlates with many features of
movement other than hand motion. Furthermore,
recent studies in which reaching movements were per-
formed with the arm in the horizontal plane found that
population vectors did not always predict the direction
of motion89,90 (FIG. 2). Population vectors tended to be
skewed either away from and to the left of the monkey,
or towards and to the right of the monkey.Vector length
varied substantially even though hand velocity remained
invariant across spatial directions.

Clearly, for monkeys to reach to spatial targets,
population vectors are not required to point in the
direction of hand motion. More accurate mathematical
techniques can be used to predict hand motion88, but
such techniques can predict almost any other variable 
of movement. Estimates of hand direction can be 
computed from shoulder and elbow muscle activity87,
but that does not mean that these muscles directly 
control hand motion beyond the obvious link between
muscular force and limb motion.

Although concerns have been raised regarding the
importance of neural correlates of the direction of hand
motion in M1, such correlates remain appealing
because they directly link neural processing in the brain
to a key feature of motor behaviour34,60–62.

M1 and the motor periphery. A second stream of
research relates neural processing in M1 to the motor
periphery. This approach can be viewed within the
framework of internal models, neural processes that
mimic the properties of the limb or the environ-
ment23,24,91. Such models reflect the association between
motor commands and limb movement, or vice versa.
The concept of internal models has been particularly
influential for studying human sensorimotor control
and motor learning.

There is evidence that M1 behaves like or forms part
of an inverse internal model, converting spatial goals or
hand trajectories into detailed motor patterns to control
the limb musculature50,92. Such a framework explains
many of the characteristics of neural activity in M1,
such as correlations with patterns of muscle activity93,94.
More importantly, activity in M1 before the onset of
movement is altered by peripheral factors such as the
position of the limb in space70,95, arm geometry76, joint
power89 and force output45,75. All of these provide corre-
lates of an internal model for initiating movements.

Although the concept of internal models helps to
link M1 activity and function to the management and
control of limb mechanics, this framework is rather
vague. It helps to explain why M1 activity reflects many
of the features of the motor periphery, but it does not
explain how the brain can create emergent behaviour
such as relatively straight hand paths and bell-shaped
velocity profiles. Some neurons in M1 reflect features of

colleagues trained monkeys to make whole-limb reaching
movements in different directions, and related neural
activity to hand motion64. The activity of individual 
neurons in M1 was broadly tuned to the direction of
hand motion — activity was maximal for motion in the
cell’s preferred direction, and decreased progressively for
movements away from this (FIG. 2). A population vector
that compared activity across the ensemble of recorded
neurons could predict the direction of hand movement65.
Subsequent studies have shown that neural activity in M1
correlates with many hand-related variables, including
hand direction, speed and movement distance66,67. Neural
correlates of hand motion are found in parietal area 5
(REF. 68), the primary somatosensory cortex69, the dorsal
premotor cortex66,70, the cerebellum71, the dorsal spino-
cerebellar tract72, muscle afferents73,74 and even proximal-
limb muscle activity75,76. It has been suggested that neural
activity related to hand motion provides a higher-order
common language that allows M1 to communicate with
other brain regions77.

Although neural correlates of hand motion in M1
provide an important link to motor behaviour, it leaves
the spinal cord with the problem of converting these
high-level signals into patterns of muscle activity78.
In theory, the spinal cord could support a mapping
between hand motion and proximal-limb muscle activi-
ties. The spinal cord can create complex multi-joint and
multi-limb reflexive motor responses79–81.

However, a key feature of volitional motor control is
the ability to adjust motor patterns on the basis of the
behavioural context. In addition, loads can be applied
anywhere on the body. Therefore, if some descending
commands to the spinal cord specified the kinematics of
hand motion, other descending signals would be
required to consider environmental forces.
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Figure 1 | Features of motor behaviour. a | Morasso19 illustrated several key features of how
humans made point-to-point reaching movements in the horizontal plane using a mechanical
linkage to monitor motion of the hand in space. α and θ denote shoulder and elbow joint angles,
respectively. b | Trajectories of the hand between the spatial targets (T1–T6) are relatively straight
from the start to end of movement. c | The velocity of the hand shows a characteristic bell-
shaped profile with peak hand velocity proportional to movement distance. Modified, with
permission, from REF. 19  (1981) Springer-Verlag.
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cortex create deficits in decisional processes and 
strategies of motor action rather than in online con-
trol97–101. Motor actions are still coordinated, but are
either delayed in execution or inappropriate for the
behavioural context. With regards to online control,
temporary inactivation of the supplementary 
motor area has no substantial effect on M1 activity or
on behavioural responses to perturbations applied to
the wrist101.

After 40 years of single-cell neural recordings in
monkey M1, there is evidence that M1 neurons can code
anything from hand direction to detailed patterns of
muscle activity90. Such diversity might be a key 
feature of M1 function, reflecting a number of sensori-
motor transformations62,63. As described above, neural
processing in M1 is consistent with its role as part of an
internal model that converts global goals into motor
commands to the periphery50,92. However, both of these
frameworks provide descriptions of neural activity
rather than a formal control theory for limb motor 
control.

The oculomotor field has identified in detail many
features of the motor circuitry that is involved in eye
and gaze control102,103. The oculomotor system lacks
much of the complexity of limb motor function, and
the activity of motor neurons and pre-interneurons 
in the brainstem can be recorded. However, another key
to the success of these studies is that they took advan-
tage of formal control models to guide experimental
work104,105. Similar control models were introduced 
to characterize limb movement and neural circuitry 
predominantly in the spinal cord106, but they are limited
in their ability to reflect the complex anatomical and
physiological properties of neural circuits even at this
level107, let alone as a useful model of brain function
related to volitional movement control. EQUILIBRIUM POINT

MODELS incorporate the use of spinal stretch reflexes 
in descending commands108, but cannot explain end-
point errors induced by applied loads23,24,109 and again do
not consider supraspinal processing. Some models have
been developed to interpret the role of specific cortical
regions and the patterns of activity of their constituent
neurons for specific tasks, such as goal-directed limb
movements110,111, but they do not replicate the natural
patterns of variability in motor output.

Optimal feedback control
Optimal control has been used to interpret motor
behaviour by optimizing motor commands for some
aspect of motor performance (such as maximal jump
height or minimal end-point errors)30,112–116. Optimal
feedback control modifies feedback signals to optimize
an index of performance, creating a complex link
between sensory signals and motor output (BOX 2). It has
been used to interpret various motor behaviours,
including spinal reflexes in the cat hindlimb117, human
postural balance118 and volitional motor control38,119.
The ability of the motor system to adapt and use various
sensory signals for feedback control is exemplified by
our ability to use cutaneous signals from light finger
contact to stabilize standing posture120.

movement such as target or hand direction95,96. Is this
proportion of neurons sufficient to provide online 
control of the hand?

If M1 considers limb mechanics, perhaps other 
cortical regions support on-line control of hand
motion. However, candidate regions tend to be more
involved in planning than motor execution. Lesions in
the dorsal premotor cortex or supplementary motor

EQUILIBRIUM POINT MODELS

A class of models that assume
the CNS can control the
equilibrium position established
by the balance of force that is
generated by the spring-like
behaviour of muscle.
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Figure 2 | Neural activity in primary motor cortex (M1) during reaching. a | Mean hand
trajectory is shown in the central panel for movements to each of eight spatial targets surrounded
by the corresponding response of the neuron for each target. The rasters at the top of each panel
illustrate the times of action potentials for five trials. Data are aligned to movement onset (vertical
dashed line). Below each raster are the mean (blue) and standard deviation (green) of the
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preferred direction (PD) of the neuron. b | Distribution of preferred directions of neurons in M1.
Each dot denotes the preferred direction of an individual neuron. Distribution is based on neural
activity only during the reaction time period, although similar results were found for any epoch
during reaction and movement time. (n = 154, P < 0.001.) c | Population vectors based on
reaction time activity of neurons are denoted by arrows with their base attached to the
corresponding direction of hand motion for the initial 100 ms of movement (dashed line). Orange
and blue arrows denote whether the difference between the direction of hand motion and the
population vector is significant or insignificant, respectively. Under each population vector is the
dispersion of vectors formed by random resampling of the cell population with replacements.
Modified, with permission, from REF. 90  (2003) Elsevier Science.
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can vary with time, as observed for peripheral feedback
during locomotion124. Todorov and Jordan38 have 
proposed that such flexibility in the properties of the con-
troller might be a valuable conceptual framework for
interpreting volitional motor behaviour such as reaching
and grasping. They show that such a controller captures
many of the common features of human movement,
including goal-directed corrections, multi-joint synergies
and variable but successful motor performance. Several
features of motor performance emerge despite not being
explicitly defined in the feedback controller.

The observation that reaching movements are 
relatively straight with bell-shaped velocity profiles 
provides strong circumstantial evidence that the 
CNS directly controls hand trajectory. However, hand
trajectory does not have to be directly controlled if the
brain behaves like an optimal feedback controller.
Behavioural goals (such as reaching to a spatial target)
can be converted directly into feedback laws to convert
state variables into motor commands. Hand motion
simply falls out as the optimal controller adjusts motor
output on the basis of statistical variations in state 
variables created by external perturbations and system
noise. Errors that influence the goal of the task are 
corrected, those that do not are ignored. Even if hand
trajectory itself becomes the goal of a task such as slow
reaching22, it does not need to be explicitly defined in
the controller.

An optimal feedback controller has several key 
components121. First, optimal control needs an optimal 
estimate of the state of the system (STATE VARIABLES), which
is generated from afferent feedback from sensors 
combined with efferent copy of motor signals. In
humans, both afferent feedback and efferent copy are
used to estimate ongoing motor performance122.
Support for the use of efferent copy in motor control is
provided by observations that motor commands can
undergo rapid compensation before sensory feedback
can influence them123. State variables can reflect not only
the properties of the body, but also information related
to grasped objects116.

Second, feedback gains to convert these state variables
into motor signals are not fixed, but are adjusted based
on the specific goals of a behaviour. This is essentially an
optimization problem that manipulates feedback gains
to maximize or minimize some index of performance.A
property of optimal feedback controllers is that sensed
variations in state variables lead to corrections if they
adversely affect motor performance, but are ignored 
if they do not. Todorov and Jordan38 define this as a
‘minimum intervention’ principle. This selective correc-
tion of errors is particularly important for a system with
noise, which is prevalent in both motor output30 and
sensory signals29,31.

By its nature, optimal control modifies feedback
gains to suit the overall goals of the system. These gains

STATE VARIABLES

Estimates of the position of the
limb or forces acting within or
on the limb (or their derivative).
State variables are transformed
by corresponding feedback gains
to generate motor output
commands.
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Figure 3 | Response of a primary motor cortex (M1) neuron to mechanical perturbations in different contexts. Each panel
illustrates wrist position, the instantaneous firing rate and a raster display of the response of the neuron in individual trials. The top
row of panels shows responses for pronation movements and loads, and the bottom row of panels shows responses for supination
movements and loads. Each column illustrates the response of the neuron in a different context, as defined in the diagram. Note the
change in the response of the neuron to mechanical loads applied when generating a small movement (small + torque), when
holding a fixed position (torque pulse holding) and at the start of a large movement (preballistic torque). Reproduced, with
permission, from REF. 139  (1978) Karger.
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Optimal feedback control that is based on low-
dimensional state variables is consistent with the most
obvious feature of M1 — a coarse somatotopic repre-
sentation of the motor periphery with neurons related
to one or a few joints126,127. Selective changes in mechani-
cal loads applied to the elbow or shoulder joints during
posture and movement illustrate that some neurons are
sensitive to loads at both joints, whereas others respond
to loads at only one joint45,128. Corticomotor neurons
synapse on motor neurons from a few muscles that span
one or more joints54,57. These observations indicate that
neurons are exclusively associated neither with the entire
limb nor with a single joint. Rather, neurons reflect a
portion of the motor periphery that might or might not
span multiple joints.

Like M1, an optimal feedback controller should
receive a rich mix of sensory signals (for review, see 
REFS 42,43). Many neurons in M1 respond to passive
movement of one or more joints76,129, and this sensory
feedback often overlaps with their motor output76,130,131.
Many neurons respond to passive and active movements
at multiple joints, but the association between these 
sensory and motor representations remains poorly
understood. Neurons related to the distal limb often
respond to passive movements of the wrist and digits, or
to cutaneous stimulation on the hand, reflecting the
importance of cutaneous input for hand function132–134.
Neurons in shoulder-related regions of cat M1 often
have cutaneous receptive fields on the paw135, reflecting
the link between walking surface stability and proximal
muscle control for quadrupedal locomotion.

As expected for feedback control, M1 neurons
respond quickly to limb perturbations. Many neurons
respond within 20 ms, only slightly slower than the 
primary somatosensory cortex136,137. More importantly,
neural responses in M1 can be modified by behavioural
context, as predicted by optimal feedback control theory.
Sensory responses to passive limb movement can be
viewed as a default pattern of sensory feedback and
there seems to be almost an equal proportion of
neurons with the same or opposite responses for active
and passive movements at a joint138. However, such 
passive responses seem to be modifiable, as 90% of
‘sensory’ responses to mechanical perturbations
applied during posture are opposite to their responses
for active movements139. This provides only indirect
evidence that the responses of neurons to sensory 
stimuli are altered depending on context (passive
motion versus actively maintaining a constant limb
position). FIGURE 3 shows another example of changes
in M1 activity with behavioural context139. The
responses of M1 to load vary depending on whether the
monkey is trying to maintain a constant joint position
or is making a small or large movement. Although such
studies illustrate the adaptability of neural responses to
mechanical perturbations, it remains to be verified
whether and how such changes reflect an optimal strat-
egy. More complex changes in the response to sensory
feedback are predicted by optimal feedback control,
particularly for multi-joint motor tasks that create
broader and richer behavioural goals.

This property of optimal feedback controllers greatly
changes the expected computational processes per-
formed by the motor system. There is no need to convert
neural signals explicitly into a representation of hand
motion for motor execution. Therefore, the neural corre-
lates of hand motion that can be found throughout the
sensorimotor system might simply be epiphenomena125.

Not only does hand trajectory not need to be explicitly
computed, neither do any other intermediary representa-
tions. The distribution of muscle afferents do not seem to
be optimal for any specific representation of limb posi-
tion29. If there are no substantive restrictions on the state
variables used by the controller, signals related to the
motor periphery could simply reflect their natural co-
ordinates. For primary muscle spindles, natural represen-
tation is a combination of muscle length and velocity.
Convergence of various receptors would create rich, but
low-dimensional state variables and the motor system
would develop feedback laws to act on these signals.

Implications of optimal feedback control for M1.
If optimal feedback control is a useful computational
theory for describing volitional motor control, it might
also be valuable for interpreting the neural basis of
volitional motor control. This control theory is consis-
tent with several features of neural processing in M1,
including neurons that reflect only part of the motor
apparatus, and rich afferent feedback that is adaptable
based on behavioural context.
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Figure 4 | Effects of dentate cooling on the discharge pattern of a primary motor cortex
(M1) neuron. Flexion or extension loads are either abruptly applied or removed at the start of either
flexion or extension movements under control conditions (conditions 1, 3, 5 and 7). Each panel
illustrates elbow motion (mean, blue solid line, and standard deviation, green dashed line) and the
instantaneous firing rate of the neuron. Conditions 2, 4, 6 and 8 are the corresponding movements
and cell discharge pattern when the dentate nucleus was cooled temporarily. Note that the early
response of the M1 neuron (green column) remains the same before and during cooling, but the
later response started 20 ms after the perturbation is altered with dentate cooling. Reproduced,
with permission, from REF. 144  (1975) Elsevier Science.
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the importance of sensory feedback to M1 processing
with more recent advances on multi-joint mechanics,
motor behaviour and motor planning.

Optimal feedback control beyond M1. A complete
description of how optimal feedback control can be
applied to other brain regions is beyond the scope of
this review, but there are a few issues worth noting.
Optimal feedback control makes an important distinc-
tion between motor execution and motor planning.
This segregation between control and goals seems to be
reflected in the cortex, with M1 being more involved in
the former, and other frontal and posterior parietal
regions being more involved in the latter50. However, the
segregation is not complete; neural activity during
motor preparation can be observed in M1 (REFS 152,159)

and at the spinal level160.
Visual signals transmitted through the posterior

parietal cortex are important for motor planning and
the online control of movement153,154,161,162. Therefore, the
posterior parietal and premotor cortex might be
involved in both planning and online control, with 
individual neurons participating in both processes163.

State variables that are based on visual feedback
(and probably other sensory signals) seem to be modi-
fiable. For example, after a monkey has been trained 
to use a rake to grab food morsels, neurons in the 
intraparietal sulcus that normally respond to visual
stimuli near the hand now also respond to stimuli near
the rake46. Such plastic changes in vision-related neural
responses might explain how humans and monkeys
can easily use computer-based visual feedback to 
control motor actions.

Subcortical networks through the basal ganglia and
cerebellum are also important for sensorimotor control.
In particular, the cerebellum has long been associated
with motor control, coordination and learning91,164–167,
and almost certainly has a crucial role in online feed-
back control. Damage to this structure leads to motor
problems for tasks that involve multiple joints164,168.
The anatomical and physiological properties of the
cerebellum are consistent with several aspects of
optimal feedback control. The interpositus nucleus and
intermediate cerebellum receive proprioceptive feed-
back on motor performance from the ascending 
spinocerebellar tracts and also receive a strong projec-
tion from M1 through the pontine nuclei. This mixture
of afferent signals and efferent copy provides the ideal
conditions for optimal state estimation related to the
motor periphery91,169. The dentate nucleus and lateral
cerebellum are also probably involved as part of an 
optimal feedback controller. Several frontal and parietal
cortical regions project to and receive input from the
dentate nucleus through the pontine and thalamic
nuclei, respectively165. However, each cortical region
projects to largely separate regions of the dentate
nucleus and cerebellar cortex, creating distinct cerebro-
cerebellar loops170,171. Each of these loops might 
participate in distinct processes including task selection
(motor planning), optimal state estimation and feed-
back control. Monkeys trained either to assist or to resist

Long-latency muscle responses (> 60 ms), which are
generated largely through the transcortical pathway140,
illustrate the potential capability of this feedback 
system141. When the limb is perturbed from a stationary
position, the short-latency muscle response (< 60 ms)
that is generated at the spinal level parallels the pattern
of joint motions (the simple stretch reflex). By contrast,
the long-latency response produces the requisite 
motor patterns to oppose the load, indicating that 
the transcortical pathway considers the influence 
of intersegmental dynamics in converting sensed 
limb motion into compensating motor responses.
Furthermore, this long-latency response is modified to
incorporate the influence of mechanical loads during
motor learning142,143.

Several brain regions project to M1 and probably 
provide feedback from the motor periphery, including
the primary somatosensory cortex, posterior area 5 
and thalamic input from the cerebellum through the
interpositus and dentate nuclei42. The earliest response in
M1 during mechanical perturbations seems to be pro-
vided by the primary somatosensory cortex, as dentate
cooling does not influence these early responses144–146.
However, interpositus neurons respond to mechanical
loads within 20 ms (REF. 147). Later responses in M1,
starting about 60 ms after a perturbation, seem to be
strongly influenced by the cerebellum145,148 (FIG. 4). How
these different pathways contribute to feedback control
through M1 and the brainstem regions remains an
important problem.

The description above integrates feedback from the
motor periphery into motor cortical function, but 
visual feedback is also important for volitional motor 
control149–151. A proportion of neurons in M1 signal
movement or target direction independent of arm 
configuration76,95,96,152. They are often assumed to provide
a higher-level representation of movement related to the
spatial direction of movement, but such activity might
also signal visual feedback of motor performance. Such
feedback signals of hand motion are computationally
equal and not hierarchically above feedback signals from
the motor periphery that are ‘muscle-like’. Furthermore,
visual feedback is highly task dependent. For example,
when writing with the tip of the elbow in space, visual
feedback of motor performance would reflect elbow and
not hand motion. Although vision is important for
online feedback153,154, loss of proprioception has a more
profound effect on coordinated body movements155–157.

The ‘transcortical servo’ hypothesis that was put 
forward by Phillips more than 30 years ago emphasized
the importance of feedback signals in motor control
and was influential in the 1970s for interpreting 
motor cortical function on the basis of single-joint
movements158. The predominant use since the 1980s of
a whole-limb reaching paradigm to study motor behav-
iour, and the practice of relating neural activity to hand
motion, opened up issues related to the use of vision for
action, motor planning and the early, feedforward stage
of motor execution. The value of optimal feedback 
control as a computational theory is that it brings these
largely distinct fields of study back together, recognizing
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signals will have crucial consequences in one behavioural
context and be irrelevant in another. If the long-latency
muscle response reflects the feedback laws of an optimal
feedback controller, then transient perturbations during
different tasks should elicit behaviourally relevant motor
responses. Neural recordings in various brain regions
will help to disseminate how such feedback control laws
are created by the highly distributed motor system.

The mathematics of optimal feedback control are
particularly challenging. The brain does not implement
the formal mathematical methods that are available to
compute gains of optimal feedback controllers, but how
neural networks create and learn these properties is an
interesting and important process177–179. M1 is intimately
involved in motor learning, and many studies have
investigated plasticity and changes in neural processing
in M1 during learning and adaptation180–183. Optimal
feedback control requires substantive learning at two
points in the controller, one for optimal state estimation
and the other for optimal control laws. The learning
rules and mechanisms are different for these two
processes, with the former optimizing estimates of the
state of the system, independently of behavioural goals .
By contrast, the latter must also use more global rewards
that are related to behavioural success or failure.

The motor system is not just one big feedback loop;
rather, it is highly distributed and provides multiple path-
ways through which feedback can influence behaviour.
Besides M1, several other brain regions contribute to
descending signals to influence spinal processing53. Two
regions that might be of particular interest for feedback
control are the magnocellular red nucleus, which projects
to the spinal cord and receives substantive input from
both M1 and the cerebellum165,184, and area 3a in the 
primary somatosensory cortex, which receives substantial
input from muscle proprioceptors and projects to the
intermediate and ventral horn of the spinal cord137,185.

Where and how visual and proprioceptive signals are
integrated for estimating state variables and feedback
control laws at the single-cell level remains poorly
understood. Clearly there is substantive integration 
of different sensory systems for position sense and
kinaesthesia186. Visual feedback is assumed to take 
predominantly a cortical path to M1 through the 
parietal and premotor cortex48. There are several poten-
tial pathways for proprioceptive feedback to reach M1,
including through the primary somatosensory cortex,
posterior parietal area 5 and the cerebellum42. As stated
earlier, somatosensory feedback could be integrated
with visual signals in posterior parietal regions and then
transmitted through the premotor cortex. However, it is
not clear how each of these pathways is involved in
motor execution, learning or both.

Summary and conclusions
The aim of this review was to bring together three levels
of research on limb motor function — the motor
periphery, motor behaviour and the neural basis of
movement. Each level provides a unique perspective on
the characteristics of the motor system, and an impor-
tant challenge in systems neuroscience is to connect

a perturbing flexor load applied to the wrist show 
context-dependent changes in neural activity in M1. A
neuron might fire in a rapid burst when a load is applied
if the behavioural condition was to resist the load, but
would be unresponsive when instructed to assist the
applied load172. Similar coupling to instructional cues 
is also observed in the dentate nucleus147, indicating 
that the dentate nucleus might be involved in rapidly
switching from one context to another.

Descending commands from M1 and other brain
regions must consider more than just ALPHA MOTOR 

NEURON activity during motor function90. GAMMA 

MOTOR NEURON activity and the inflow of sensory signals
for motor output, and transmission to supraspinal cen-
tres for both control and perception are also important.
A substantial proportion of corticospinal axons terminate
in the intermediate horn and even the dorsal horn42.
These other features of spinal processing might account
for half of the descending signals from the cortex, but 
little is known about the nature of such signals173. If the
brain behaves like an optimal feedback controller,
it might be best to view descending commands as 
controlling the spinomusculoskeletal system, rather than
the musculoskeletal system174.

Things to do and not to do
There might be many ways to use optimal feedback 
control to guide neurophysiological research, although
several challenges remain. First, the mathematics that is
required to identify optimal feedback control laws 
is extremely challenging even for the simplest of linear
systems. This limits the conditions under which formal
solutions can be used to predict the properties of an
optimal feedback controller, although recent mathemat-
ical advances might extend this approach for nonlinear
systems175. Further theoretical work is also required to
break down the processes of optimal feedback control
into more biologically plausible algorithms and
processes176 that can help to guide experimental studies.
However, it is unlikely that such efforts will attain the
level of detail that is present in oculomotor models of
brainstem circuitry.

Identifying state variables would be a logical start for
examining neurophysiological correlates of optimal
feedback control. On its own, this is probably the 
least informative exercise and simply continues the basic
practice of correlating neural activity in M1 and 
elsewhere with engineering-inspired variables. The rich
mix of sensory signals (cutaneous, muscle propriocep-
tors and vision) that are used to guide motor function
obfuscate any simple unified representation. Further
diversity is expected in a region such as M1 owing to its
interaction with various cortical and subcortical brain
regions90. Although neural activity must be quantified
relative to some measured (or estimated) variable,
relative changes within and across task conditions are 
far more informative than interpreting absolute levels 
of neural activity.

The important feature of optimal feedback con-
trollers is that they are malleable systems defined by
behavioural goals so that variations in sensory or motor

ALPHA MOTOR NEURON

Motor neurons that innervate
extrafusal muscle fibres that
generate force.

GAMMA MOTOR NEURON

Motor neurons that innervate
intrafusal muscle fibres
associated with muscle spindles.
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be of value for interpreting the neural basis of move-
ment and in particular, neural processing in M1.
Optimal feedback control is consistent with several
aspects of neural processing in M1. Individual neurons
contribute to the control of a portion of the motor
periphery and receive rich, adaptable sensory feedback.
The link between M1 and motor behaviour emerges
through its contribution to the entire neural circuit.
Therefore, the role of M1 is not ‘muscles’ versus 
‘movement’, but muscles and movement.

these domains. Activity in M1 has been linked to motor
behaviour or to the motor periphery, but it has been dif-
ficult to reconcile a dual role for representing high-level
aspects of motor performance such as hand trajectory
and low-level details of motor execution.

Optimal feedback control, with its selective and
highly adaptable feedback laws, provides an interesting
model for describing how coordinated motor behaviour
can be created by the motor system. The argument put
forward here is that optimal feedback control can also
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