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Optimality principles of biological movement are conceptually appeal-
ing and straightforward to formulate. Testing them empirically, however,
requires the solution to stochastic optimal control and estimation prob-
lems for reasonably realistic models of the motor task and the senso-
rimotor periphery. Recent studies have highlighted the importance of
incorporating biologically plausible noise into such models. Here we ex-
tend the linear-quadratic-gaussian framework—currently the only frame-
work where such problems can be solved efficiently—to include control-
dependent, state-dependent, and internal noise. Under this extended
noise model, we derive a coordinate-descent algorithm guaranteed to
converge to a feedback control law and a nonadaptive linear estimator
optimal with respect to each other. Numerical simulations indicate that
convergence is exponential, local minima do not exist, and the restric-
tion to nonadaptive linear estimators has negligible effects in the control
problems of interest. The application of the algorithm is illustrated in the
context of reaching movements. A Matlab implementation is available at
www.cogsci.ucsd.edu/∼todorov.

1 Introduction

Many theories in the physical sciences are expressed in terms of optimality
principles, which often provide the most compact description of the laws
governing a system’s behavior. Such principles play an important role in
the field of sensorimotor control as well (Todorov, 2004). A quantitative the-
ory of sensorimotor control requires a precise definition of success in the
form of a scalar cost function. By combining top-down reasoning with in-
tuitions derived from empirical observations, researchers have proposed a
number of hypothetical cost functions for biological movement. While such
hypotheses are not difficult to formulate, comparing their predictions to
experimental data is complicated by the fact that the predictions have to be
derived in the first place—that is, the hypothetical optimal control and esti-
mation problems have to be solved. The most popular approach has been to
optimize, in an open loop, the sequence of control signals (Chow & Jacobson,
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1971; Hatze & Buys, 1977; Anderson & Pandy, 2001) or limb states (Nelson,
1983; Flash & Hogan, 1985; Uno, Kawato, & Suzuki, 1989; Harris & Wolpert,
1998). For stochastic partially observable plants such as the musculoskele-
tal system, however, open-loop approaches yield suboptimal performance
(Todorov & Jordan, 2002b; Todorov, 2004). Optimal performance can be
achieved only by a feedback control law, which uses all sensory data avail-
able online to compute the most appropriate muscle activations under the
circumstances.

Optimization in the space of feedback control laws is studied in the re-
lated fields of stochastic optimal control, dynamic programming, and rein-
forcement learning. Despite many advances, the general-purpose methods
that are guaranteed to converge in a reasonable amount of time to a reason-
able answer remain limited to discrete state and action spaces (Bertsekas &
Tsitsiklis, 1997; Sutton & Barto, 1998; Kushner & Dupuis, 2001). Discretiza-
tion methods are well suited for higher-level control problems, such as the
problem faced by a rat that has to choose which way to turn in a two-
dimensional maze. But the main focus in sensorimotor control is on a dif-
ferent level of analysis: on how the rat chooses a hundred or so graded
muscle activations at each point in time, in a way that causes its body to
move toward the reward without falling or hitting walls. Even when the
musculoskeletal system is idealized and simplified, the state and action
spaces of interest remain continuous and high-dimensional, and the curse
of dimensionality prevents the use of discretization methods. Generaliza-
tions of these methods to continuous high-dimensional spaces typically
involve function approximations whose properties are not yet well under-
stood. Such approximations can produce good enough solutions, which
is often acceptable in engineering applications. However, the success of
a theory of sensorimotor control ultimately depends on its ability to ex-
plain data in a principled manner. Unless the theory’s predictions are close
to the globally optimal solution of the hypothetical control problem, it
is difficult to determine whether the (mis)match to experimental data is
due to the general (in)applicability of optimality ideas to biological move-
ment, or the (in)appropriateness of the specific cost function, or the specific
approximations—in both the plant model and the controller design—used
to derive the predictions.

Accelerated progress will require efficient and well-understood meth-
ods for optimal feedback control of stochastic, partially observable, contin-
uous, nonstationary, and high-dimensional systems. The only framework
that currently provides such methods is linear-quadratic-gaussian (LQG)
control, which has been used to model biological systems subject to sen-
sory and motor uncertainty (Loeb, Levine, & He, 1990; Hoff, 1992; Kuo,
1995). While optimal solutions can be obtained efficiently within the LQG
setting (via Riccati equations), this computational efficiency comes at the
price of reduced biological realism, because (1) musculoskeletal dynamics
are generally nonlinear, (2) behaviorally relevant performance criteria are
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unlikely to be globally quadratic (Kording & Wolpert, 2004), and (3) noise in
the sensorimotor apparatus is not additive but signal-dependent. The third
limitation is particularly problematic because it is becoming increasingly
clear that many robust and extensively studied phenomena—such as tra-
jectory smoothness, speed-accuracy trade-offs, task-dependent impedance,
structured motor variability and synergistic control, and cosine tuning—
are linked to the signal-dependent nature of sensorimotor noise (Harris &
Wolpert, 1998; Todorov, 2002; Todorov & Jordan, 2002b).

It is thus desirable to extend the LQG setting as much as possible and
adapt it to the online control and estimation problems that the nervous
system faces. Indeed, extensions are possible in each of the three directions
listed above:

1. Nonlinear dynamics (and nonquadratic costs) can be approximated
in the vicinity of the expected trajectory generated by an existing
controller. One can then apply modified LQG methodology to the
approximate problem and use it to improve the existing controller
iteratively. Differential dynamic programming (Jacobson & Mayne,
1970), as well as iterative LQG methods (Li & Todorov, 2004; Todorov
& Li, 2004), are based on this general idea. In their present form,
most such methods assume deterministic dynamics, but stochastic
extensions are possible (Todorov & Li, 2004).

2. Quadratic costs can be replaced with a parametric family of
exponential-of-quadratic costs, for which optimal LQG-like solutions
can be obtained efficiently (Whittle, 1990; Bensoussan, 1992). The con-
trollers that are optimal for such costs range from risk averse (i.e.,
robust), through classic LQG, to risk seeking. This extended family of
cost functions has not yet been explored in the context of biological
movement.

3. Additive gaussian noise in the plant dynamics can be replaced with
multiplicative noise, which is still gaussian but has standard devi-
ation proportional to the magnitude of the control signals or state
variables. When the state of the plant is fully observable, optimal
LQG-like solutions can be computed efficiently, as shown by several
authors (Kleinman, 1969; McLane, 1971; Willems & Willems, 1976;
Bensoussan, 1992; El Ghaoui, 1995; Beghi & D’Alessandro, 1998; Rami,
Chen, & Moore, 2001). Such methodology has also been used to model
reaching movements (Hoff, 1992). Most relevant to the study of sen-
sorimotor control, however, is the partially observable case, which
remains an open problem. While some work along these lines has
been done (Pakshin, 1978; Phillis, 1985), it has not produced reliable
algorithms that one can use off the shelf in building biologically rele-
vant models (see section 9). Our goal here is to address that problem,
and provide the model-building methodology that is needed.
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Table 1: List of Notation.

xt ∈ R
m state vector at time step t

ut ∈ R
p control signal

yt ∈ R
k sensory observation

n total number of time steps
A, B, H system dynamics and observation matrices
ξt,ωt, εt, εt,ηt zero-mean noise terms
�ξ, �ω, �ε, �ε, �η covariances of noise terms
C1, . . . , Cc scaling matrices for control-dependent system noise
D1, . . . , Dd scaling matrices for state-dependent observation noise
Qt, R matrices defining state- and control-dependent costs
x̂t state estimate
et estimation error
�t conditional estimation error covariance
�e

t , �x̂
t , �x̂e

t unconditional covariances
vt optimal cost-to-go function
Sx

t , Se
t , st parameters of the optimal cost-to-go function

Kt filter gain matrices
Lt control gain matrices

In this letter, we define an extended noise model that reflects the prop-
erties of the sensorimotor system; derive an efficient algorithm for solving
the stochastic optimal control and estimation problems under that noise
model; illustrate the application of this extended LQG methodology in the
context of reaching movements; and study the properties of the new algo-
rithm through extensive numerical simulations. A special case of the al-
gorithm derived here has already allowed us (Todorov & Jordan, 2002b)
to construct models of a wider range of empirical results than previously
possible.

In section 2 we motivate our extended noise model, which includes
control-dependent, state-dependent, and internal estimation noise. In
section 3 we formalize the problem and restrict the feedback control laws
under consideration to functions of state estimates that are obtained by un-
biased nonadaptive linear filters. In section 4 we compute the optimal feed-
back control law for any nonadaptive linear filter and show that it is linear
in the state estimate. In section 5 we derive the optimal nonadaptive linear
filter for any linear control law. The two results together provide an iterative
coordinate-descent algorithm (equations 4.2 and 5.2), which is guaranteed
to converge to a filter and a control law optimal with respect to each other.
In section 6 we illustrate the application of our method to the analysis of
reaching movements. In section 7 we explore numerically the convergence
properties of the algorithm and observe exponential convergence with no
local minima. In section 8 we assess the effects of assuming a nonadap-
tive linear filter and find them to be negligible for the control problems of
interest.

Table 1 shows the notation used in this letter.
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2 Noise Characteristics of the Sensorimotor System

Noise in the motor output is not additive but instead increases with the
magnitude of the control signals. This is intuitively obvious: if you rest
your arm on the table, it does not bounce around (i.e., the passive plant
dynamics have little noise), but when you make a movement (i.e., generate
control signals), the outcome is not always as desired. Quantitatively, the
relationship between motor noise and control magnitude is surprisingly
simple. Such noise has been found to be multiplicative: the standard de-
viation of muscle force is well fit with a linear function of the mean force,
in both static (Sutton & Sykes, 1967; Todorov, 2002) and dynamic (Schmidt,
Zelaznick, Hawkins, Frank, & Quinn, 1979) isometric force tasks. The exact
reasons for this dependence are not entirely clear, although it can be ex-
plained at least in part with Poisson noise on the neural level combined with
Henneman’s size principle of motoneuron recruitment (Jones, Hamilton, &
Wolpert, 2002). To formalize the empirically established dependence, let u
be a vector of control signals (corresponding to the muscle activation levels
that the nervous system attempts to set) and ε be a vector of zero-mean ran-
dom numbers. A general multiplicative noise model takes the form C(u)ε,
where C(u) is a matrix whose elements depend linearly on u. To express
a linear relationship between a vector u and a matrix C , we make the ith
column of C equal to Ci u, where Ci are constant scaling matrices. Then
we have C(u)ε = ∑

i Ci uεi , where εi is the ith component of the random
vector ε.

Online movement control relies on feedback from a variety of sensory
modalities, with vision and proprioception typically playing the dominant
role. Visual noise obviously depends on the retinal position of the objects
of interest and increases with distance away from the fovea (i.e., eccen-
tricity). The accuracy of visual positional estimates is again surprisingly
well modeled with multiplicative noise, whose standard deviation is pro-
portional to eccentricity. This is an instantiation of Weber’s law and has
been found to be quite robust in a variety of interval discrimination ex-
periments (Burbeck & Yap, 1990; Whitaker & Latham, 1997). We have also
confirmed this scaling law in a visuomotor setting, where subjects pointed
to memorized targets presented in the visual periphery (Todorov, 1998).
Such results motivate the use of a multiplicative observation noise model
of the form D (x)ε = ∑

i Di xεi , where x is the state of the plant and environ-
ment, including the current fixation point and the positions and velocities of
relevant objects. Incorporating state-dependent noise in analyses of senso-
rimotor control can allow more accurate modeling of the effects of feedback
and various experimental perturbations; it also can effectively induce a cost
function over eye movement patterns and allow us to predict the eye move-
ments that would result in optimal hand performance (Todorov, 1998). Note
that if other forms of state-dependent sensory noise are found, the model
can still be useful as a linear approximation.
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Intelligent control of a partially observable stochastic plant requires
a feedback control law, which is typically a function of a state estimate
that is computed recursively over time. In engineering applications, the
estimation-control loop is implemented in a noiseless digital computer, and
so all noise is external. In models of biological movement, we usually make
the same assumption, treating all noise as being a property of the muscu-
loskeletal plant or the sensory apparatus. This is in principle unrealistic,
because neural representations are likely subject to internal fluctuations
that do not arise in the periphery. It is also unrealistic in modeling practice.
An ideal observer model predicts that the estimation error covariance of
any stationary feature of the environment will asymptote to 0. In partic-
ular, such models predict that if we view a stationary object in the visual
periphery long enough, we should eventually know exactly where it is and
be able to reach for it as accurately as if it were at the center of fixation. This
contradicts our intuition as well as experimental data. Both interval dis-
crimination experiments and reaching to remembered peripheral targets
experiments indicate that estimation errors asymptote rather quickly, but
not to 0. Instead, the asymptote level depends linearly on eccentricity. The
simplest way to model this is to assume another noise process, which we
call internal noise, acting directly on whatever state estimate the nervous
system chooses to compute.

3 Problem Statement and Assumptions

Consider a linear dynamical system with state xt ∈ R
m, control ut ∈ R

p,
feedback yt ∈ R

k , in discrete time t:

Dynamics xt+1 = Axt + But + ξt +
c∑

i=1

εi
tCi ut

Feedback yt = Hxt + ωt +
d∑

i=1

εi
t Di xt

Cost per step xT
t Qtxt + uT

t Rut

(3.1)

The feedback signal yt is received after the control signal ut has been gen-
erated. The initial state has known mean x̂1 and covariance �1. All matrices
are known and have compatible dimensions; making them time varying
is straightforward. The control cost matrix R is symmetric positive defi-
nite (R > 0), and the state cost matrices Q1, . . . , Qn are symmetric positive
semidefinite (Qt ≥ 0). Each movement lasts n time steps; at t = n, the final
cost is xT

n Qnxn, and un is undefined. The independent random variables
ξt ∈ R

m, ωt ∈ R
k , εt ∈ R

c , and εt ∈ R
d have multidimensional gaussian dis-

tributions with mean 0 and covariances �ξ ≥ 0, �ω > 0, �ε = I and �ε = I
respectively. Thus, the control-dependent and state-dependent noise terms
in equation 3.1 have covariances

∑
i Ci utuT

t CT
i and

∑
i Di xtxT

t DT
i . When the
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control-dependent noise is meant to be added to the control signal (which is
usually the case), the matrices Ci should have the form B Fi where Fi are the
actual noise scaling factors. Then the control-dependent part of the plant
dynamics becomes B(I + ∑

i εi
t Fi )ut .

The problem of optimal control is to find the optimal control law, that
is, the sequence of causal control functions ut(u1, . . . , ut−1, y1, . . . , yt−1) that
minimize the expected total cost over the movement. Note that computing
the optimal sequence of functions u1(·), . . . , un−1(·) is a different, and in
general much more difficult, problem than computing the optimal sequence
of open-loop controls u1, . . . , un−1.

When only additive noise is present (i.e., C1, . . . , Cc = 0 and D1, . . . , Dd =
0), this reduces to the classic LQG problem, which has the well-known
optimal solution (Davis & Vinter, 1985)

Linear-Quadratic Regulator Kalman Filter
ut = −Lt̂xt x̂t+1 = A x̂t + But + Kt (yt − H x̂t)

Lt = (R + BTSt+1 B)−1 BTSt+1 A Kt = A�t HT(H�t HT + �ω)−1

St = Qt + ATSt+1(A− BLt) �t+1 = �ξ + (A− Kt H) �t AT

(3.2)

In that case, the optimal control law depends on the history of control and
feedback signals only through the state estimate x̂t , which is updated recur-
sively by the Kalman filter. The matrices L that define the optimal control
law do not depend on the noise covariances or filter coefficients, and the
matrices K that define the optimal filter do not depend on the cost and
control law.

In the case of control-dependent and state-dependent noise, the above
independence properties no longer hold. This complicates the problem sub-
stantially and forces us to adopt a more restricted formulation in the interest
of analytical tractability. We assume that, as in equation 3.2, the entire his-
tory of control and feedback signals is summarized by a state estimate x̂t ,
which is all the information available to the control system at time t. The
feedback control law ut(·) is allowed to be an arbitrary function of x̂t , but
x̂t can be updated only by a recursive linear filter of the form:

x̂t+1 = Âxt + But + Kt(yt − H x̂t) + ηt.

The internal noise ηt ∈ R
m has mean 0 and covariance �η ≥ 0. The fil-

ter gains K1, . . . , Kn−1 are nonadaptive; they are determined in advance
and cannot change as a function of the specific controls and observa-
tions within a simulation run. Such a filter is always unbiased: for any
K1, . . . , Kn−1, we have E [xt| x̂t] = x̂t for all t. Note, however, that under
the extended noise model, any nonadaptive linear filter is suboptimal:
when x̂t is computed as defined above, Cov [xt| x̂t] is generally larger than
Cov [xt|u1, . . . , ut−1, y1, . . . , yt−1]. The consequences of this will be explored
numerically in section 8.
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4 Optimal Controller

The optimal ut will be computed using the method of dynamic program-
ming. We will show by induction that if the true state at time t is xt and
the unbiased state estimate available to the control system is x̂t , then the
optimal cost-to-go function (i.e., the cost expected to accumulate under the
optimal control law) has the quadratic form

vt(xt, x̂t) = xT
t Sx

t xt + (xt − x̂t)TSe
t (xt − x̂t) + st = xT

t Sx
t xt + eT

t Se
t et + st,

where et � xt − x̂t is the estimation error. At the final time t = n, the optimal
cost-to-go is simply the final cost xT

n Qnxn, and so vn is in the assumed form
with Sx

n = Qn, Se
n = 0, sn = 0. To carry out the induction proof, we have to

show that if vt+1 is in the above form for some t < n, then vt is also in that
form.

Consider a time-varying control law that is optimal at times t + 1, . . . , n,
and at time t is given by ut = π ( x̂t). Let vπ

t (xt, x̂t) be the corresponding
cost-to-go function. Since this control law is optimal after time t, we have
vπ

t+1 = vt+1. Then the cost-to-go function vπ
t satisfies the Bellman equation:

vπ
t (xt, x̂t) = xT

t Qtxt + π ( x̂t)T Rπ ( x̂t) + E [vt+1(xt+1, x̂t+1)|xt, x̂t, π ].

To compute the above expectation term, we need the update equations
for the system variables. Using the definitions of the observation yt and
the estimation error et , the stochastic dynamics of the variables of interest
become

xt+1 = Axt + Bπ ( x̂t) + ξt +
∑

i

εi
tCiπ ( x̂t)

et+1 = (A− Kt H)et + ξt − Ktωt − ηt +
∑

i

εi
tCiπ ( x̂t) −

∑
i

εi
t Kt Di xt.

(4.1)

Then the conditional means and covariances of xt+1 and et+1 are

E [xt+1|xt, x̂t, π ] = Axt + Bπ ( x̂t)

E [et+1|xt, x̂t, π ] = (A− Kt H)et

Cov [xt+1|xt, x̂t, π ] = �ξ +
∑

i

Ciπ ( x̂t)π ( x̂t)TCT
i

Cov [et+1|xt, x̂t, π ] = �ξ +
∑

i

Ciπ ( x̂t)π ( x̂t)TCT
i + �η

+ Kt�
ω K T

t +
∑

i

Kt Di xtxT
t DT

i K T
t ,
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and the conditional expectation in the Bellman equation can be computed.
The cost-to-go becomes

vπ
t (xt, x̂t) = xT

t

(
Qt + ATSx

t+1 A+ Dt
)
xt

+ eT
t (A− Kt H)TSe

t+1(A− Kt H)et

+ tr (Mt) + π ( x̂t)T (
R + BTSx

t+1 B + Ct
)
π ( x̂t)

+ 2π ( x̂t)T BTSx
t+1 Axt,

where we defined the shortcuts

Ct �
∑

i

CT
i

(
Se

t+1 + Sx
t+1

)
Ci ,

Dt �
∑

i

DT
i K T

t Se
t+1 Kt Di , and

Mt � Sx
t+1�

ξ + Se
t+1

(
�ξ + �η + Kt�

ω K T
t

)
.

Note that the control law affects only the cost-go-to function through an
expression that is quadratic in π ( x̂t), which can be minimized analytically.
But there is a problem: the minimum depends on xt , while π is only allowed
to be a function of x̂t . To obtain the optimal control law at time t, we have
to take an expectation over xt conditional on x̂t , and find the function π

that minimizes the resulting expression. Note that the control-dependent
expression is linear in xt , and so its expectation depends on the conditional
mean of xt but not on any higher moments. Since E [xt| x̂t] = x̂t , we have

E
[
vπ

t (xt, x̂t)| x̂t
] = const + π ( x̂t)T

(
R + BTSx

t+1 B + Ct
)
π ( x̂t)

+ 2π ( x̂t)T BTSx
t+1 A x̂t,

and thus the optimal control law at time t is

ut = π ( x̂t) = −Lt̂xt; Lt �
(
R + BTSx

t+1 B + Ct
)−1

BTSx
t+1 A.

Note that the linear form of the optimal control law fell out of the opti-
mization and was not assumed. Given our assumptions, the matrix being
inverted is symmetric positive-definite.

To complete the induction proof, we have to compute the optimal cost-
to-go vt , which is equal to vπ

t when π is set to the optimal control law −Lt̂xt .
Using the fact that LT

t (R + BTSx
t+1 B + Ct)Lt = LT

t BTSx
t+1 A = ATSx

t+1 BLt , and
that x̂T Z x̂ − 2 x̂T Zx = (x − x̂ )T Z(x − x̂ ) − xT Zx = eT Ze − xT Zx for a sym-
metric matrix Z (in our case equal to LT

t BTSx
t+1 A), the result is

vt(xt, x̂t) = xT
t

(
Qt + ATSx

t+1(A− BLt) + Dt
)
xt + tr (Mt) + st+1

+ eT
t

(
ATSx

t+1 BLt + (A− Kt H)TSe
t+1(A− Kt H)

)
et.
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We now see that the optimal cost-to-go function remains in the assumed
quadratic form, which completes the induction proof. The optimal control
law is computed recursively backward in time as

Controller ut = −Lt̂xt

Lt =
(

R + BTSx
t+1 B +

∑
i

CT
i

(
Sx

t+1 + Se
t+1

)
Ci

)−1

BTSx
t+1 A

Sx
t = Qt + ATSx

t+1(A− BLt) +
∑

i

DT
i K T

t Se
t+1 Kt Di ; Sx

n = Qn

Se
t = ATSx

t+1 BLt + (A− Kt H)T Se
t+1 (A− Kt H) ; Se

n = 0

st = tr
(
Sx

t+1�
ξ + Se

t+1

(
�ξ + �η + Kt�

ω K T
t

)) + st+1; sn = 0.

(4.2)

The total expected cost is x̂ T
1 Sx

1 x̂1 + tr((Sx
1 + Se

1 )�1) + s1.
When the control-dependent and state-dependent noise terms are re-

moved (i.e., C1, . . . , Cc = 0, D1, . . . , Dd = 0), the control laws given by
equation 4.2 and 3.2 are identical. The internal noise term η, as well as
the additive noise terms ξ and ω, do not directly affect the calculation of
the feedback gain matrices L . However, all noise terms affect the calculation
(see below) of the optimal filter gains K , which in turn affect L .

One can attempt to transform equation 3.1 into a fully observable system
by setting H = I , �ω = �η = 0, D1, . . . , Dd = 0, in which case K = A, and
apply equation 4.2. Recall, however, our assumption that the control signal
is generated before the current state is measured. Thus, even if we make
the sensory measurement equal to the state, we would still be dealing with
a partially observable system. To derive the optimal controller for the fully
observable case, we have to assume that xt is known at the time when ut is
generated. The above derivation is now much simplified: the optimal cost-
to-go function vt is in the form xT

t Stxt + st , and the expectation term that
needs to be minimized with regard to ut = π (xt) becomes

E [vt+1] = (Axt + But)TSt+1(Axt + But)

+ uT
t

(∑
i

CT
i St+1Ci

)
ut + tr [St+1�

ξ ] + st+1,

and the optimal controller is computed in a backward pass through time as

Fully observable controller ut = −Ltxt

Lt =
(

R + BTSt+1 B +
∑

i

CT
i St+1Ci

)−1

BTSt+1 A

St = Qt + ATSt+1(A− BLt); Sn = Qn

st = tr (St+1�
ξ ) + st+1; sn = 0.

(4.3)
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5 Optimal Estimator

So far, we have computed the optimal control law L for any fixed sequence
of filter gains K . What should these gains be fixed to? Ideally they should
correspond to a Kalman filter, which is the optimal linear estimator. How-
ever, in the presence of control-dependent and state-dependent noise, the
Kalman filter gains become adaptive (i.e., Kt depends on x̂t and ut), which
would make our control law derivation invalid. Thus, if we want to preserve
the optimality of the control law given by equation 4.2 and obtain an iter-
ative algorithm with guaranteed convergence, we need to compute a fixed
sequence of filter gains that are optimal for a given control law. Once the
iterative algorithm has converged and the control law has been designed,
we could use an adaptive filter in place of the fixed-gain filter in run time
(see section 8).

Thus, our objective here is the following: given a linear feedback control
law L1, . . . , Ln−1 (which is optimal for the previous filter K1, . . . , Kn−1),
compute a new filter that, in conjunction with the given control law, results
in minimal expected cost. In other words, we will evaluate the filter not by
the magnitude of its estimation errors, but by the effect that these estimation
errors have on the performance of the composite estimation-control system.

We will show that the new optimal filter can be designed in a forward
pass through time. In particular, we will show that regardless of the new
values of K1, . . . , Kt−1, the optimal Kt can be found analytically as long as
Kt+1, . . . , Kn−1 still have the values for which Lt+1, . . . , Ln−1 are optimal.
Recall that the optimal Lt+1, . . . , Ln−1 depend only on Kt+1, . . . , Kn−1, and
so the parameters (as well as the form) of the optimal cost-to-go function
vt+1 cannot be affected by changing K1, . . . , Kt . Since Kt affects only the
computation of x̂t+1, and the effect of x̂t+1 on the total expected cost is cap-
tured by the function vt+1, we have to minimize vt+1 with respect to Kt .
But v is a function of x and x̂, while K cannot be adapted to the specific
values of x and x̂ within a simulation run (by assumption). Thus, the
quantity we have to minimize is the unconditional expectation of vt+1. In
doing so, we will use that fact that

E [vt+1(xt+1, x̂t+1)] = Ext ,̂xt [E [vt+1(xt+1, x̂t+1)|xt, x̂t, Lt]].

The conditional expectation was already computed as an intermediate step
in the previous section (not shown). The terms in E [vt+1(xt+1, x̂t+1)|xt, x̂t, Lt]
that depend on Kt are

eT
t (A− Kt H)TSe

t+1(A− Kt H)et + tr

(
Kt

(
�ω +

∑
i

Di xtxT
t DT

i

)
K T

t Se
t+1

)
.

Defining the (uncentered) unconditional covariances �e
t � E [eteT

t ] and
�x

t � E [xtxT
t ], the unconditional expectation of the Kt-dependent expression
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above becomes

a (Kt) = tr
((

(A− Kt H)�e
t (A− Kt H)T + KtPt K T

t

)
Se

t+1

);
Pt � �ω +

∑
i

Di�
x
t DT

i .

The minimum of a (Kt) is found by setting its derivative with regard to Kt to
0. Using the matrix identities ∂

∂ X tr (XU) = UT and ∂
∂ X tr

(
XU XTV

) = VXU +
VT XUT, and the fact that the matrices Se

t+1, �
ω, �e

t , �
x
t are symmetric, we

obtain
∂a (Kt)
∂Kt

= 2Se
t+1

(
Kt

(
H�e

t HT + Pt
) − A�e

t HT
)
.

This expression is equal to 0 whenever Kt = A�e
t HT(H�e

t HT + Pt)−1, re-
gardless of the value of Se

t+1. Given our assumptions, the matrix being in-
verted is symmetric positive-definite. Note that the optimal Kt depends
on K1, . . . , Kt−1 (through �e

t and �x
t ) but is independent of Kt+1, . . . , Kn−1

(since it is independent of Se
t+1). This is the reason that the filter gains are

reoptimized in a forward pass.
To complete the derivation, we have to substitute the optimal filter

gains and compute the unconditional covariances. Recall that the variables
xt, x̂t, et are deterministically related by et = xt − x̂t , so the covariance of
any one of them can be computed given the covariances of the other two,
and we have a choice of which pair of covariance matrices to compute.
The resulting equations are most compact for the pair x̂t, et . The stochastic
dynamics of these variables are

x̂t+1 = (A− BLt) x̂t + Kt Het + Ktωt + ηt +
∑

i

εi
t Kt Di (et + x̂t).

et+1 = (A− Kt H)et + ξt − Ktωt − ηt −
∑

i

εi
tCi Lt̂xt (5.1)

−
∑

i

εi
t Kt Di (et + x̂t).

Define the unconditional covariances,

�e
t � E

[
eteT

t

]; �x̂
t � E

[̂
xt̂xT

t

]; �x̂e
t � E

[̂
xteT

t

]
,

noting that �x̂
t is uncentered and �êx

t = (�x̂e
t )T. Since x̂1 is a known constant,

the initialization at t = 1 is �e
1 = �1, �x̂

1 = x̂1̂xT
1, �x̂e

1 = 0. With these defi-
nitions, we have �x

t = E [(et + x̂t)(et + x̂t)T] = �e
t + �x̂

t + �x̂e
t + �x̂eT

t . Using
equation 5.1, the updates for the unconditional covariances are

�e
t+1 = (A− Kt H)�e

t (A− Kt H)T + �ξ + �η + KtPt K T
t

+
∑

i

Ci Lt�
x̂
t LT

t CT
i
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�x̂
t+1 = (A− BLt)�x̂

t (A− BLt)T + �η + Kt
(
H�e

t HT + Pt
)
K T

t

+ (A− BLt)�x̂e
t HT K T

t + Kt H�êx
t (A− BLt)T

�x̂e
t+1 = (A− BLt)�x̂e

t (A− Kt H)T + Kt H�e
t (A− Kt H)T

− �η − KtPt K T
t .

Substituting the optimal value of Kt , which allows some simplifications to
the above update equations, the optimal nonadaptive linear filter is com-
puted in a forward pass through time as

Estimator x̂t+1 = (A− BLt) x̂t + Kt(yt − H x̂t) + ηt

Kt = A�e
t HT

(
H�e

t HT + �ω +
∑

i

Di
(
�e

t + �x̂
t + �x̂e

t + �êx
t

)
DT

i

)−1

�e
t+1 = �ξ + �η + (A− Kt H)�e

t AT +
∑

i

Ci Lt�
x̂
t LT

t CT
i ; �e

1 = �1

�x̂
t+1 = �η + Kt H�e

t AT + (A− BLt)�x̂
t (A− BLt)T

+ (A− BLt)�x̂e
t HT K T

t + Kt H�êx
t (A− BLt)T; �x̂

1 = x̂1̂xT
1

�x̂e
t+1 = (A− BLt) �x̂e

t (A− Kt H)T − �η; �x̂e
1 = 0.

(5.2)
It is worth noting the effects of the internal noise ηt . If that term did not

exist (i.e., �η = 0), the last update equation would yield �x̂e
t = 0 for all t.

Indeed, for an optimal filter, one would expect �x̂e
t = 0 from the orthogo-

nality principle: if the state estimate and estimation error were correlated,
one could improve the filter by taking that correlation into account. How-
ever, the situation here is different because we have noise acting directly
on the state estimate. When such noise pushes x̂t in one direction, et is (by
definition) pushed in the opposite direction, creating a negative correlation
between x̂t and et . This is the reason for the negative sign in front of the �η

term in the last update equation.
The complete algorithm is the following:
Algorithm:
Initialize K1, . . . , Kn−1, and iterate equation 4.2 and equation 5.2 until

convergence. Convergence is guaranteed, because the expected cost is non-
negative by definition, and we are using a coordinate-descent algorithm,
which decreases the expected cost in each step. The initial sequence K could
be set to 0—in which case, the first pass of equation 4.2 will find the optimal
open-loop controls, or initialized from equation 3.2—which is equivalent to
assuming additive noise in the first pass.

We can also derive the optimal adaptive linear filter, with gains Kt that
depend on the specific x̂t and ut = −Lt̂xt within each simulation run. This is
again accomplished by minimizing E [vt+1] with respect to Kt , but the expec-
tation is computed with x̂t being a known constant rather than a random
variable. We now have �x̂

t = x̂t̂xT
t and �x̂e

t = 0, and so the last two update
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equations in equation 5.2 are no longer needed. The optimal adaptive linear
filter is

Adaptive estimator x̂t+1 = (A− BLt) x̂t + Kt (yt − H x̂t) + ηt

Kt = A�t HT

(
H�t HT + �ω +

∑
i

Di
(
�t + x̂t x̂T

t

)
DT

i

)−1

�t+1 = �ξ + �η + (A− Kt H) �t AT +
∑

i

Ci Lt̂xt x̂T
t LT

t CT
i ,

(5.3)

where �t = Cov [xt| x̂t] is the conditional estimation error covariance
(initialized from �1, which is given). When the control-dependent,
state-dependent, and internal noise terms are removed (C1, . . . , Cc = 0,
D1, . . . , Dd = 0, �η = 0), equation 5.3 reduces to the Kalman filter in equa-
tion 3.2. Note that using equation 5.3 instead of equation 5.2 online reduces
the total expected cost because equation 5.3 achieves lower estimation error
than any other linear filter, and the expected cost depends on the conditional
estimation error covariance. This can be seen from

E[vt(xt, x̂t)| x̂t] = x̂T
t Sx

t x̂t + st + tr
((

Sx
t + Se

t

)
Cov[xt| x̂t]

)
6 Application to Reaching Movements

We now illustrate how the methodology developed above can be used to
construct models relevant to motor control. Since this is a methodologi-
cal rather than a modeling article, a detailed evaluation of the resulting
models in the context of the motor control literature will not be given
here. The first model is a one-dimensional model of reaching, and in-
cludes control-dependent noise but no state-dependent or internal noise.
The latter two forms of noise are illustrated in the second model, where
we estimate the position of a stationary peripheral target without making a
movement.

6.1 Models. We model a single-joint movement (such as flexing the el-
bow) that brings the hand to a specified target. For simplicity, the rotational
motion is replaced with translational motion; the hand is modeled as a point
mass (m = 1 kg) whose one-dimensional position at time t is p(t). The com-
bined action of all muscles is represented with the force f (t) acting on the
hand. The control signal u(t) is transformed into force f (t) by adding control-
dependent multiplicative noise and applying a second-order muscle-like
low-pass filter (Winter, 1990) of the form τ1τ2 f̈ (t) + (τ1 + τ2) ḟ(t) + f (t) =
u(t), with time constants τ1 = τ2 = 0.04 sec. Note that a second-order filter
can be written as a pair of coupled first-order filters (with outputs g and f )
as follows: τ1ġ(t) + g(t) = u(t), τ2 ḟ (t) + f (t) = g(t).

The task is to move the hand from the starting position p(0) = 0 m to the
target position p∗ = 0.1 m and stop there at time tend, with minimal energy
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consumption. Movement durations are in the interval tend ∈ [0.25 sec;
0.35 sec]. Time is discretized at � = 0.01 sec. The total cost is defined as

(p(tend) − p∗)2 + (wv ṗ(tend))2 + (w f f (tend))2 + r
n − 1

n−1∑
k=1

u(k�)2.

The first term enforces positional accuracy; the second and third terms
specify that the movement has to stop at time tend, that is, both the velocity
and force have to vanish; and the last term penalizes energy consumption.
It makes sense to set the scaling weights wv and w f so that wv ṗ(t) and
w f f (t) averaged over the movement have magnitudes similar to the hand
displacement p∗ − p(0). For a 0.1 m reaching movement that lasts about
0.3 sec, these weights are wv = 0.2 and w f = 0.02. The weight of the energy
term was set to r = 0.00001.

The discrete-time system state is represented with the five-dimensional
vector

xt = [p(t); ṗ(t); f (t); g(t); p∗]

initialized from a gaussian with mean x̂1 = [0; 0; 0; 0; p∗]. The auxiliary
state variable g(t) is needed to implement a second-order filter. The tar-
get p∗ is included in the state so that we can capture the above cost func-
tion using a quadratic with no linear terms: defining p = [1; 0; 0; 0; −1],
we have pTxt = p(tend) − p∗, and so xT

t (ppT)xt = (p(tend) − p∗)2. Note that
the same could be accomplished by setting p = [1; 0; 0; 0; −p∗] and xt =
[p(t); ṗ(t); f (t); g(t); 1]. The advantage of the formulation used here is that
because the target is represented in the state, the same control law can be
reused for other targets. The control law, of course, depends on the filter,
which depends on the initial expected state, which depends on the target—
and so a control law optimal for one target is not necessarily optimal for all
other targets. Unpublished simulation results indicate good generalization,
but a more detailed investigation of how the optimal control law depends
on the target position is needed.

The sensory feedback carries information about position, velocity, and
force:

yt = [p(t); ṗ(t); f (t)] + ωt.

The vector ωt of sensory noise terms has zero-mean gaussian distribution
with diagonal covariance,

�ω = (σsdiag[0.02 m; 0.2 m/s; 1 N])2,

where the relative magnitudes are set using the same order-of-magnitude
reasoning as before, and σs = 0.5. The multiplicative noise term added to
the discrete-time control signal ut = u(t) is σcεtut , where σc = 0.5. Note that
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σc is a unitless quantity that defines the noise magnitude relative to the
control signal magnitude.

The discrete-time dynamics of the above system are

p(t + �) = p(t) + ṗ(t)�

ṗ(t + �) = ṗ(t) + f (t)�/m

f (t + �) = f (t) (1 − �/τ2) + g(t)�/τ2

g(t + �) = g(t) (1 − �/τ1) + u(t) (1 + σcεt) �/τ1,

which is transformed into the form of equation 3.1 by the matrices

A =



1 � 0 0 0

0 1 �/m 0 0

0 0 1 − �/τ2 �/τ2 0

0 0 0 1 − �/τ1 0

0 0 0 0 1

 B =



0

0

0

�/τ1

0


H =

 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


C1 = Bσc; c = 1; d = 0

�1 = �ξ = �η = 0.

The cost matrices are R = r , Q1,...,n−1 = 0, and Qn = ppT + vvT + ffT, where

p = [1; 0; 0; 0; −1]; v = [0; wv; 0; 0; 0]; f = [0; 0; w f ; 0; 0].

This completes the formulation of the first model. The above algorithm
can now be applied to obtain the control law and filter, and the closed-loop
system can be simulated. To replace the control-dependent noise with ad-
ditive noise of similar magnitude (and compare the effects of the two forms
of noise), we will set c = 0 and �ξ = (4.6 N)2 B BT. The value of 4.6 N is the
average magnitude of the control-dependent noise over the range of move-
ment durations (found through 10,000 simulation runs at each movement
duration).

We also model an estimation process under state-dependent and inter-
nal noise, in the absence of movement. In that case, the state is xt = p∗,
where the stationary target p∗ is sampled from a gaussian with mean x̂1 ∈
{5 cm, 15 cm, 25 cm} and variance �1 = (5 cm)2. Note that target eccentric-
ity is represented as distance rather than visual angle. The state-dependent
noise has scale D1 = 0.5, fixation is assumed to be at 0 cm, the time step is
� = 10 msec, and we run the estimation process for n = 100 time steps. In
one set of simulations, we use internal noise �η = (0.5 cm)2 without addi-
tive noise. In another set of simulations, we study additive noise with the
same magnitude �ω = (0.5 cm)2, without internal noise. There is no actu-
ator to be controlled, so we have A = H = 1 and B = L = 0. Estimation is
based on the adaptive filter from equation 5.3.



1100 E. Todorov

6.2 Results. Reaching movements are known to have stereotyped bell-
shaped speed profiles (Flash & Hogan, 1985). Models of this phenomenon
have traditionally been formulated in terms of deterministic open-loop min-
imization of some cost function. Cost functions that penalize physically
meaningful quantities (such as duration or energy consumption) did not
agree with empirical data (Nelson, 1983); in order to obtain realistic speed
profiles, it appeared necessary to minimize a smoothness-related cost that
penalizes the derivative of acceleration (Flash & Hogan, 1985) or torque
(Uno et al., 1989). Smoothness-related cost functions have also been used
in the context of stochastic optimal feedback control (Hoff, 1992) to obtain
bell-shaped speed profiles. It was recently shown, however, that smoothness
does not have to be explicitly enforced by the cost function; open-loop min-
imization of end-point error was found sufficient to produce realistic trajec-
tories, provided that the multiplicative nature of motor noise is taken into
account (Harris & Wolpert, 1998). While this is an important step toward a
more principled optimization model of trajectory smoothness, it still con-
tains an ad hoc element: the optimization is performed in an open loop,
which is suboptimal, especially for movements of longer duration. Our
model differs from Harris and Wolpert (1998) in that not only the average
sequence of control signals is optimal, but the feedback gains that determine
the online sensory-guided adjustments are also optimal. Optimal feedback
control of reaching has been studied by Meyer, Abrams, Kornblum, Wright,
and Smith (1988) in an intermittent setting, and Hoff (1992) in a continu-
ous setting. However, both of these models assume full state observation.
Ours is the first optimal control model of reaching that incorporates sensory
noise and combines state estimation and feedback control into an optimal
sensorimotor loop. The predicted movement kinematics shown in Figure 1A
closely resemble observed movement trajectories (Flash & Hogan, 1985).

Another well-known property of reaching movements, first observed a
century ago by Woodworth and later quantified as Fitts’ law, is the trade-off
between speed and accuracy. The fact that faster movements are less ac-
curate implies that the instantaneous noise in the motor system is control-
dependent, in agreement with direct measurements of isometric force fluc-
tuations (Sutton and Sykes, 1967; Schmidt et al., 1979; Todorov, 2002) that
show standard deviation increasing linearly with the mean. Naturally, this
noise scaling has formed the basis of both closed-loop (Meyer et al., 1988;
Hoff, 1992) and open-loop (Harris & Wolpert, 1998) optimization models of
the speed-accuracy trade-off. Figure 1B illustrates the effect in our model: as
the (specified) movement duration increases, the standard deviation of the
end-point error achieved by the optimal controller decreases. To emphasize
the need for incorporating control-dependent noise, we modified the model
by making the noise in the plant dynamics additive, with fixed magnitude
chosen to match the average multiplicative noise magnitude over the range
of movement durations. With that change, the end-point error showed the
opposite trend to the one observed experimentally (see Figure 1B).
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Figure 1: (A) Normalized position (Pos), velocity (Vel), and acceleration (Acc) of
the average trajectory of the optimal controller. (B) A separate optimal controller
was constructed for each instructed duration, the resulting closed-loop system
was simulated for 10,000 trials, and the positional standard deviation at the end
of the trial was plotted. This was done with either multiplicative (solid line)
or additive (dashed line) noise in the plant dynamics. (C) The position of a
stationary peripheral target was estimated over time, under internal estimation
noise (solid line) or additive observation noise (dashed line). This was done in
three sets of trials, with target positions sampled from gaussians with means
5 cm (bottom), 15 cm (middle), and 25 cm (top). Each curve is an average over
10,000 simulation runs.

It is interesting to compare the effects of the control penalty r and the mul-
tiplicative noise scaling σc . As equation 4.2 shows, both terms penalize large
control signals—directly in the case of r and indirectly (via increased un-
certainty) in the case of σc . Consequently, both terms lead to a negative bias
in end-point position (not shown), but the effect is much more pronounced
for r . Another consequence of the fact that larger controls are more costly
arises in the control of redundant systems, where the optimal strategy is to
follow a minimal intervention principle, that is, to leave task-irrelevant de-
viations from the average behavior uncorrected (Todorov & Jordan, 2002a,
2002b). Simulations have shown that this more complex effect is dependent
on σc and actually decreases when r is increased while σc is kept constant
(Todorov & Jordan, 2002b).

Figure 1C shows simulation results from our second model, where the po-
sition of a stationary peripheral target is estimated by the optimal adaptive
filter in equation 5.3, operating under internal estimation noise or additive
observation noise of the same magnitude. In each case, we show results for
three sets of targets with varying average eccentricity. The standard devi-
ations of the estimation error always reach an asymptote (much faster in
the case of internal noise). In the presence of internal noise, this asymptote
depends on target eccentricity; for the chosen model parameters, the depen-
dence is in quantitative agreement with our experimental results (Todorov,
1998). Under additive noise, the error always asymptotes to 0.
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Figure 2: Relative change in expected cost as a function of iteration number,
in (A) psychophysical models and (B) random models. (C) Relative variabil-
ity (SD/mean) among expected costs obtained from 100 different runs of the
algorithm on the same model (average over models in each class).

7 Convergence Properties

We studied the convergence properties of the algorithm in 10 models of psy-
chophysical experiments taken from Todorov and Jordan (2002b) and 200
randomly generated models. The psychophysical models had dynamics and
cost functions similar to the above example. They included two models of
planar reaching, three models of passing through sequences of targets, one
model of isometric force production, three models of tracking and reach-
ing with a mechanically redundant arm, and one model of throwing. The
dimensionalities of the state, control, and feedback were between 5 and
20, and the horizon n was about 100. The psychophysical models included
control-dependent dynamics noise and additive observation noise, but no
internal or state-dependent noise. The details of all these models are inter-
esting from a motor control point of view, but we omit them here since they
did not affect the convergence of the algorithm in any systematic way.

The random models were divided into two groups of 100 each: passively
stable, with all eigenvalues of A being smaller than 1, and passively unsta-
ble, with the largest eigenvalue of A being between 1 and 2. The dynamics
were restricted so that the last component of xt was 1—to make the random
models more similar to the psychophysical models, which always incorpo-
rated a constant in the state description. The state, control, and measurement
dimensionalities were sampled uniformly between 5 and 20. The random
models included all forms of noise allowed by equation 3.1.

For each model, we initialized K1,...,n−1 from equation 3.2 and applied our
iterative algorithm. In all cases convergence was very rapid (see Figures 2A
and 2B), with the relative change in expected cost decreasing exponentially.
The jitter observed at the end of the minimization (see Figure 2A) is due to
numerical round-off errors (note the log scale) and continues indefinitely.
The exponential convergence regime does not always start from the first
iteration (see Figure 2A). Similar behavior was observed for the absolute
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change in expected cost (not shown). As one would expect, random mod-
els with unstable passive dynamics converged more slowly than passively
stable models. Convergence was observed in all cases.

To test for the existence of local minima, we focused on five psychophys-
ical, five random stable, and five random unstable models. For each model,
the algorithm was initialized 100 times with different randomly chosen
sequences K1,...,n−1, and run for 100 iterations. For each model, we com-
puted the standard deviation of the expected cost obtained at each iteration
and divided by the mean expected cost at that iteration. The results, aver-
aged within each model class, are plotted in Figure 2C. The negligibly small
values after convergence indicate that the algorithm always finds the same
solution. This was true for every model we studied, despite the fact that
the random initialization sometimes produced very large initial costs. We
also examined the K and L sequences found at the end of each run, and the
differences seemed to be due to round-off errors. Thus, we conjecture that
the algorithm always converges to the globally optimal solution. So far we
have not been able to prove this analytically and cannot offer a satisfying
intuitive explanation at this time.

Note that the system can be unstable even for the optimal controller.
Formally, that does not affect the derivation, because in a discrete-time finite-
horizon system, all numbers remain finite. In practice, the components of xt

can exceed the maximum floating-point number whenever the eigenvalues
of (A− BLt) are sufficiently large. In the applications we are interested
in (Todorov, 1998; Todorov & Jordan, 2002b), such problems were never
encountered.

8 Improving Performance via Adaptive Estimation

Although the iterative algorithm given by equations 4.2 and 5.2 is guar-
anteed to converge, and empirically it appears to converge to the globally
optimal solution, performance can still be suboptimal due to the imposed
restriction to nonadaptive filters. Here we present simulations aimed at
quantifying this suboptimality.

Because the potential suboptimality arises from the restriction to non-
adaptive filters, it is natural to ask what would happen if that restriction were
removed in run time and the optimal adaptive linear filter from equation 5.3
were used instead. Recall that although the control law is optimized under
the assumption of a nonadaptive filter, it yields better performance if a dif-
ferent filter, which somehow achieves lower estimation error, is used in run
time. Thus, in our first test, we simply replace the nonadaptive filter with
equation 5.3 in run time and compute the reduction in expected total cost.

The above discussion suggests a possibility for further improvement. The
control law is optimal with respect to some sequence of filter gains K1,...,n−1.
But the adaptive filter applied in run time uses systematically different
gains, because it achieves systematically lower estimation error. We can run
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Table 2: Cost Reduction.

Model

Method Psychophysical Random Stable Random Unstable

Adaptive Estimator 1.9 % 0 % 31.4 %
Reoptimized Controller 1.7 0 28.3

Notes: Numbers indicate percent reduction in expected total cost, relative to the
cost of the solution found by our iterative algorithm. The two improvement meth-
ods are described in the text. Each method is applied to 10 models in each model
class. For each model and method, expected total cost is computed from 10,000
simulation runs. A value of 0% indicates that with a sample size of 10 models, the
improvement was not significantly different from 0% (t-test, p = 0.05 threshold).

our control law in conjunction with the adaptive filter and find the average
filter gains K̃1,...,n−1 that are used online. Now, one would think that if we
reoptimized the control law for the nonadaptive filter K̃1,...,n−1, which better
reflects the gains being used online by the adaptive filter, this will further
improve performance. This is the second test we apply.

As Table 2 shows, neither method improves performance substantially
for psychophysical models or random stable models. However, both meth-
ods result in substantial improvement for random unstable models. This is
not surprising. In the passively stable models, the differences between the
expected and actual values of the states and controls are relatively small,
and so the optimal nonadaptive filter is not that different from the optimal
adaptive filter. The unstable models, on the other hand, are very sensitive to
small perturbations and thus follow substantially different state-control tra-
jectories in different simulation runs. So the advantage of adaptive filtering
is much greater. Since musculoskeletal plants have stable passive dynamics,
we conclude that our algorithm is well suited for approximating the optimal
sensorimotor system.

It is interesting that control law reoptimization in addition to adaptive
filtering is actually worse than adaptive filtering alone—contrary to our in-
tuition. This was the case for every model we studied. Although it is not
clear where the problem with the reoptimization method lies, this some-
what unexpected result provides further justification for the restriction we
introduced. In particular, it suggests that the control law that is optimal
under the best nonadaptive filter may be close to optimal under the best
adaptive filter.

9 Discussion

We have presented an algorithm for stochastic optimal control and estima-
tion of partially observable linear dynamical systems, subject to quadratic
costs and noise processes characteristic of the sensorimotor system (see
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equation 3.1). We restricted our attention to controllers that use state
estimates obtained by nonadaptive linear filters. The optimal control law for
any such filter was shown to be linear, as given by equation 4.2. The optimal
nonadaptive linear filter for any linear control law is given by equation 5.2.
Iteration of equations 4.2 and 5.2 is guaranteed to converge to a filter and a
control law optimal with respect to each other. We found numerically that
convergence is exponential, local minima do not to exist, and the effects
of assuming nonadaptive filtering are negligible for the control problems
of interest. The application of the algorithm was illustrated in the context of
reaching movements. The optimal adaptive filter, equation 5.3, as well as
the optimal controller for the fully observable case, equation 4.3, were also
derived. To facilitate the application of our algorithm in the field of motor
control and elsewhere, we have made a Matlab implementation available
at www.cogsci.ucsd.edu/∼todorov.

While our work was motivated by models of biological movement, the
results presented here could be of interest to a wider audience. Problems
with multiplicative noise have been studied in the optimal control literature,
but most of that work has focused on the fully observable case (Kleinman,
1969; McLane, 1971; Willems & Willems, 1976; Bensoussan, 1992; El Ghaoui,
1995; Beghi & D’Alessandro, 1998; Rami et al., 2001). Our equation 4.3 is con-
sistent with these results. The partially observable case that we addressed
(and that is most relevant to models of sensorimotor control) is much more
complex, because the independence of estimation and control breaks down
in the presence of signal-dependent noise. The work most similar to ours is
Pakshin (1978) for discrete-time dynamics and Phillis (1985) for continuous-
time dynamics. These authors addressed a closely related problem using
a different methodology. Instead of analyzing the closed-loop system di-
rectly, the filter and control gains were treated as open-loop controls to a
modified deterministic dynamical system, whose cost function matches the
expected cost of the original system. With that transformation, it is pos-
sible to use Pontryagin’s maximum principle, which is applicable only to
deterministic open-loop control, and obtain necessary conditions that the
optimal filter and control gains must satisfy. Although our results were
obtained independently, we have been able to verify that they are consis-
tent with Pakshin (1978) by removing from our model the internal estima-
tion noise (which to our knowledge has not been studied before); combin-
ing equations 4.2 and 5.2; and applying certain algebraic transformations.
However, our approach has three important advantages. First, we managed
to prove that the optimal control law is linear under a nonadaptive filter,
while this linearity had to be assumed before. Second, using the optimal
cost-to-go function to derive the optimal filter revealed that adaptive filter-
ing improves performance, even though the control law is optimized for a
nonadaptive filter. And most important, our approach yields a coordinate-
descent algorithm with guaranteed convergence, as well as appealing nu-
merical properties illustrated in sections 7 and 8. Each of the two steps of our

http://www.cogsci.ucsd.edu/~todorov.
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coordinate-descent algorithm is computed efficiently in a single pass
through time. In contrast, application of Pontryagin’s maximum principle
yields a system of coupled difference (Pakshin, 1978) or differential (Phillis,
1985) equations with boundary conditions at the initial and final time, but
no algorithm for solving that system. In other words, earlier approaches
obscure the key property we uncovered: that half of the problem can be
solved efficiently given a solution to the other half.

Finally, there may be an efficient way to obtain a control law that achieves
better performance under adaptive filtering. Our attempt to do so through
reoptimization (see section 8) failed, but another approach is possible.
Using the optimal adaptive filter (see equation 5.3) would make E [vt+1]
a complex function of x̂t, ut , and the resulting vt would no longer be in the
assumed parametric form (which is why we introduced the restriction to
nonadaptive filters). But we could force that complex vt in the desired form
by approximating it with a quadratic in x̂t, ut . This yields additional terms in
equation 4.2. We have pursued this idea in our earlier work (Todorov, 1998);
an independent but related method has been developed by Moore, Zhou,
and Lim (1999). The problem with such approximations is that convergence
guarantees no longer seem possible. While Moore et al. did not illustrate
their method with numerical examples, in our work we have found that
the resulting algorithm is not always stable. These difficulties convinced
us to abandon the earlier idea in favor of the methodology presented here.
Nevertheless, approximations that take adaptive filtering into account may
yield better control laws under certain conditions and deserve further in-
vestigation. Note, however, that the resulting control laws will have to be
used in conjunction with an adaptive filter, which is much less efficient in
terms of online computation.
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