
A key feature of human motor function is the ability to adjust
motor patterns to compensate for physical loads applied to the
limb1–5. In general, a physical load (L) can be described by:

L = f (xi), (1)

where xi represents spatial and/or temporal variables. Learning
to move with these loads can be viewed as the brain estimating
this association (that is, forming an internal model of the load) in
order to match intended limb motion to requisite changes in
muscular activity6. Mathematically, this seems straightforward,
but many variables of movement are highly correlated, particu-
larly when training occurs under limited conditions. For example,
motion of the hand, elbow and shoulder often have similar tem-
poral patterns during movement toward a single target; thus a
load that depends on one of these variables will also be tempo-
rally correlated with the others. Although context estimation has
been recognized as an important feature of motor planning7,8,
little is known about context estimation during learning9 or about
how a subject chooses among many variables to create an inter-
nal model for novel loads.

One factor that may influence learning strategies is an inher-
ent coupling between sensory and motor representations in
motor regions of the brain such as the primary motor cortex10–13,
cerebellar nuclei14 and red nucleus15. In particular, several stud-
ies have shown that neurons in primary motor cortex that mod-
ulate their activity for motor actions at a joint tend to receive
input from that same portion of the periphery10,11. Our hypoth-
esis is that this inherent feature of motor circuitry influences skill
acquisition and reflects a default strategy, or Bayesian prior16,
which assumes that a load at a joint is related to motion at that
joint. Such a strategy would capture two essential facts: that
intrinsic viscosity and other mechanical properties at a given joint
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arise predominantly from muscles spanning that joint and that
there is a preponderance of homonymous spinal reflexes, such
as the stretch reflex. This prior can be readily overcome, given
broad experience with a novel load1. We predict that in the pres-
ence of uncertainty, however, when many variables are highly
correlated, novel loads applied to a given joint will be erroneously
associated with motion at that joint. By first giving subjects novel
loads during reaching movements to one target (training phase)
and then testing their knowledge of the load during movements
to a second target (generalization phase), we found evidence to
support this feature of the motor system.

RESULTS
Subjects made planar movements while wearing a KINARM (kine-
siological instrument for normal and altered reaching movements),
a robotic device that can apply loads to individual joints (Fig. 1a).
In experiment 1, subjects moved their hand out from a start posi-
tion to a target, a movement that required the same magnitude of
motion at the shoulder and elbow (30° shoulder flexion and elbow
extension for movements to the target; 30° shoulder extension and
elbow flexion for movements back to the start position; Fig. 1b
and Methods), resulting in a high correlation between shoulder
and elbow velocity (r = –0.98). After 20 unloaded movements, one
of two loads was applied to the elbow during the training phase:
a load proportional to elbow velocity (viscous load) or a load pro-
portional to shoulder velocity (interaction load; Fig. 1c). In both
cases, elbow extension was resisted such that hand paths were ini-
tially perturbed, but trajectory errors diminished with practice
(Fig. 2a). Loads initially disturbed the natural coupling between
elbow and shoulder motion, but this coupling gradually strength-
ened with practice (Fig. 2b).

After subjects had completed 40 movements with a given
load in the training phase, we assessed their performance in a
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generalization phase1,17. We instructed subjects to make a sin-
gle out-and-back movement to the generalization target and
then five movements to the training target. This sequence was
repeated until a total of five movements to the generalization
target had been completed. We adopted this order of move-

ments to minimize adaptation to the load in the generaliza-
tion direction. These new movements reversed the shoul-
der–elbow coupling experienced during movements to the
training target by requiring 30° extension at both joints (Fig.
1b). The viscous load resisted elbow motion to this target,
whereas the interaction load assisted elbow motion. Subjects
naturally generate movements with relatively consistent veloc-
ities that depend on task distance and accuracy requirements18.
We measured initial elbow velocity (200 ms after movement
onset) to assess whether subjects appropriately adjusted their
motor patterns for the applied loads.

Movements to the generalization target with the viscous load
were not significantly slower than unloaded baseline movements
(84% of baseline movement elbow velocity, P > 0.05; Fig. 3a–c),
but subjects moved significantly faster to the generalization tar-
get when the load was removed (129% of baseline movement
elbow velocity, P < 0.05). This indicates that subjects learned and
could generalize the viscous load, paralleling trajectory improve-
ments during the training phase of the task.
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Fig. 1. The experimental apparatus, target locations and load types. 
(a) The KINARM is a mechanical, four-bar linkage with hinge joints that
align with the centers of rotation of the shoulder and elbow to permit
subjects to make reaching movements in the horizontal plane. Two
torque motors attach to the linkage such that loads can be applied to
each joint independently. (b) In experiment 1, subjects were required to
move out and then back from a central start target and one of two
peripheral goal targets, both requiring similar amounts of rotation at the
two joints, but in opposite directions at the shoulder. (c) The magnitude
of the viscous load applied to the elbow, Le, was proportional (b = –0.6
Nm⋅s/rad) to the angular velocity of the elbow, ve. The interaction load,
Le, was proportional (b = 0.6 Nm⋅s/rad) to the velocity of the shoulder, vs.

Fig. 2. Reaching movements to the training target with the viscous (left,
blue) and interaction (right, red) loads. (a) Hand trajectories of a typical
subject (∆, hand position at movement onset; *, hand position at move-
ment offset). Both sets of pre-load movements (black) are shown in the
top panels. Middle panels show trials 1–3 of the training phase (loaded),
with line thickness decreasing in that order. The final 20 loaded move-
ments are shown in the bottom panel. (b) Correlation coefficients
between shoulder velocity and elbow load (r(vs, Le); �), elbow velocity
and elbow load (r(ve, Le); *) and shoulder velocity and elbow velocity 
(r(vs, ve); ∆) for each trial of the training phase of experiment 1 across all
subjects (mean ± s.e.m.). Solid lines represent a three-point moving
average.
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With the interaction load, by contrast, there were profound
changes in movement speed to the generalization target 
(Fig. 3a–c); subjects failed to scale both the load magnitude and
sign. Apparently, they assumed the load was viscous and thus
resisted elbow motion to the generalization target. Elbow veloc-
ity 200 ms into the movement was roughly twice the speed
observed during baseline reaching movements (213% of base-
line movement elbow velocity, P < 0.001). Even when the inter-
action load was not applied to the generalization target, subjects
still moved faster than expected, similar to the unloaded trials
after training with the viscous load. In effect, our subjects expe-
rienced a motor illusion and erroneously prepared for a resistive
rather than assistive load.

One possible explanation of the present results is that the motor
system preferred symmetric impedances, that is, impedances that
have equal off-diagonal terms. The interaction load used in the
first experiment was non-symmetric, with a single term relating
elbow load to shoulder motion. Therefore, we repeated the exper-
iment with seven subjects using a symmetric interaction condi-
tion with loads at both the shoulder and elbow joints that were
proportional to the velocity of the elbow and shoulder, respectively.
Subjects trained with this load before making movements to the
generalization target. Mean elbow velocities 200 ms into the move-
ment were much faster than baseline (170%, P < 0.005). Thus,
even with symmetric loads, subjects still did not learn the appro-
priate association between joint motion and load.

Another possibility is that subjects were learning the loads in
endpoint rather than joint space. Our data, however, suggest that
this was not the case. In the training phase, the loads at the elbow
pushed the hand in a direction counter-clockwise to that of the
intended movement. Thus, during the outward movements, the
hand was pushed to the left (Fig. 2a), and during the movements
back to the center, it was pushed to the right (data not shown). If
subjects had learned this association, they would have expected a
load that pushed their hand up during movements to the gener-
alization target. Instead, subjects tended to have more upward
hand trajectories for the no-load conditions as compared to base-

line (4.6 mm up from baseline, P > 0.05; Fig. 3a, for example).
Furthermore, if subjects learned the loads in endpoint space, their
elbow velocities should have been reduced rather than increased
to create a more downward hand trajectory in the no-load con-
ditions (Fig. 3c).

During the training phase, shoulder velocity and elbow load
were highly correlated when interaction loads were applied in exper-
iment 1 (r(ve, Le) = 0.93), but elbow velocity and elbow load were
also highly correlated (r(vs, Le) = –0.88; Fig. 2b). We suggest that this
high correlation between elbow velocity and load created uncer-
tainty regarding the nature of the load, and subjects therefore used
a default strategy of associating elbow load with elbow motion.

We performed a second experiment to assess whether reduc-
ing load uncertainty improved generalization with interaction
loads by decreasing the correlation between elbow velocity and
elbow load during the training phase of the task. In separate, ran-
domly ordered blocks, subjects were trained with the interaction
load for movements requiring 30° of shoulder flexion and either
30, 20, 10 or 0° of elbow extension. The magnitude and sign (that
is, the flexor load to resist extension) of the load was constant
across all four movement blocks, but the correlation between
elbow velocity and elbow load decreased when movements to the
training target required less elbow motion (Fig. 4a).

As the amount of elbow motion to the training target was
reduced, initial elbow velocity during movement to the generaliza-
tion target approached baseline (Fig. 4b). In other words, as elbow
velocity and elbow load were uncoupled during the training phase,
subjects began to learn the appropriate association (or internal
model) between shoulder velocity and elbow load (Fig. 4c).

DISCUSSION
Our results suggest that in the presence of uncertainty, a default
strategy is used to learn novel loads; this strategy is to associate
motor actions at a joint with sensory feedback from that same
joint. Although subjects always had sufficient information to
identify the interaction load as one based on shoulder velocity,
they misinterpreted the load as one based on elbow velocity
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Fig. 3. Results from the generalization phase of experiment 1. (a) Hand trajectories of a typical subject for movements to the generalization target
all baseline movements, and movements for each load condition are shown, with symbols the same as those for Fig. 1a. (b) A typical subject’s elbow
extension velocities for movements to the generalization target in each load condition (mean ± s.e.m., normalized to peak baseline velocity). Inset
shows the first 500 ms of movement with the first 200 ms expanded in the main panel. Solid black, baseline (B); dash blue, viscous, off (LV

–); solid blue,
viscous, on (LV

+); dash red, interaction, off (LI
–); solid red, interaction, on (LI

+). (c) Elbow velocities during movements to the generalization target at
200 ms, normalized to the baseline value, across all subjects in experiment 1 (mean ± s.e.m.). Asterisks indicate a statistically significant result with 
P < 0.05 (t-test).
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when there was a high correlation between elbow velocity and
load during training. We posit that this local association strat-
egy for movement control reflects brain circuitry involving indi-
vidual neurons that have overlapping sensory and motor
representations. This local association may even be advanta-
geous for adapting to external forces, given that viscous or other
loads applied at the hand tend to generate comparable loads in
joint space. Such a learning strategy is consistent with, although
not predicted by, previous observations that learning of novel
endpoint loads tends to occur in intrinsic coordinates1 and that
the ability to generalize loads parallels the broad tuning of neu-
rons in primary motor cortex17.

A local association between sensory and motor representations
may reflect an optimal strategy for motor learning akin to strategies
for perceptual estimation19,20. Specifically, it has been suggested
that motion illusions reflect an optimal percept assuming senso-
ry noise (uncertainty) and a default strategy of assuming slow
motion, a prior in Bayesian statistics16. The fact that time-varying
force fields are approximated as being state-dependent suggests
that such Bayesian priors may also be used by the motor system
during learning9. We propose that the observed local association
between motion and load at a joint may be an optimal default strat-
egy for motor learning and adaptation, and, as a consequence, that
this optimal strategy is reflected in the underlying motor circuitry21.
Variations in a one-to-one mapping between sensory and motor
representations would be expected when it is behaviorally relevant
(and optimal). For example, there is an apparent increase in the
number of proximal limb-related neurons in motor cortex
responding to cutaneous input to the paw of quadrupeds (such as
cats22) as compared to primates12.

The present data are defined in a relative joint–angle coordi-
nate frame. This framework (over absolute joint angles or other
engineering-inspired coordinate frames) was chosen because it
most closely reflects the predominance of mono-articular muscles
spanning the shoulder and elbow joints23. The present results
could also reflect a muscle-based strategy that would consider
that some muscles, such as biceps, span both the shoulder and
elbow. Further experiments are required to adequately separate
which representation is most appropriate.

Although our results suggest that the brain tends to associate
motor action with sensory motion at a given joint, the sensori-
motor system is certainly capable of learning more complex
mechanical relationships, such as intersegmental dynamics dur-
ing multi-joint movements24,25. The present experiment simply
suggests that such complexities can be learned when they are dis-
ambiguated from the simpler relationship between joint motion
and load. It is interesting to note that patients with cerebellar
damage have difficulty compensating for intersegmental dynam-
ics, and this may reflect an inability to deviate from the default
strategy of a local association between sensory signals and motor
action at each joint26.

METHODS
Subjects. Twenty-one normal, healthy, right-handed volunteers (aged
20–48, 12 male, 9 female) gave written informed consent to participate
in this study. Sixteen participated in experiment 1, and eight in exper-
iment 2 (three took part in both experiments). The experiments were
performed in accordance with the regulations of the Queen’s Univer-
sity Research Ethics Board. The subjects were naive with respect to the
goals of the experiment and had not previously experienced the loads
applied by our apparatus.
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Fig. 4. Changes in elbow motion during training influences generaliza-
tion of interaction loads. (a) Correlation coefficients between elbow
velocity and elbow load (r(ve,Le)) for each training movement to targets
requiring 30° shoulder flexion and 0° (gray), 10° (green), 20° (cyan) or
30° (red) elbow extension (mean ± s.e.m. across all subjects during
experiment 2). Solid lines represent three-point moving averages. 
(b) Elbow extension velocities 200 ms into the movement toward the
generalization target after training to targets requiring different amounts
of elbow motion (normalized to the baseline value). (c) Relationship
between elbow velocity–elbow load correlation (r(ve,Le)) and elbow
velocity 200 ms into the movement toward the generalization target.
Results are plotted for each subject (n = 8), where elbow velocity is
scaled from 0 (baseline elbow velocity) to 1 (elbow velocity for target
requiring 30° elbow extension).
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Experimental device. The experimental setup and data acquisition were
similar to our previous neural studies on non-human primates27,28.
Briefly, the human subjects performed reaching movements to visual tar-
gets while wearing a robotic exoskeleton called KINARM (Fig. 1a). Fiber-
glass braces fixed to a fully adjustable linkage were attached to the right
upper arm and forearm, permitting flexion and extension movements
of the shoulder and elbow with the arm abducted into the horizontal
plane. Two torque motors (Kollmorgen U12CBL, Radford, Virginia)
attached to the linkage were capable of applying loads to each joint inde-
pendently28. Motor position, measured by resolvers attached to the
motors, was converted to encoder-equivalent units and sent to a motor
control card (mini-PMAC, Delta Tau, Chatsworth, California) in the
host computer, which computed joint positions and velocities and con-
trolled the magnitude of the torque applied by the motors. Target lights
were presented in the plane of the task using an overhead projector and
a screen positioned above a semi-transparent mirror3,27,28.

Experiment 1. Trials were initiated with the index finger positioned at a cen-
tral start target. This required shoulder and elbow angles of 35 and 115°,
respectively, such that the hand was approximately in the middle of the work-
space. One of two peripheral targets was used in each trial (Fig. 1b): target 1,
the training target, required shoulder flexion and elbow extension of 30°;
target 2, the generalization target, required 30° of extension at both joints.
After maintaining their index finger at the start target for 1 ± 0.25 s, subjects
moved as quickly and as accurately as possible to the goal target and main-
tained the finger at the target for 1 ± 0.25 s. The central start target then reap-
peared, and subjects returned to it in a similar manner to end the trial.
Subjects had full vision of their hand and arm during all movements.

The experiment was broken down into four main phases: (i) a pre-load
phase with unloaded reaches to target 1, (ii) a training phase with loaded
movements to target 1, (iii) a generalization phase with movements to target
2 interspersed with five movements to target 1 and (iv) a post-load phase
with unloaded movements to target 1. There were no discernible breaks
between these blocks of movements.

Two types of mechanical loads were applied to the elbow joint (Fig. 1c).
One, a viscous load (Le), was applied to the elbow with a magnitude pro-
portional to elbow angular velocity (ve), such that Le = b × ve, where b = –0.6
Nm⋅s/rad. The other, an interaction load (Le), was also applied to the elbow
but with a magnitude proportional to shoulder angular velocity (vs), such
that Le = b × vs, where b = 0.6 Nm⋅s/rad. The loads were applied during both
the movement to the goal target and the movement back to the start target.

Subjects were tested on two consecutive days; the viscous load (condi-
tions 1 and 2) and the interaction load (conditions 3 and 4) were applied on
separate days. Two conditions were tested each day. Either the load was
applied during movements to both targets (conditions 1 and 3), or the load
was applied during movements to the training target only (conditions 2 and
4). The order of the four conditions was balanced across all subjects. At the
start of the first day, baseline movements to each target were collected for
each subject during an experimental session in which no load was applied.

Experiment 2. The task was similar to experiment 1, except that move-
ments to the training target required a different amount of elbow exten-
sion (0, 10, 20 or 30°) combined with 30° shoulder flexion.

Data analysis. Motor resolver position data were collected at approxi-
mately 300 Hz. Signals were re-sampled at 200 Hz and then filtered with
a 6th order, zero-phase-shift Butterworth filter with an effective cut-off
frequency of 8 Hz27,29. Movement onset was determined by first identi-
fying the time at which tangential hand velocity reached 30% of its peak,
and then stepping back in time to the first velocity reversal, or 1 cm/s.
Movement offset was defined as the last time hand tangential velocity
exceeded 10% of its peak.
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