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weather station at Grand Rapids, MI, located 35 km south of Grant. Soil measurements
were made using Hobo data loggers (H08-031-08) fitted with probes (H08-031-08) buried
1.5 cm in the soil, the mean depth that Rhagoletis pupae overwinter24.

Computer modelling of selection
Computer simulations were conducted using a discrete generation model mirroring the
univoltine life-cycle of Rhagoletis. A random sample of 6% of the adult population
eclosing under apple and haw trees was assumed to move to the alternate host each
generation, matching gene flow estimates from mark-recapture studies9. Hard selection
was invoked by weighting the proportions of immigrants and residents on a host by the
mean fitness of the emigrant and resident race, respectively. After migration, adults
randomly mated within host demes, with offspring experiencing viability selection based
on absolute fitness values derived from the 26 8C (apple) or 22 8C (haw) prewinter, 30-
week winter treatments. Given these values, the simulations converged on a stable
equilibrium for each allozyme that maintained polymorphism and host-related
differentiation regardless of initial allele frequencies.
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Understanding how the brain constructs movements remains a
fundamental challenge in neuroscience. The brain may control
complex movements through flexible combination of motor
primitives1, where each primitive is an element of computation
in the sensorimotor map that transforms desired limb trajectories
into motor commands. Theoretical studies have shown that a
system’s ability to learn action depends on the shape of its
primitives2. Using a time-series analysis of error patterns, here
we show that humans learn the dynamics of reaching movements
through a flexible combination of primitives that have gaussian-
like tuning functions encoding hand velocity. The wide tuning of
the inferred primitives predicts limitations on the brain’s ability
to represent viscous dynamics. We find close agreement between
the predicted limitations and the subjects’ adaptation to new force
fields. The mathematical properties of the derived primitives
resemble the tuning curves of Purkinje cells in the cerebellum.
The activity of these cells may encode primitives that underlie the
learning of dynamics.

Studies of reaching movements have demonstrated that humans
construct motor commands based on a prediction of forces that will
be experienced in the upcoming movement3. When new forces are
imposed on the arm, the prediction is in error and the arm does not
follow the desired trajectory3,4. With practice the motor commands
are modified5 and the trajectory approximates the desired path. The
learning of dynamics, however, affects movements outside the
region of training3,6–8, suggesting that the brain builds a state-
dependent approximation of external forces9, called an internal
model. Occasional movements with unexpectedly altered dynamics,
termed ‘catch trials’, have been used to quantify how the internal
model generalizes3,4. Catch trials, however, not only test the internal
model for a given movement but cause errors that in turn change the
internal model and affect future movements. We demonstrate that
the effect of errors experienced in a given movement on subsequent
movements can reveal characteristics of primitives with which
motor commands are generated.

We consider the internal model to be a sensorimotor map
transforming desired arm trajectories into muscle forces10–12

through a flexible combination of a set of primitives:

f̂ ¼ WT gðx*; ẋ*; ẍ*Þ ð1Þ

where T is the transpose operator, f̂ is a vector approximation of
forces f to be produced by muscles to compensate for task dynamics,
and g is a vector of scalar-valued primitives [g1,…,gj]

T. Although in
general g can depend on desired position, velocity and acceleration
(x*, ẋ*, ẍ*), here we investigated learning of viscous forces and
therefore considered a simpler subset of primitive functions that
depended only on desired velocity. The internal model is learned
through experience-dependent modification of the weight matrix
W. Assuming a learning rule that minimizes f̃ 2 [ jf 2 f̂ j2, W is
adjusted after a movement (indexed 1) according to:

DW 1 ¼ 2 hgðẋ*1Þf̃ T ð2Þ

where h is a constant learning step. This adaptation changes the

† Present address: Volen Center of Complex Systems and Department of Biology, Brandeis University,
Waltham, Massachusetts 02454, USA.

© 2000 Macmillan Magazines Ltd



letters to nature

NATURE | VOL 407 | 12 OCTOBER 2000 | www.nature.com 743

internal model output in the subsequent movement (indexed 2):

f̂ 2ðW þ DW 1Þ 2 f̂ 2ðWÞ ¼ ðW þ DW 1Þ
T gðẋ*2Þ 2 WT gðẋ*2Þ

¼ 2 hgTðẋ*1Þgðẋ*2Þf̃ 1

ð3Þ

The change in the internal model output depends on experienced
error and the mutual projection between evaluations of the primi-
tives, but does not depend on the weight matrix. As the primitives
depend on desired velocity, when the two movements have the same
desired trajectory (for example, toward the same target), the change
should be proportional to the error experienced. When the two
movements are toward different targets, the change will also depend
upon the breadth of the receptive fields of the primitives.

We first tested whether an error experienced in a given movement
causes a proportional change in the internal model for the next
movement to the same target. We asked subjects to make reaching
movements while holding a manipulandum13 which produced
viscous forces f ¼ Bẋ, where B = {0,13; −13,0} N s m−1. Catch
trials, movements during which f = 0, were randomly interspersed
among the targets. Our proxy for error was hand displacement
perpendicular to target direction (perpendicular displacement;
p.d.) measured 250 ms into the movement. The first movement in
the field (1st in Fig. 1a) had significant error (p.d. = 2.38 cm),
but with training (ct−1 in Fig. 1a) became less disturbed
(p.d. = 0.45 cm). In the next movement towards this direction (908),
a catch trial (ct), there was a large error in the direction opposite the
initial error, suggesting formation of an internal model13. In the
subsequent movement to 908 (ct+1), during which the force field
was present, the p.d. was substantially greater (p.d. = 1.22 cm) than
in ct−1, indicating partial unlearning of the internal model as
predicted by equation (2). In agreement with equation (3), there

was a significant correlation between magnitude of movement
errors in the catch trial and the unlearning observed in ct+1
(Fig. 1b, r = 0.65). The physiological correlate of this unlearning
was evident in the spatial tuning of movement-initiating muscle
activations. The computational construct of an internal model
predicted that spatial tuning of the electromyographic (EMG)
activity of arm muscles would undergo a specific rotation with
training5. During training, the preferred direction of this tuning
gradually rotated. However, between ct−1 and ct+1 the preferred
direction rotated back toward the initial orientation (Fig. 1c),
indicating unlearning of the internal model. This unlearning was
washed out by movement ct+3 (Fig. 1d).

We next investigated the shape of primitives underlying internal
model formation by quantifying, independent of the model in
equation (3), the temporal dynamics of movement errors first
within and then across directions. In a sequence of random target
directions, the time series of movement errors for a given direction
was fitted to the following system of equations:

znþ1 ¼ azn þ bun

yn ¼ zn þ dun

ð4Þ

Here y represented error in the internal model as quantified by p.d.,
n was movement number and u indicated whether the force field
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Figure 1 Catch trials induced short-term unlearning. a, Hand trajectories of single
movements, averaged across all 40 subjects, during the first (labelled 1st), 38th (ct−1),
39th (ct) and 40th (ct+1) movements toward 908 (08 is at 3:00). Intersection of error bars
indicates parallel and perpendicular displacement (p.d.) 250 ms into the movement.
b, Jumps in p.d. between before (ct−1) and after (ct+1) catch trials versus p.d. in catch
trials (ct), averaged within target directions across subjects. c, Orientation of preferred
direction of movement-initiating EMG in ct−1, ct and ct+1. Asterisks indicate significant
(P , 0.05) rotation of EMG preferred direction between ct−1 and ct+1. d, Errors in force
field movements following ct. In all figures, error bars indicate 95% confidence intervals of
the mean (CIM) across subjects.
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Figure 2 Sensitivity to movement error across target directions. a, Errors in subjects’
reaches (circles) (p.d. at 250 ms) toward 908, averaged across subjects (n = 40). Catch
trials are the large negative spikes (one is labelled ct). Lines are best fits of scalar (black)
and vector (red) state–space models to the data (y in equation (4)). b, Average sensitivity
of the internal model to errors experienced in previous movements (b in equation (4)) as a
function of angular distance f. Error bars (95% CIM) calculated through bootstrapping.
c, Average generalization function b(f) for simulated adaptive controllers that constructed
an internal model with gaussians of width j. b(f) in simulations and subjects were
averaged across target directions.
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was present (u = −1) or turned off (u = 1). The hidden state of the
system, z, represented the amount of movement error generated by
the internal model; actual error (y) also depended on whether the
force field was applied. The implicit assumption in this initial model
was that errors experienced in one target direction did not affect the
internal model for generating movements toward other targets. The
best-fit model correlated to actual errors reasonably well (Fig. 2a,
black line; across directions, mean r = 0.60). The fit mimicked
subjects’ recovery from initial error, their large error in the catch
trial, and their jump in error from ct−1 to ct+1. Whereas this initial
model smoothly decayed after jumps in error, subjects often
generated a non-monotonic change in error between catch trials.
We hypothesized that this was because errors experienced in one
target direction changed the internal model for other directions.

To investigate whether locally experienced errors affected other
directions of movement, we expanded both u and b in equation (4)
to eight-dimensional vectors. Each element of the input vector
u flagged recently experienced dynamics in a particular target

direction i: whether, since the last movement in the modelled
target direction, a force-field movement (u(i) = −1) or a catch
trial (u(i) = 1) had been most recently experienced, or if no
movement had occurred in direction i (u(i) = 0). Each element of
b, denoted b(i), quantified the sensitivity to errors experienced in
direction i. The expanded model now accounted for subtle changes
in actual movement error (Fig. 2a, red line; mean r = 0.81).
Confidence intervals on b suggested that there was a significant,
nonzero influence of local errors on subsequent control in other
directions. To calculate sensitivity across target directions, the
elements of b were re-indexed by the angular distance between
the direction in which errors were experienced and the modelled
movement direction. This angular distance was represented by f.
Averaging b(f) across movement directions (Fig. 2b) demonstrated
that errors experienced in a given movement maximally influenced
the internal model for that direction. This influence decayed in
neighbouring directions. Surprisingly, sensitivity became signifi-
cantly negative when angular distances were larger than 908. This
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Figure 3 Movement characteristics of systems that learn an internal model with velocity
encoding gaussians. a, Simulated adaptive controllers trained in a target set without catch
trials. The 11th (left) and 21st (right) movements toward 908 are shown for each
controller. Learning with wide gaussians produced S-shaped movements. b, Adaptive
controllers’ estimation of the force field after training for 100 movements in a target set
without catch trials. Peak velocity of typical movements is 0.35 m s−1. c, Time course of
error (p.d. at 200 ms) for simulated controllers with various gaussian widths, smoothed
across a 13-movement window. Overcompensation (generation of S-shaped hand
trajectories) occurs when p.d. becomes negative. d, Error (p.d.) averaged over the subset

of movements 65–128 during which the force field was on. With narrow gaussians,
overcompensation never occurred, regardless of catch trial probability. With wide
gaussians, movements became S-shaped below critical probabilities (near 17%).
e, f, Parallel and perpendicular displacements averaged across movements and subjects.
e, Subjects (n = 24) trained in target sets without catch trials, resulting in S-shaped
movements. f, Subjects (n = 40) trained in target sets with 17% catch trial probability
and did not produce S-shaped movements. g, A controller relying upon wide gaussians
(j = 0.12 m s−1) trained in target sets with 17% catch trial probability did not produce S-
shaped trajectories.
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indicated that when two force-field movements were separated by
angular distance f, if f was small, then errors experienced in the
first movement improved the internal model for the second move-
ment. If f was large, then errors in the first movement destructively
interfered with the internal model used to generate the second
movement.

To explain this result, we note that sensitivity of the internal
model to experienced errors, b(f), was quantified in terms of the
p.d. Both the output and the error signal of the internal model,
however, are in terms of force (equations (1) and (2)). Because the
force field is linear in velocity, the direction of force error corre-
sponding to positive (clockwise) p.d. towards one target opposes
the direction of force error corresponding to a positive p.d. towards
the opposite target. Interpreting the sensitivity of subjects’ internal
model (Fig. 2b) through the adaptation rule (equation (3))
suggests that both the positive values of b for −458, f ,
458 and the negative values of b for large f correspond to the same
direction of force compensation. From this we deduced that the
mutual projection gTðẋ*iÞg

Tðẋ*iþ1Þ declines but always remains
positive as the angular distance between two movements increases.
This result rules out bases that encode velocity space linearly.
Furthermore, because information experienced in each direction
most strongly affects that direction and its neighbour less so, basis
functions that have specific regions of preferred activity are more
likely to underlie learning than global representations of dynamics.

We therefore investigated what conditions on g(ẋ*) were suffi-
cient to generate the generalization function b(f). A salient prop-
erty of cells in the motor system is their directional tuning14 and
modulation with hand speed15. In the cerebellum, a region which

lesion16–19 and functional imaging studies20,21 have linked to learning
and control of arm dynamics, many Purkinje cells simultaneously
encode the direction and speed components of velocity22. These cells
broadly encode hand velocity during planar reaching, firing maxi-
mally at preferred velocities distributed in velocity space. This
encoding precedes in time the actual movement, suggesting that
these cells encode desired velocity. The behaviour of each cell k
could therefore be represented as a gaussian with a centre located at
position ck in desired velocity space. We simulated a controller
attached to a biomechanical model of the arm that learned an
internal model with basis functions:

gkðẋ*Þ ¼ expðjẋ* 2 ckj
2=2j2Þ ð5Þ

where j is the standard deviation of the gaussian. To accommodate
the possibility that the exact shape of b(f) depended on the training
paradigm, we trained subjects and the simulated controller with the
identical set of targets and catch trials. A crucial component of the
simulations was j, the width of the primitives. When the gaussians
were narrow, the time series of errors generated by the simulation
showed a spike after each catch trial and a smooth decay afterwards,
similar to the scalar-input state–space model fit (Fig. 2a, black line)
but unlike the performance of our subjects. Simulations driven by
broad gaussians, however, produced non-monotonic changes that
mimicked subjects’ actual patterns of adaptation. Simulation results
were fitted with equation (4) to produce the generalization function
b(f) (Fig. 2c). The b(f) generated with narrow gaussians rapidly
dropped to zero as f changed from zero. Learning with wide
gaussians, however, showed a generalization that was very similar to
actual subject performance, including negative sensitivity for large
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f. The correlation between b(f) in the simulations and the subject
data was strongest for j = 0.12 m s−1.

We next used the model to predict behaviour beyond the data set
with which the primitives were estimated. We noted that gaussian
width influences how force estimation generalizes across both
directions and speeds. Simulations predicted that when learning
relied upon wide gaussians, reaching movements would not mono-
tonically converge onto a straight line desired trajectory but would
become S-shaped (Fig. 3a). Whereas the force field was linear in
velocity, wide gaussians produced an approximation that over-
estimated forces at low speeds and underestimated forces at high
speeds (Fig. 3b). Overestimation of the forces resulted in over-
compensation of the field early in the movement; the magnitude of
overcompensation depended on the gaussian width (Fig. 3c). With
narrow gaussians, the simulated internal model did not overcom-
pensate, but with wide gaussians movements became S-shaped. To
test this prediction, we trained 24 subjects in target sets without
catch trials. Movements of subjects were S-shaped (Fig. 3e), similar
to movements made by simulations that learned with wide gaus-
sians (Fig. 3a).

Simulations further predicted that the probability of catch trials
influenced whether movements would become S-shaped (Fig. 3d).
If catch trials occurred with 17% probability, then even with
gaussians of j = 0.12 m s−1 there should be sufficient unlearning
caused by each catch trial such that hand trajectories would
converge toward a straight line, without overcompensation
(Fig. 3g). We tested this prediction by training subjects in target
sets with 17% catch trial probability. As predicted, subjects did not
show overcompensation (Fig. 3f).

Because approximation of a high-frequency signal with low-
frequency bases generally results in poor representation, we next
explored the limitations of a system that learns with wide gaussians.
We simulated learning of nonlinear force fields:

f ¼ 2 13
��������������
ẋ2 þ ẏ2

p 2 sinðmvÞ

cosðmvÞ

" #

v ¼ arctanðẏ=ẋÞ

ð6Þ

where ẋ and ẏ were components of hand velocity in Cartesian space.
When m = 1, the field was the curl pattern13 learned by subjects
above. As m increased, the field’s spatial frequency increased. For
various j, we simulated movements to 50 targets and correlated the
internal model learned by the simulation to the actual force field
(Fig. 4a). As the field’s spatial frequency increased, the accuracy of
the internal model decreased for all basis function widths. However,
the learning capability of wider bases collapsed at lower frequencies.
This agrees with the recent finding that humans demonstrated a
lesser ability to adapt in higher-spatial-frequency force fields23.

To illustrate this deficiency, we trained an adaptive controller
(j = 0.12 m s−1) for 50 movements in a high-spatial-frequency field
(m = 4, Fig. 4b). Because approximation is performed with wide
bases, the internal model learned by the controller (Fig. 4c) cannot
represent faithfully the rapidly changing forces. In particular, the
simulation predicts that in movements toward 22.58 and 157.58 the
internal model expects resistive forces where the force field is
assistive. We tested for this prediction in three subjects by training
each with the same random pattern of targets presented to the
simulation, then presenting two catch trials toward 22.58 and
157.58. Subjects behaved as though they were expecting a resistive
field in those directions, as illustrated by their hand velocities in the
catch trials (Fig. 4d).

Errors in learning dynamics of arm movements suggest that the
brain composes motor commands with computational elements
that are broadly tuned to arm velocity. When expressed in polar
coordinates, the gaussians exhibit a preferred direction of move-
ment, much like the cosine tuning curves typically associated with

cells in the motor system. However, our inferred bases have on
average a half-width at half-height value of about 408, significantly
less than the 908 value required of cosines. Recent results24 have
demonstrated that tuning curves in monkey motor cortex have a
median width of 568, also much narrower than cosines. Motor
cortical cells, however, have been reported to encode hand speed
linearly15. Learning a linear force field with bases that have cosine
directional tuning and linear speed tuning results in an internal
model that does not produce the S-shaped movements observed in
our subjects. Wide gaussians predict this unusual behaviour. They
also explain why humans generalize sublinearly to fast movements
after training in a linear force field at slow speeds8. The nonlinear
encoding of speed inherent to gaussians resemble tuning properties
of Purkinje cells that encode arm movements in the cerebellum22.
Although several investigators have proposed a major role for the
cerebellum in learning of internal models25–27, our results suggest a
link between patterns of generalization and firing properties of cells
in this area. Since the output of the cerebellum partially affects the
motor cortex29, the finding that the preferred direction of motor
cortical cells rotates during learning of force fields28 may be a
consequence of changing input from the cerebellum30. M

Methods
Three groups of right-handed normal human subjects were trained to make movements
while holding the handle of a lightweight robotic arm. All movements were toward a
pseudorandomly chosen target, then back to a centre target. Targets appeared at 08, 458, …
3158, at 10-cm displacement. Desired movement duration was 500 6 50 ms. Timing
feedback was provided by changing the target colour. All subjects initially practised the
task without any perturbing force (the null field). The first group of subjects (n = 40)
trained in target sets of 192 movements during which the force field B = {0,13; −13,0}
N s m−1 was applied in 83% of the targets. The remaining 17% of targets (pseudorandomly
selected) were catch trials during which the force field was turned off. In 13 of these
subjects, EMG from anterior and posterior deltoid, biceps and triceps were measured with
surface electrodes, amplified, filtered, r.m.s. (root mean square)-rectified, averaged from −
50 to 100 ms into the movement, multiplied by unit vectors pointing toward movement
direction, and summed across movement directions to produce a preferred direction for
each muscle5. The second group of subjects (n = 24) trained in the same target sets as
above, but with the force field always on (no catch trials). A final group of subjects (n = 3)
trained for 58 movements in a higher-frequency force field (equation (6); m = 4),
receiving catch trials only on targets 51 and 58 in directions 22.58 and 157.58.

A simulated anthropomorphic controller13 made movements to the same sequence of
targets experienced by subjects. The controller’s internal model learned to map desired
hand velocities into forces. Desired hand trajectories were minimum jerk, 0.5 s in
duration, and 10 cm long. The internal model approximated the imposed force field
(equation (1)) with gaussian bases (equation (5); controllers were differentiated by j).
Gaussian centres spanned a range of desired velocities (−0.5 to 0.5 m s−1 in the x- and y-
direction) spaced one j apart. Sensitivity analyses suggested there were no significant
changes in the results when the density of the bases was increased by an order of
magnitude. Weights were initially randomized, then updated using equation (2) with
h = 0.0025. To compare the output of gaussian basis functions with cosine tuning curves,
the unweighted output of each gaussian was averaged during movement time. The
collection of averaged outputs across movement directions formed a tuning curve for each
gaussian primitive. Tuning curves were aligned to the preferred direction of each gaussian
and averaged across all gaussians, from which the half-width at half-height value was
calculated.
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The netrins, a family of laminin-related secreted proteins, are
critical in controlling axon elongation and pathfinding1–4. The
DCC (for deleted in colorectal cancer) protein was proposed as a
receptor for netrin-1 in the light of many observations including
the inhibition of netrin-1-mediated axon outgrowth and attrac-
tion in the presence of an anti-DCC antiserum5–7, the similitude of
nervous system defects in DCC and netrin-1 knockout mice4,8 and
the results of receptor swapping experiments9. Previous studies

have failed to show a direct interaction of DCC with netrin-1
(ref. 10), suggesting the possibility of an additional receptor or co-
receptor. Here we show that DCC interacts with the membrane-
associated adenosine A2b receptor, a G-protein-coupled receptor
that induces cAMP accumulation on binding adenosine11. We
show that A2b is actually a netrin-1 receptor and induces cAMP
accumulation on binding netrin-1. Finally, we show that netrin-1-
dependent outgrowth of dorsal spinal cord axons directly involves
A2b. Together our results indicate that the growth-promoting
function of netrin-1 may require a receptor complex containing
DCC and A2b.

To identify direct partners of DCC, we carried out a two-hybrid
screen of a human brain complementary DNA library using the
intracellular domain of DCC as bait. The screen revealed the
putative binding of different proteins to the intracellular domain
of DCC. Some of these partners, like caspase-3, have been described
elsewhere12,13. We also observed putative binding of actin and
dynactin to DCC (data not shown); this could be important because
actin and dynactin are cytoskeleton proteins that are involved in
neurite elongation and guidance. But here we focused our attention
on the relevance of the DCC binding to a 23-residue fragment
corresponding to the last 23 amino acids (310–333) of the intra-
cellular domain of the adenosine A2b receptor (Fig. 1a). A2b is a
member of the family of the adenosine-specific receptors11, a family
which was originally divided into four subtypes—the A1, A2a, A2b
and A3 receptors—on the basis of their ability to inhibit (through
A1 or A3) or stimulate (through A2a or A2b) adenylate cyclase
activity in response to adenosine binding14. The A2b receptor
couples to either Gq or Gs, leading to a phospholipase C-dependent
pathway15 or an accumulation of cAMP16, respectively. The low
affinity of the A2b receptor for adenosine as compared with A2a
questioned the role of this receptor in vivo.

We confirmed the DCC/A2b interaction identified in the two-
hybrid screen by co-immunoprecipitation (Fig. 1b). In 293T cells
co-transfected with A2b and DCC, a DCC/A2b interaction was
barely detectable in the absence of netrin-1, whereas there was a very
strong binding when netrin-1 was present (Fig. 1b). Hence, DCC

Figure 1 DCC interacts with the adenosine A2b receptor. a, Two-hybrid screen of DCC-IC
revealed interaction with A2b. Transformed Y190 yeast growth in the selection medium is
shown. b–d, Co-immunoprecipitations were performed on 293T cells co-transfected with
combinations of the A2b encoding plasmid PRc/CMV-A2b–Flag (A2b), the full-length
DCC encoding plasmid pDCC–CMV-S (DCC) and the netrin-1 encoding plasmid
pGNET1myc (net.). The pull-down assays were done with anti-Flag (b, d) or anti-c-Myc (c)
antibody. In d, DCC-IC fused to a myristoylation signal12 was expressed instead of DCC
full-length. ‘tot.’ and ‘IP’ indicate DCC immunoblots before and after the pull-down
assays, respectively.
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together simple building blocks to create
elaborate structures, the brain — so the 
theory goes — puts together these motor
primitives to create new behaviours.

What might constitute these ‘building
blocks’ of movement? Many (not mutually
exclusive) suggestions have been made, such
as synergistic muscle contractions2, elemen-
tary stable postures3 and simple movement
strokes4. But the problem for experimen-
talists has been to establish the existence 
of these primitives, to obtain a ‘picture’ of 
what they look like, and to understand their
role in everyday behaviours. Thoroughman
and Shadmehr1 now provide a mathematical
description of the motor primitives that 
the central nervous system uses to learn to
control the arm.

To do this, the authors make use of a well-
studied5 task in which subjects make reach-
ing movements while holding on to a handle
attached to the end of a lightweight robotic
arm (Fig. 1a). When the robotic arm is
turned off, this is a very easy and natural task.
When the robotic arm is turned on, however,
it generates forces that simulate a very
strange kind of environment, not previously
experienced by the subjects. In this environ-
ment, a reaching movement in any direction
by the subject causes forces perpendicular to
the direction of movement and proportional
to the velocity of movement, transforming
previously straight movements into roughly
spiral-shaped ones. It is well known that 
subjects eventually adapt to this type of 
force field, but Thoroughman and Shad-
mehr study this adaptation in detail. Their
ingenious analysis reveals remarkable struc-
ture in the pattern of adaptation, giving us a
glimpse of motor primitives in action.

The authors reason that if a reaching
movement occurring within a force field
causes the brain to learn, and if this learning
is represented by changes to motor primi-
tives, then changes will be seen in subsequent
reaching movements — not only in the tar-
get direction but also in other directions. 
So, by working out how learning ‘spills over’,
or generalizes, between movement direc-
tions, the mathematical shape of the motor
primitives can be uncovered.

Indeed, Thoroughman and Shadmehr
find that individual movements do have an
effect on subsequent movements in other
directions. This generalization decays with
the angular distance between movement
directions: learning how to move the arm 
in one direction results in partial learning 
of how to move the arm in nearby direc-
tions, but unlearning of movements in the
opposite direction. The pattern of general-
ization suggests that the motor primitives
map the desired velocity of the reaching
hand to the force required to move the hand
at this velocity. The pattern also suggests 
that mathematically the primitives have a
gaussian shape (Fig. 1b).

results from tests of this material in elec-
trolyte cells have shown an acceptable life-
time, with a competitive energy per unit
weight at reasonable rates of charge and 
discharge. Based on material costs, it is anti-
cipated that the system might fall between
aqueous batteries and lithium-ion batteries
in terms of price.

As with any new technology, many tests
must be done to fully characterize the system
and to optimize the battery’s behaviour, and
these will no doubt be carried out by battery
manufacturers with an interest in the system.

In the end, of course, it must eventually
prove itself in the marketplace. But our need
to find viable alternatives to hydrocarbon
fuels means there is every incentive to 
make full and fair evaluations of technical
advances such as this one. ■

George E. Blomgren is at Blomgren Consulting
Services Ltd, 1554 Clarence Avenue, Lakewood,
Ohio 44107, USA.
e-mail: geblomgren@prodigy.net
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When we walk, turn the pages of a
book, or catch a ball, our brain is
solving a ‘control problem’ — that of

coordinating the activities of all the muscles
required to achieve these voluntary move-
ments. Roboticists have long appreciated the
computational challenge of controlling such
movements. For even a simplified descrip-
tion of the human arm, several pages of
equations are required to express the forces
that muscles need to exert to accelerate the
arm in a given direction. And these equa-
tions would change when the arm picks up
an object or moves in a different medium,

such as water, or as muscles tire. The chal-
lenge for neuroscientists has been to discover
how these equations are represented in the
brain, and how these representations adapt
to suit new environments or tasks. On page
742 of this issue, Thoroughman and Shad-
mehr1 provide some answers.

They do this by expanding on an idea that
has captured the imagination of physiolo-
gists, modellers and psychologists alike. This
idea is that the central nervous system creates
seemingly complex behaviours by combin-
ing a relatively small number of simpler
‘motor primitives’. Like a child putting

Computational neuroscience

Building blocks of movement
Zoubin Ghahramani

Robotic arm 

Subject

Movement 
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a b
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Figure 1 Producing complex movements from simple building blocks. Thoroughman and Shadmehr1

investigated ‘motor primitives’, thought to represent the neural building blocks of complicated
movements. a, The experiment. Human subjects held on to a robotic arm and moved their hand
towards targets in eight different directions. The robotic arm exerted forces on the hand that
depended on the velocity of movement of the hand. At first these forces affected the reaching
movements by the subjects, but eventually the subjects adapted to the forces, allowing them to reach
in the correct direction. b, The model. The pattern by which a reaching movement in the force field in
one direction affected subsequent movements in other directions suggested a model in which the
dynamics of movement are learned by changing and combining motor primitives that encode the
force required to move the arm at a particular velocity. The primitives overlap (only one is shown, in
orange), and have a broad gaussian tuning to desired hand velocity. The primitive shown is tuned to
produce the force needed for movement in the upward direction, but spills over into other directions
in a manner that matches the experimental results1.
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The authors then devised an adaptive,
computational model composed of such
primitives, and compared the behaviour of
humans and the model in several new vari-
ations of the task. The model correctly pre-
dicted the S-shaped trajectories of human
reaching movements; that these S-shaped
trajectories would become straight if the
proportion of ‘catch’ trials (when the robot
was surreptitiously turned off) were
decreased; and how subjects would adapt
incorrectly to force fields that changed direc-
tion too rapidly.

These results are interesting for three rea-
sons. First, it has been suggested6 that neither
the inputs (‘proprioceptive’ neuronal sig-
nals) nor the outputs (muscle activations) of
the human movement-control system show
a simple relationship to external forces or the
speed of movement of a reaching hand. So it
is remarkable that Thoroughman and Shad-
mehr’s model — in which motor primitives
map desired hand velocity to force — can
account for the details of the time course and
the end product of the human subjects’
adaptation. This type of mapping is exactly
what makes control through motor primi-
tives computationally attractive. The neural
‘controller’, presumably in the brain and
spinal cord, need not concern itself with how
hand velocities are computed or how forces
are produced; its task is simply to learn how
to map between the two.

All the same, we should not jump to con-
clusions from these appealing results. Motor
primitives that appear to encode extrinsic
variables, such as force and hand velocity, are
somewhat divorced from the nitty-gritty of
the muscle–skeletal system. Such primitives
might turn out to be encoded instead in
terms of more fundamental variables, such
as muscle activations7.

Second, we already knew that the compu-
tations required to adapt to new, dynamic
environments need to be implemented
somewhere in the central nervous system.
Thoroughman and Shadmehr’s results
implicate one brain region — the cerebellum
— as the area responsible. In particular, 
their finding that the motor primitives are
velocity-tuned fits in with the encoding of
velocity seen in Purkinje cells in the cerebel-
lum. Other evidence also points to a key 
role for the cerebellum in motor learning.
But of course things are not clear cut — pre-
vious studies using a different generalization 
paradigm8 and primate neurophysiology9

indicated that the brain region responsible
for learning new movement dynamics could
be the primary motor cortex. It is likely that
changes in both cerebellum and primary
motor cortex are involved in learning this
particular task. Besides which, there is little
reason to think that a computational ele-
ment such as a motor primitive should map
simply to brain structure.

Finally, these results are interesting from

news and views

NATURE | VOL 407 | 12 OCTOBER 2000 | www.nature.com 683

What is a weed to a farmer may well be 
a cherished wild flower to someone
else, or an essential ecological com-

ponent of a local flora. Hence the attempts,
in response to diminishing botanical diver-
sity, to sustain some wild plants by sowing
their seeds in areas where they are under
threat. But as Keller and colleagues show in
Journal of Applied Ecology1, this kind of con-
servation work can have adverse effects by
diluting and modifying the local genetic
resources of residual weed populations.

Agricultural weed control methods have
generally met with considerable success,
with the result that crops are more produc-
tive and harvests are less contaminated with
unwanted seeds. But the side effects of weed
decline include changed rural landscapes,
falling numbers of invertebrates and even
decreases in the populations of some birds.
Weed seed mixtures are now commercially
available (marketed, of course, as wild flow-
ers), and an understandable response of
environmentalists has been the deliberate
dispersal of such seeds, especially along road
margins in Europe and North America.

On the face of it, the re-establishment of
more biodiverse agricultural landscapes is a
creditable and straightforward aim. Simply
allowing nature to take its course, by stop-
ping herbicide treatment or simple distur-
bance of soil, or both, might lead to weed
resurgence, but only of those that are well
represented in the soil seedbank. Some
weeds have seeds with a limited capacity to
survive in soil, and these species in particular
are candidates for supplementation with
seeds from elsewhere. One disadvantage
with this approach is that introduced plants,
even those of the same species as local plants,
might be poorly adapted to local conditions,
including both the physical conditions of the
habitat and the indigenous grazers, polli-

nators and pathogens. Can maladaptation of
this sort be transferred to the residual local
populations of plants?

To test this possibility, Keller et al.1 stud-
ied three weed species, the common poppy
(Papaver rhoeas), corncockle (Agrostemma
githago; Fig. 1) and white campion (Silene
alba). Their seeds are available commercially
from several countries, including Switzer-
land, Germany, Britain, Hungary and the
United States, and all are derived from local
wild populations. The authors conducted a
range of crossing experiments (always using
Swiss material as mother plants) and
measured such features as biomass yield, sur-

Conservation biology

Seeds of doubt
Peter D. Moore

Figure 1 The corncockle. This weed (or flower,
according to your point of view) is now rare in
Britain but is still relatively common in
southern and eastern Europe.

a robotics perspective. Most artificial learn-
ing systems sluggishly accumulate small
changes. But in humans, a single movement
within the force field can have significant
effects on subsequent movements — this
biological movement-control system remains
stable while adapting rapidly. By studying
the building blocks of movement we not 
only learn more about the neurobiology 
of movement in humans. Some day, we 
may want to put those building blocks into
robots, too. ■
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