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Humans have a complex body with more degrees of freedom than
needed to perform any particular task. Such redundancy affords
flexible and adaptable motor behavior, provided that all degrees
of freedom can be coordinated to contribute to task perfor-
mance1. Understanding coordination has remained a central
problem in motor control for nearly 70 years.

Both the difficulty and the fascination of this problem lie in
the apparent conflict between two fundamental properties of the
motor system1: the ability to accomplish high-level goals reliably
and repeatedly, versus variability on the level of movement details.
More precisely, trial-to-trial fluctuations in individual degrees of
freedom are on average larger than fluctuations in task-relevant
movement parameters—motor variability is constrained to a
redundant subspace (or ‘uncontrolled manifold’2–5) rather than
being suppressed altogether. This pattern is observed in indus-
trial activities1, posture6, locomotion1,7, skiing8, writing1,9, shoot-
ing3, pointing4, reaching10, grasping11, sit-to-stand2, speech12,
bimanual tasks5 and multi-finger force production13. Further-
more, perturbations in locomotion1, speech14, grasping15 and
reaching16 are compensated in a way that maintains task perfor-
mance rather than a specific stereotypical movement pattern.

This body of evidence is fundamentally incompatible1,17 with
models that enforce a strict separation between trajectory plan-
ning and trajectory execution18–23. In such serial models, the
planning stage resolves the redundancy inherent in the muscu-
loskeletal system by replacing the behavioral goal (achievable via
infinitely many trajectories) with a specific ‘desired trajectory’.
Accurate execution of the desired trajectory guarantees achieve-
ment of the goal, and can be implemented with relatively simple
trajectory-tracking algorithms. Although this approach is com-
putationally viable (and often used in engineering), the many
observations of task-constrained variability and goal-directed
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A central problem in motor control is understanding how the many biomechanical degrees of
freedom are coordinated to achieve a common goal. An especially puzzling aspect of coordination is
that behavioral goals are achieved reliably and repeatedly with movements rarely reproducible in
their detail. Existing theoretical frameworks emphasize either goal achievement or the richness of
motor variability, but fail to reconcile the two. Here we propose an alternative theory based on
stochastic optimal feedback control. We show that the optimal strategy in the face of uncertainty is to
allow variability in redundant (task-irrelevant) dimensions. This strategy does not enforce a desired
trajectory, but uses feedback more intelligently, correcting only those deviations that interfere with
task goals. From this framework, task-constrained variability, goal-directed corrections, motor
synergies, controlled parameters, simplifying rules and discrete coordination modes emerge
naturally. We present experimental results from a range of motor tasks to support this theory.

corrections indicate that online execution mechanisms are able
to distinguish, and selectively enforce, the details that are crucial
for goal achievement. This would be impossible if the behavioral
goal were replaced with a specific trajectory.

Instead, these observations imply a very different control
scheme, which pursues the behavioral goal more directly. Efforts
to delineate such a control scheme have led to the idea of func-
tional synergies, or high-level ‘control knobs’, that have invari-
ant and predictable effects on the task-relevant movement
parameters despite variability in individual degrees of free-
dom1,24,25. However, the computational underpinnings of this
approach—how the synergies appropriate for a given task and
plant can be constructed, what control scheme is capable of using
them, and why the motor system should prefer such a control
scheme—remain unclear. This form of hierarchical control pre-
dicts correlations among actuators and a corresponding reduc-
tion in dimensionality, in general agreement with data26,27, but
the biomechanical analysis needed to relate such observations to
the hypothetical functional synergies is lacking.

Here we aim to resolve the apparent conflict at the heart of
the motor coordination problem and clarify the relationships
among variability, task goals and synergies. We propose to do so
by treating coordination within the framework of stochastic opti-
mal feedback control28,29. Although the idea of feedback control
as the basis for intelligent behavior is venerable—dating back
most notably to Wiener’s Cybernetics movement—and although
optimal feedback controllers of various kinds have been studied
in motor control17,30–34, we feel that the potential of optimal con-
trol theory as a source of general explanatory principles for motor
coordination has yet to be fully realized. Moreover, the wide-
spread use of optimization methods for open-loop trajectory
planning18,20–22 creates the impression that optimal control nec-
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essarily predicts stereotypical behavior. However, the source of
this stereotypy is the assumption that trajectory planning and
execution are separate—an assumption motivated by computa-
tional simplicity and not by optimality.

Our model is based on a more thorough use35 of stochastic
optimal control: we avoid performance-limiting assumptions
and postulate that the motor system approximates the best pos-
sible control scheme for a given task—which will generally take
the form of a feedback control law. Whenever the task allows
redundant solutions, movement duration exceeds the shortest
sensorimotor delay, and either the initial state of the plant is
uncertain or the consequences of the control signals are uncer-
tain, optimal performance is achieved by a feedback control law
that resolves redundancy moment-by-moment—using all avail-
able information to choose the best action under the circum-
stances. By postponing decisions regarding movement details
until the last possible moment, this control law takes advantage of
the opportunities for more successful task completion that are
constantly created by unpredictable fluctuations away from the
average trajectory. As we show here, such exploitation of redun-
dancy not only improves performance, but also gives rise to task-
constrained variability, goal-directed corrections, motor synergies
and several other phenomena related to coordination.

Our approach is related to the dynamical systems view of
motor coordination36,37, in the sense that coupling the optimal
feedback controller with the controlled plant produces a specific
dynamical systems model in the context of any given task. More-
over, as in this view, we make no distinction between trajectory
planning and execution. The main difference is that we do not
infer a parsimonious control law from empirical observations;
instead we predict theoretically what the (possibly complex) con-
trol law should be, by optimizing a parsimonious performance
criterion. Thus, in essence, our approach combines the perfor-
mance guarantees inherent in optimization models with the
behavioral richness emerging from dynamical systems models.

Optimality principles in motor control
Many theories in the physical sciences are expressed in terms of
optimality principles, which have been important in motor con-
trol theory as well. In this case, optimality yields computational-
level theories (in the sense of Marr38), which try to explain why
the system behaves as it does, and to specify the control laws that
generate observed behavior. How these control laws are imple-
mented in the nervous system, and how they are acquired via
learning algorithms, is typically beyond the scope of such theories.
Different computational theories can be obtained by varying the
specification of the physical plant controlled, the performance
index optimized, and the control constraints imposed. Our the-
ory is based on the following assumptions.

The general observation that faster movements are less accu-
rate implies that the instantaneous noise in the motor system is
signal dependent, and, indeed, isometric data show that the stan-
dard deviation of muscle force grows linearly with its mean39,40.
Although such multiplicative noise has been incorporated in
trajectory-planning models22, it has had a longer history in feed-
back control models30,33,35, and we use it here as well. Unlike
most models, we also incorporate the fact that the state of the
plant is only observable through delayed and noisy sensors. In
that case, the calculation of optimal control signals requires an
internal forward model, which estimates the current state by inte-
grating delayed noisy feedback with knowledge of plant dynam-
ics and an efference copy of prior control signals. The idea of
forward models, like optimality, has traditionally been linked to
the desired trajectory hypothesis41. However, the existence of an
internal state estimate in no way implies that it should be used
to compute (and cancel) the difference from a desired state at
each point in time.

Without psychometric methods that can independently esti-
mate how subjects perceive ‘the task’, the most principled way
to define the performance index is to quantify the instructions
given to the subject. In the case of reaching, for example, both
the stochastic optimized submovement model30 and the mini-
mum variance model22 define performance in terms of endpoint
error and explain the inverse relationship between speed and
accuracy known as Fitts’ law. Performance indices based on tra-
jectory details rather than outcome alone have been pro-
posed20,21,32,33, because certain empirical results—most notably
the smoothness20,42 of arm trajectories—seemed impossible to
explain with purely outcome-based indices18,32. However, under
multiplicative noise, endpoint variance is minimal when the
desired trajectory is smooth22 (and executed in an open loop).
Although there is no guarantee that optimal feedback control
will produce similar results, this encouraging finding motivates
the use of outcome-based performance indices in the tasks that
we model here. We also add to the performance index an effort
penalty term, increasing quadratically with the magnitude of the
control signal. Theoretically, it makes sense to execute the present
task as accurately as possible while avoiding excessive energy
consumption—at least because such expenditures will decrease
accuracy in future tasks. Empirically, people are often ‘lazy’, ‘slop-
py’ or otherwise perform below their peak abilities. Such behav-
ior can only be optimal if it saves some valuable resource that is
part of the cost function. Although the exact form of that extra
term is unknown, it should increase faster than linear because
larger forces are generated by recruiting more rapidly fatiguing
motor units.

The principal difference between optimal feedback control
and optimal trajectory planning lies in the constraints on the
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Fig. 1. Redundancy exploitation. The system
described in the text (with X* = 2, a = σ = 0.8)
was initialized 20,000 times from a circular two-
dimensional Gaussian with mean (1, 1) and vari-
ance 1. The control signals given by the two
control laws were applied, the system dynamics
simulated, and the covariance of the final state
measured. The plots show one standard deviation
ellipses for the initial and final state distributions,
for the optimal (left) and desired-state (right)
control laws. The arrows correspond to the
effects of the control signals at four different initial
states (scaled by 0.9 for clarity).X1 X1
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control law. As mentioned earlier, the serial planning/execution
model imposes the severe constraint that the control law must
execute a desired trajectory, which is planned in an open
loop18,20–22. Although some feedback controllers are optimized
under weaker constraints imposed by intermittency30 or spe-
cific parameterizations and learning algorithms17,32, feedback
controllers derived in the LQG framework31,33–35 used here are
not subject to any control constraints28. Realistically, the anatom-
ical structure, physiological fluctuations, computational mech-
anisms and learning algorithms available to the nervous system
must impose information-processing constraints—whose pre-
cise form should eventually be studied in detail. However, it is
important to start with an idealized model that avoids extra
assumptions whenever possible, introducing them only when
some aspect of observed behavior is suboptimal in the idealized
sense. Therefore we use a nonspecific ‘model’ of the lumped
effects of all unknown internal constraints: we adjust two scalars
that determine the sensory and motor noise magnitudes until
the optimal control law matches the overall variability observed
in experimental data. These parameters give us little control over
the structure of the variability that the model predicts.

RESULTS
The minimal intervention principle
In a wide range of tasks, variability is not eliminated, but instead
is allowed to accumulate in task-irrelevant (redundant) dimen-
sions. Our explanation of this phenomenon follows from an intu-
itive property of optimal feedback control that we call the
‘minimal intervention’ principle: deviations from the average tra-
jectory are corrected only when they interfere with task perfor-
mance. If this principle holds, and noise perturbs the system in all
directions, the interplay of noise and control processes will cause
larger variability in task-irrelevant directions. If certain devia-
tions are not corrected, then certain dimensions of the control
space are not being used—the phenomenon interpreted as evi-
dence for motor synergies26,27.

Why should the minimal intervention principle hold? An opti-
mal feedback controller has nothing to gain from correcting task-
irrelevant deviations, because its only concern is task
performance, and, by definition, such deviations do not inter-
fere with performance. Moreover, generating a corrective con-

trol signal can be detrimental, because both noise and effort are
control dependent and therefore could increase. Below we for-
malize the ideas of ‘redundancy’ and ‘correction’ and show that
they are indeed related for a surprisingly general class of systems.
We then apply the minimal intervention principle to specific
motor tasks.

In the simplest example of these ideas, consider the follow-
ing one-step control problem: given the state variables xi, choose
the control signals ui that minimize the expected cost Eε(x1

final +
x2

final – X∗ )2 + r(u1
2 + u2

2) where the stochastic dynamics are xi
final =

axi + ui(1 + σεi); i ∈ {1,2}, and εi are independent random vari-
ables with mean 0 and variance 1. In other words, the (redun-
dant) task is to make the sum x1 + x2 of the two state variables
equal to the target value X∗ , with minimal effort. Focusing for
simplicity on unbiased control, it is easy to show that the opti-
mal controls minimize (r + σ 2)(u1

2 + u2
2) subject to u1 + u2 =

–Err, where Err =� a(x1 + x2) – X∗ is the expected task error if u1
= u2 = 0. Then the (unique) optimal feedback control law is u1
= u2 = –Err/2. This control law acts to cancel the task error Err,
which depends on x1 + x2 but not on the individual values of x1
and x2. Therefore introducing a task-irrelevant deviation (by
adding a constant to x1 and subtracting it from x2) does not trig-
ger any corrective response—as the minimal intervention prin-
ciple states. Applying the optimal control law to the (otherwise
symmetric) stochastic system produces a variability pattern elon-
gated in the redundant dimension (Fig. 1, left).

Now consider eliminating redundancy by specifying a single
desired state. To form the best possible desired state, we use the
average behavior of the optimal controller: x1

final = x2
final = X ∗ /2. 

The feedback control law needed to instantiate that state is ui =
X∗ /2 – axi; i ∈ {1,2}. This control law is suboptimal (because it
differs from the optimal one), but it is interesting to analyze what
makes it suboptimal. Applying it to our stochastic system yields
a variability pattern that is now symmetric (Fig. 1, right). Com-
paring the two covariance ellipses (Fig. 1, middle) reveals that
the optimal control law achieved low task error by allowing vari-
ability in the redundant dimension. That variability could be fur-
ther suppressed, but only at the price of increased variability in
the dimension that matters. Therefore the optimal control law
takes advantage of the redundant dimension by using it as a form
of ‘noise buffer’.

articles

Fig. 2. Final state variability. (a) Dots show
final states (X1, X2) for 1,000 simulation runs
in each task (Results). The ‘task error’ line
shows the direction in which varying the final
state will affect the cost function. The thick
ellipse corresponds to ± 2 standard devia-
tions of the final state distribution. (b) We
varied the following parameters linearly, one
at a time: motor noise magnitude (M) from
0.1 to 0.7; sensory noise magnitude (S) from
0.1 to 0.7; sensory delay (D) from 20 ms to
80 ms; effort penalty (R) from 0.0005 to
0.004; movement time (T) from 410 ms to
590 ms. For each modified parameter set, we
constructed the optimal control law (inter-
cept task) and ran it for 5,000 trials. The plots
show the bias (that is, the average distance
between the two point masses at the end of
the movement), the ratio of the standard
deviations in the task-irrelevant versus task-
relevant directions, and the average of the
two standard deviations.
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This example illustrates two additional properties of optimal
feedback control that will be discussed in more detail below.
First, the optimal control signals are synergetically coupled—
not because the controller is trying to ‘simplify’ the control prob-
lem, but because the synergy is the optimal solution to that
problem. Second, the optimal control signals are smaller than
the control signals needed to instantiate the best possible desired
state (Fig. 1).

What is redundancy, precisely? In the case of reaching, for
example, all final arm configurations for which the fingertip is
at the specified target are task-equivalent, that is, they form a
redundant set. During the movement, however, it is not obvious
what set of intermediate arm configurations should be consid-
ered task-equivalent. Therefore we propose the following more
general approach. Let the scalar function v∗ (t,x) indicate how
well the task can be completed on average (in a sense to be made
precise below), given that the plant is in state x at time t. Then it
is natural to define all states x(t) with identical v∗ (t,x) as being
task-equivalent.

The function v∗ is not only needed to define redundancy, but
also is fundamental in stochastic optimal control theory, which
we now introduce briefly to develop our ideas. Let the instanta-
neous cost for being in state x ∈ �m and generating control u ∈
�n at time t be q(t,x) + uT R(t,x) u ≥ 0, where the first term is a
(very general) encoding of task error, and the second term penal-
izes effort. The optimal feedback control law u = π∗ (t,x) is the
time-varying mapping from states into controls that minimizes
the total expected cost. The function v∗ (t,x), known as the ‘opti-
mal cost-to-go’, is the cumulative expected cost if the plant is ini-
tialized in state x at time t, and the optimal control law π∗ is
applied until the end of the movement. To complete the defini-
tion, let x–(t) be the average trajectory, and on a given trial let the
plant be in state x– + ∆x at time t. The deviation ∆x is redundant
if ∆v∗ (∆x) = 0, where ∆v∗ (∆x) =� v∗ (t,x– + ∆x) – v∗ (t,x–).

Returning to the case of reaching, at the end of the movement
our definition reduces to the above kinematic approach, because
the instantaneous cost and the cost-to-go become identical. Dur-
ing the movement, however, v∗ depends on dynamics as well as

kinematics: whereas all paths that lead to the tar-
get appear redundant from a kinematic point of
view, completing the movement from intermedi-
ate states far from the target (such as the mid-
points of curved paths) requires larger control
signals—which are more costly and introduce
more multiplicative noise.

Next we formalize the notion of ‘correcting’ a
deviation ∆x away from the average x–. It is natur-
al to define the corrective action corr due to the
optimal control signal u = π∗ (t,x– + ∆x) as the
amount of state change opposite to the deviation.
To separate the effects of the control signal from

those of the passive dynamics, consider the (very general) fami-
ly of dynamical systems dx = a(t,x)dt + B(t,x)udt +
Σk

i=1Ci(t,x)udεi, where a(t,x) are the passive dynamics, B(t,x) are
the control-dependent dynamics, Ci(t,x) are multiplicative noise
magnitudes, and εi(t) are independent standard Brownian
motion processes. For such systems, the expected instantaneous
state change x

.
u due to the optimal control signal is x

.
u = B(t,x– +

∆x)π∗ (t,x– + ∆x). Now the corrective action can be defined by
projecting –x

.
u on ∆x: corr(∆x) =� �∆x, –x

.
u�.

To complete the analysis, we need to relate ∆v∗ (∆x) and
corr(∆x), which in turn requires a relationship between v∗ and
π∗ . The latter two quantities are indeed related, and v∗ carries all
the information needed to compute π∗ —which is why it is so
fundamental to optimal control theory. In particular, π∗ (t,x) =
–Z(t,x)–1 B(t,x)T v∗

x(t,x), where Z(t,x) =� 2R(t,x) + Σk

i=1Ci(t,x)T

v∗
xx(t,x) Ci(t,x), and v∗

x and v∗
xx are the gradient and Hessian of v∗ .

Expanding v∗ to second order, also expanding its gradient v∗
x to

first order, and approximating all other quantities as being con-
stant in a small neighborhood of x–, we obtain

∆v∗ (∆x) ≈ �∆x,v∗
x + v∗

xx∆x�
corr(∆x) ≈ �∆x,v∗

x + v∗
xx∆x�

BZ –1BT

where the weighted dot-product notation �a,b�M stands for
aTMb.

Thus both corr(∆x) and ∆v∗ (∆x) are dot-products of the same
two vectors. When v∗

x + v∗
xx∆x = 0, which can happen for infi-

nitely many ∆x when the Hessian v∗
xx is singular, the deviation

∆x is redundant and the optimal control law takes no corrective
action. Furthermore, corr and ∆v∗ are positively correlated, that
is, the control law resists single-trial deviations that take the sys-
tem to more costly states and magnifies deviations to less costly
states.

This analysis confirms the minimal intervention principle to
be a very general property of optimal feedback control, explain-
ing why variability patterns elongated in task-irrelevant dimen-
sions have been observed in such a wide range of experiments
involving different actuators and behavioral goals.
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Fig. 3. Trajectory variability. Within-subject positional
variance (left) compared to model variance (right).
Dots mark passage through the intermediate targets;
the square in each inset marks the starting position.
(a) In the multiple target condition A, experiment 1,
subjects moved through the black targets shown in the
inset. In the constrained trajectory condition B, 16
more targets (gray) were added. (b) In the ‘1 small’
condition, experiment 3, the first intermediate target
was smaller; in the ‘2 small’ condition, the second
intermediate target was smaller.
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Mechanical redundancy
The exploitation of mechanical redundancy in Fig. 1 occurs under
static conditions, relevant to postural tasks in which this phe-
nomenon has indeed been observed6. Here the same effect will
be illustrated in simulations of more prolonged behaviors, by
repeatedly initializing a system with two mechanical degrees of
freedom from the same starting state, applying the correspond-
ing optimal control signals for 0.5 s, and analyzing the distribu-
tion of final states (Methods; Supplementary Notes online).

Task-constrained variability has been observed in pistol-
aiming tasks, where the final arm postures vary predominantly
in the joint subspace that does not affect the intersection of the
pistol axis with the target3. We reproduce this effect in a simple
model of aiming (Sim 1): a two-dimensional point mass has to
make a movement (about 20 cm) that ends anywhere on a spec-
ified ‘line of sight’ X2 = X1 tan(–20°). On different trials, the opti-
mally controlled movement ended in different locations that were
clustered along the line of sight—orthogonal to the task-error
dimension (Fig. 2a, Aiming). The same effect was found in a
range of models involving different plant dynamics and task
requirements. To illustrate this generality, we provide one more
example (Sim 2): two one-dimensional point masses (positions
X1, X2) start moving 20 cm apart and have to end the movement
at identical (but unspecified) positions X1 = X2. The state covari-
ance ellipsoid is again orthogonal to the (now different) task-
error dimension (Fig. 2a, Intercept). Such an effect has been
observed in two-finger11 and two-arm5 interception tasks.

We analyzed the sensitivity of the Intercept model by varying
each of five parameters one at a time (Fig. 2b). Before delving into
the details, note that the basic effect—the aspect ratio being greater
than one—is very robust. Increasing either the motor or the sen-
sory noise increases the overall variability (average s.d.). Increasing
the motor noise also increases the aspect ratio (to be expected, given
that such noise underlies the minimal inter-
vention principle), but increasing the sen-
sory noise has the opposite effect. This is
not surprising; in the limit of infinite sen-
sory noise, any control law has to function
in open loop, and so redundancy exploita-
tion becomes impossible. The effects of the
sensory delay and sensory noise are simi-
lar: because the forward model extrapolates
delayed information to the present time,
delayed sensors are roughly equivalent to
instantaneous but more noisy sensors
(except when large abrupt perturbations
are present). The general effect of increased
movement time is to improve performance:
both bias and overall variability decrease,
while the exploitation of redundancy
increases. The effort penalty term has a
somewhat counterintuitive effect: although
derivation of the minimal intervention
principle relies on the matrix 2R +
ΣCi

Tv∗
xxCi being positive-definite (r + σ2 >

0 in the simple example), increasing R actu-
ally decreases the exploitation of redun-
dancy. We verified that the latter effect is
not specific to the Intercept task.

Trajectory redundancy
Unlike the extensively studied case of
mechanical redundancy, the case of end-

point trajectory redundancy has received significantly less atten-
tion. Here we investigate the exploitation of such redundancy by
focusing on pairs of conditions with similar average trajectories
but different task goals.

In experiment 1, we asked eight subjects to make planar arm
movements through sequences of targets (Fig. 3a). In condition
A, we used five widely spaced targets, whereas in condition B we
included 16 additional targets chosen to fall along the average
trajectory produced in condition A (Methods). The desired tra-
jectory hypothesis predicts no difference between A and B. Our
model makes a different prediction. In A, the optimal feedback
controller (with target passage times that were also optimized;
Sim 3) minimizes errors in passing through the targets by allow-
ing path variability between the targets (Fig. 3a). In B, the
increased number of targets suppresses trajectory redundancy,
and so the predicted path variability becomes more nearly con-
stant throughout the movement. Compared to A, the predicted
variability increases at the original targets and decreases between
them. The experimental results confirm these predictions. In A,
the within-subject positional variance at the intermediate targets
(mean ± s.e.m, 0.14 ± 0.01 cm2) was smaller (t-test, P < 0.01)
than the variance at the midpoints between those targets (0.26 ±
0.03 cm2). In B, the variances at the same locations were no
longer different (0.18 ± 0.02 cm2 versus 0.18 ± 0.03 cm2). Com-
pared to A, the variance increased (P < 0.05) at the original tar-
get locations and decreased (P < 0.01) between them. The average
behavior in A and B was not identical, but the differences can-
not account for the observed change in variability under the
desired trajectory hypothesis (Supplementary Notes). This phe-
nomenon was confirmed by reanalyzing data from the pub-
lished42 experiment 2, where subjects executed via-point and
curve-tracing movements with multiple spatial configurations
(Supplementary Notes).
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Fig. 4. Hitting and throwing. (a) Examples of hand trajectories. In the experimental data, time of
impact was estimated from the point of peak velocity. Note that the strategy of moving back and
reversing was not built into the model—it emerged from the operation of the optimal feedback con-
troller. (b) For each subject and trial, we analyzed the movement in a 430-ms interval around the
point of peak velocity (hit), which corresponded to the forward swing of the average movement. The
variance at each timepoint was the determinant of the covariance matrix of hand position (2D in the
simulations and 3D in the data). Peak variance was normalized to 1. The x, y and z hand coordinates
at the endpoint were correlated with x(t), y(t) and z(t) at each point in time t, and the average of the
three correlation coefficients plotted. All analyses were performed within subjects (around 300 trials
per subject), and the results averaged. The same analyses were repeated on the synthetic trajectories
(500-ms time window).
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Optimal control also predicts different variability patterns in
moving through targets with identical locations but varying sizes.
Passing through a smaller target requires increased accuracy,
which the optimal controller (Sim 4) achieves by increasing vari-
ability elsewhere—in particular at the remaining targets (Fig. 3b).
The desired trajectory hypothesis again predicts no effect. These
predictions were tested in experiment 3. Each of seven subjects
participated in two conditions: the first target small or the sec-
ond target small. As predicted, the variability at the smaller tar-
get (0.34 ± 0.02 cm2) was less (P < 0.05) than the variability at
the larger one (0.42 ± 0.02 cm2).

The results of these three experiments clearly demonstrate
that the motor system exploits the redundancy of end-effector
trajectories—variability is reduced where accuracy is most need-
ed and is allowed to increase elsewhere. This is necessarily due
to online feedback control, because, first, if these movements
were executed in an open loop the variability would increase
throughout the movement, and second, in related experiments35

in which vision of the hand was blocked while the targets
remained visible, the overall positional variance was about two
times higher.

Hitting and throwing tasks present an interesting case of tra-
jectory redundancy because the hand trajectory after impact
(release) cannot affect the outcome. We reanalyzed data from the
published43 experiment 4, where nine subjects hit ping-pong balls
to a target. The hand movements were roughly constrained to a
vertical plane—starting with a backward swing, reversing, and
swinging forward to hit the horizontally flying ball (Fig. 4a).

Because impact cannot be represented with linear dynamics,
we modeled a closely related throwing task in which the ball is
constrained to be released in a certain region. We first built the
optimal controller (Sim 5) and found its average trajectory. That
trajectory was then used as the desired trajectory for an optimal
trajectory-tracking controller (Sim 6). Note that the trajectory-
tracking controller immediately cancels the variability in start-
ing position, resulting in more repeatable trajectories than the
optimal controller (Fig. 4a). The price for this repeatability is
increased target error: the optimal controller sends the ball to the
target much more accurately because it takes advantage of tra-
jectory redundancy.

The optimal controller is not concerned
with where the movement ends; thus it
allows spatial variability to accumulate after
release (Fig. 4b). The same phenomenon
was observed in the experimental data: the
variance at the end point divided by the

variance at the impact point was 7.6 ± 2.2, which was significantly
different (P < 0.05) from 1. In contrast, the trajectory-tracking
controller managed to bring positional variance to almost zero
at the end of the movement. Both in the experimental data and
optimal control simulations, positional variance reached its peak
well before the reversal point (Fig. 4b). In the trajectory track-
ing simulations, peak positional variance occurred much later—
near the point of peak forward velocity.

Another difference between the two controllers was observed
in the temporal correlations of the resulting trajectories. In tra-
jectory tracking, the correlation between hand coordinates
observed at different points in time drops quickly with the time
interval, because deviations are corrected as soon as they are
detected. The optimal controller on the other hand has no rea-
son to correct deviations away from the average trajectory as long
as they do not interfere with task performance (the minimal
intervention principle). As a result, temporal correlations remain
high over a longer period of time—similar to what was observed
experimentally. In both the data and optimal control simulations
(Fig. 4b), the hand coordinates at impact/release were well cor-
related (r ≈ 0.5) with the endpoint coordinates observed on the
same trial. In contrast, the same correlation for the trajectory-
tracking controller was near 0.

Redundancy in object manipulation
The most complex form of redundancy is found in object manip-
ulation, where the task outcome depends on the state of the con-
trolled object, which may in turn reflect the entire history of
interactions with the hand. We investigated such a task in exper-
iment 5, in which five subjects manipulated identical sheets of
paper and turned them into paper balls. The amount of trial-to-
trial variability (Fig. 5a) was larger than any previously report-
ed. In fact, the magnitude of within-subject joint variability
observed at a single point in time was comparable to the overall
range of joint excursions in the course of the average trajectory
(Fig. 5b). If the movements we observed followed a desired tra-
jectory whose execution were as inaccurate as the data implies,
the human hand should be completely dysfunctional. Yet all of
the trials we analyzed were successful—the task of making a paper
ball was always accomplished.
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Fig. 5. Hand manipulation. (a) MIP versus PIP
joints of the index finger for a typical subject,
first 500 ms. The starting posture is marked
(o). (b) Relative variance. A value of 50% would
indicate that the ‘noise’ and the average trajec-
tory cause equal amounts of joint excursion.
(c) Principal components analysis (PCA) of
trial-to-trial variability. The PC magnitudes
(averaged over subjects and time points) corre-
spond to the axis lengths of the multijoint
covariance ellipsoid. Ten PCs are needed to
account for 95% variance. (d) Top, examples of
postures observed 300 ms into the movement
(after time alignment) in one subject. Bottom,
examples of synthetic postures, where each
joint angle is taken from a randomly chosen
trial (at 300 ms, same subject).
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To test whether the variability
pattern was elongated, we did prin-
cipal components analysis (PCA)
on all the postures measured in the
same subject and the same point in
time (Fig. 5c). Clearly the joint
space variability is elongated in
some subspace. But is that sub-
space redundant, and how can we
even address such questions in
cases where the redundant dimen-
sions are so hard to identify quan-
titatively? We propose the following
intuitive graphical method. Sup-
pose that for a given subject and
point in time, we generate synthet-
ic hand postures by setting each
joint angle to the corresponding
angle from a randomly chosen
trial. This ‘bootstrapping’ proce-
dure will increase variability in the
subspaces that contain below-
average variability, and decrease
variability in the subspaces that
contain above-average variability.
Therefore, if the synthetic postures
appear to be inappropriate for the
task (as in Fig. 5d), the variability
of the observed postures was
indeed smaller in task-relevant
dimensions. Thus redundancy is
being exploited in this task.

Of course hand movements are
not always so variable; for exam-
ple, grasping a cylinder results in
much more repeatable joint trajec-
tories (Fig. 5a and b). It is striking
that two such different behavioral
patterns are generated by the same
joints, controlled by the same mus-
cles, driven by largely overlapping
neuronal circuits (at least on the lower levels of the sensorimo-
tor hierarchy) and, presumably, subject to the similar amounts
of intrinsic noise. This underscores the need for unified models
that naturally generate very different amounts of variability when
applied to different tasks. We will show elsewhere that optimal
feedback control models possess that property.

Emergent properties of optimal feedback control
Although our work was motivated by the variability patterns
observed in redundant tasks, the optimal feedback controllers
we constructed displayed a number of additional properties relat-
ed to coordination. This emergent behavioral richness is shown
in a telescopic ‘arm’ model, which has M point masses sliding up
and down a vertical pole in the presence of gravity. Points 0:1,
1:2, … M-1:M (0 being the immovable base) are connected with
‘single joint’ linear actuators; points 0:2, … M-2:M are connect-
ed with ‘double-joint’ actuators. The lengths X1, X2, …XM of the
single-joint actuators correspond to joint ‘angles’. The last point
mass (whose position is X1 + X2 + … + XM) is defined to be the
end-effector (Supplementary Notes).

The first task we study is that of passing through a sequence of
4 targets at specified points in time, for the system M = 3 (Fig. 6a).

The optimal controller (Sim 7) seems to be keeping X2 constant
and only using X1 and X3 to accomplish the task. If this behav-
ior were observed experimentally, it would likely be interpreted as
evidence for a ‘simplifying rule’ used to solve the ‘redundancy
problem’. No such rule is built into the controller here—the effect
emerges from symmetries in the controlled system (a similar
although weaker effect is observed in X2 and X4 for M = 5, but
not for M = 2 and M = 4). More importantly, X2 is not really
‘frozen.’ X2 fluctuates as much as X1 and X3, and substantially
more than the end-effector (Fig. 6a). Thus all three joints are
used to compensate for each other’s fluctuations, but that infor-
mation is lost when only the average trajectory is analyzed.

We have already seen an example of a synergy (Fig. 1), where
the optimal controller couples the two control signals. To exam-
ine this effect in a more complex scenario, we constructed the
optimal feedback controller for the 4 targets task in the M = 10
system (Sim 7) and defined the number of synergies at each point
in time as the rank of the Lt matrix (which maps the current state
estimate into a control signal; Methods). This rank is equal to
the dimensionality of the control subspace that the optimal con-
troller can span for any state distribution. Although the M = 10
system has 19-dimensional control space and 40-dimensional
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Fig. 6. Telescopic ‘arm’ model. (a) Example of a problem where the optimal controller seems to ‘freeze’ one
degree of freedom (X2). The plot shows means and 95% confidence intervals for the three joint angles and
the end-effector. (b) The non-zero eigenvectors of the Lt matrix at each timepoint t. The grayscale intensi-
ties corresponds to the absolute values of the 19 actuator weights in each eigenvector (normalized to unit
length). (c) Variability on different levels of description and for different indices of performance: control sig-
nals (Cntl), actuator forces (Frc), joint angles (Jnt), end-effector trajectory (Trj) and end-effector positions at
the specified passage times (Tar). To convert kinetic variables (forces and control signals) into centimeters,
we divided each variable by its average range and multiplied by the average joint range. (d) Effects of per-
turbing all control signals at the time marked with the dotted line, in a sinusoidal tracking task. The pertur-
bations had standard deviation 30 N. (e) Relative phase was computed by running the simulation for 5 s,
discarding the first and last cycle, and for each local minimum of X1 + X2 finding the nearest (in time) local
minimum of X1. This was done separately for each oscillation frequency. (f) The cost of each feedback con-
troller for the postural task was evaluated via Monte Carlo simulation, and its parameters were optimized
using the nonlinear simplex method in Matlab. Average results from five runs of the learning algorithm. The
‘observed’ and ‘reshuffled’ curves correspond to the observed end-effector variability, and the end-effector
variability that would result if the single-joint fluctuations were independent. The same curves are shown as
a function of the number of joints M, using the corresponding optimal controller for the four-target task.
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state space, only up to 4 dimensions of the control space were
used at any time (Fig. 6b). The similarity of each greyscale pattern
over time indicates that each synergy (that is, eigenvector of Lt)
preserved its structure. One synergy disappeared after passing
through each target, whereas the remaining synergies remained
roughly unchanged. This suggests an interpretation of synergy 1
as being used to move toward the current target, synergy 2 as
being used to adjust the movement for the next target, etc.

Motor coordination is sometimes attributed to the existence
of a small number of ‘controlled’ parameters24, which are less
variable than all other movement parameters. To study this
effect in the M = 2 system executing the four-targets task, we
specified the index of performance on five different levels of
description: control signals, actuator forces, joint angles, end-
effector trajectory and end-effector positions at the specified
passage times. The average behavior of the controller optimal
for the last index was used to define the first four indices, so
that all five optimal controllers had identical average behavior.
In each case, we measured variability on each of the five levels of
description. On each level, variability reached its minimum (�)
when the index of performance was specified on the same level
(Fig. 6c). Furthermore, for the task-optimal controller (Index
= Tar), the different levels formed a hierarchy, with the task-
related parameter being the least variable, and the parameter
most distant from the task goal—the control signal—being the
most variable. The same type of ordering was present when the
task was specified in terms of joint angles (Index = Jnt), and
almost present for the end-effector trajectory specification
(Index = Trj). This ordering, however, did not hold for kinetic
parameters: force and control signal variability were higher than
kinematic variability even when these parameters were speci-
fied by the index of performance. Thus, higher variability at the
level of kinetics compared to kinematics is a property of the
mechanical system being controlled, rather than the controller
being used.

Responses to external perturbations are closely related to
the pattern of variability, because the sensorimotor noise gen-
erating that variability is essentially a source of continuous per-
turbation. Because an optimal controller allows variability in
task-irrelevant dimensions, it should also offer little resistance
to perturbations in those dimensions. Such behavior has indeed
been observed experimentally1,14–16. In the M = 2 system per-
forming a sinusoidal tracking task with the end-effector (Sim 9;
Fig. 6d), at the time marked with a dotted line, we added a ran-
dom number to each of the three control signals. The pertur-
bation caused large changes in the trajectory of the intermediate
point, whereas the end-effector trajectory quickly returned to
the specified sinusoid.

‘Discrete coordination modes’ also emerge from the opti-
mal control approach (Fig. 6e). In the sinusoidal tracking task
(M = 2), we built the optimal controller (Sim 9) for each oscil-
lation frequency and measured the relative phase between the
oscillations of the end-effector (X1 + X2) and the intermediate
point (X1). We found two preferred modes—in phase and 180°
out of phase, with a fairly sharp transition between them. In
the transition region, the phase fluctuations increased. The same
behavior was observed with additive instead of multiplicative
control noise (data not shown). Although the present model is
not directly applicable to the extensively studied two-finger tap-
ping task37, the effect is qualitatively similar to the sharp tran-
sition and accompanying phase fluctuations observed there,
and shows that such behavior can be obtained in the frame-
work of optimal feedback control.

The effects of increasing mechanical complexity (varying the
number of point masses M from 1 to 20) were studied in the four-
targets task. The difference between the observed end-effector
variability and the ‘reshuffled’ variability (the variability that
would have been observed if the joint fluctuations were inde-
pendent) is a measure of how much redundancy is being exploit-
ed. This measure increased with mechanical complexity (Fig. 6f,
right). At the same time, the performance achieved by the optimal
controller improved relative to the performance of a trajectory-
tracking controller whose desired trajectory matched the aver-
age joint trajectory of the optimal controller. The cost ratio varied
from 0.9 for M = 1 to 0.22 for M = 20 (Sim 8).

In all the examples considered thus far, we have used the opti-
mal control law. Do we expect the system to exploit redundancy
only after a prolonged learning phase in which it has found the
global optimum, or can redundancy exploitation be discovered
earlier in the course of learning? This questions was addressed in
a postural task (M = 2) requiring the end-effector to remain at a
certain location (while compensating for gravity). We initialized
the feedback law with the optimal open-loop controller and then
applied a generic reinforcement learning algorithm (Sim 10),
which gradually modified the parameters of the feedback law so
as to decrease task error. The algorithm quickly discovered that
redundancy is useful—long before the optimal feedback law was
found (Fig. 6f, left).

DISCUSSION
We have presented a computational-level38 theory of coordina-
tion focusing on optimal task performance. Because the motor
system is a product of evolution, development, learning and
adaptation—all of which are in a sense optimization processes
aimed at task performance—we argue that attempts to explain
coordination should have similar focus. In particular, the pow-
erful tools of stochastic optimal control theory should be used to
turn specifications of task-level goals into predictions regarding
movement trajectories and underlying control laws. Here we
used local analysis of general nonlinear models, as well as sim-
plified simulation models based on the LQG formalism, to gain
insight into the emergent properties of optimally controlled
redundant systems. We found that optimal performance is
achieved by exploiting redundancy, explaining why variability
constrained to a task-irrelevant subspace has been observed in
such a wide range of seemingly unrelated behaviors. The emer-
gence of goal-directed corrections, motor synergies, discrete
coordination modes, simplifying rules and controlled parameters
indicates that these phenomena may reflect the operation of
task-optimal control laws rather than computational shortcuts
built into the motor system. The experiments presented here
extend previous findings, adding end-effector trajectories and
object manipulation to the well-documented case of mechanical
redundancy exploitation. Taken together our results demon-
strate that, from the motor system’s perspective, redundancy is
not a ‘problem’; on the contrary, it is part of the solution to the
problem of performing tasks well.

While motor variability is often seen as a nuisance that a
good experimental design should suppress, we see the internal
sources of noise and uncertainty as creating an opportunity to
perform ‘system identification’ by characterizing the probabil-
ity distribution of motor output. Variability results provide per-
haps the strongest support for the optimal feedback control
framework, but there is additional evidence as well. In a detailed
study of properties of reaching trajectories (E.T., Soc. Neurosci.
Abstr. 31, 301.8, 2001), our preliminary results accounted for
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other movement properties: (i) smoothness of most movements
and higher accuracy with less smooth movements; (ii) gradual
correction for target perturbations and incomplete correction
for perturbations late in the movement44; (iii) reduced speed
and skewed speed profiles in reaching to smaller targets; (iv)
directional reaching asymmetries45, of which the motor system
is aware46 but which it does not remove even after a lifelong
exposure to the anisotropic inertia of the arm. Elsewhere we
have explained cosine tuning as the unique muscle recruitment
pattern minimizing both effort and errors caused by multi-
plicative motor noise40.

The linear dynamics inherent in the LQG framework can cap-
ture the anisotropic endpoint inertia of multijoint limbs, mak-
ing it possible to model phenomena related to inertial
anisotropy45,47. However, endpoint trajectory phenomena such
as the lack of mirror symmetry in via-point tasks21 require non-
linear models. Another limitation of linear dynamics is the need
to specify passage times in via-point tasks. The problem can be
avoided by including a state variable that keeps track of the next
target, but this makes the associated dynamics nonlinear. We
intend to study optimal feedback control models for nonlinear
plants. However, the theory developed here is independent of
the LQG methodology we used to model specific tasks. Although
many interesting effects will no doubt emerge in nonlinear mod-
els, the general analysis we presented assures us that the basic
phenomena in this paper will remain qualitatively the same.

Our theory concerns skilled performance in well-practiced
tasks, and does not explicitly consider the learning and adapta-
tion that lead to such performance. Adaptation experiments are
traditionally interpreted in the context of the desired trajectory
hypothesis. However, observations of both overcomplete23 and
undercomplete48,49 adaptation suggest that a more parsimonious
account of that literature may be possible. We have presented
(E.T., Soc. Neurosci. Abstr. 31, 301.8, 2001) preliminary models of
force field adaptation23,49 within the optimal feedback control
framework. Our previous visuomotor adaptation results48 may
seem problematic for the present framework, but, with due con-
sideration for how the nervous system interprets experimental
perturbations, we believe we can account for such results (Sup-
plementary Notes). In future work, we aim to extend and unify
our preliminary models of motor adaptation, and incorporate
ideas from adaptive estimation and adaptive optimal control. It
will also be important to address the acquisition of new motor
skills, particularly the complex changes in variability structure5

and number of utilized degrees of freedom1,50. Reinforcement
learning29 techniques should provide a natural extension of the
theory in that direction.

Finally, the present argument has general implications for
motor psychophysics. If most motor tasks are believed to differ
mainly in their desired trajectories, whereas the trajectory exe-
cution mechanisms are universal, one can hope to uncover those
universal mechanisms in simple tasks such as reaching. Under-
standing a new task would then require little more than mea-
suring a new average trajectory. In our view, however, such hopes
are unfounded. Although the underlying optimality principle is
always the same, the feedback controller that is optimal for a
given task is likely to have unique properties, revealed only in
the context of that task. Therefore, the mechanisms of feedback
control need to be examined carefully in a much wider range of
behaviors. Single-trial variability patterns and responses to
unpredictable perturbations—when analyzed from the per-
spective of goal achievement—should provide insight into the
complex sensorimotor loops underlying skilled performance.

METHODS
Numerical simulations. Although the optimal control law π∗ is easily
found given the optimal cost-to-go v∗ , v∗ itself is in general very hard to
compute: the Hamilton–Jacobi–Bellman equation it satisfies does not
have an analytical solution, and the numerical approximation schemes
guaranteed to converge to the correct answer are based on state-space
discretization practical only for low-dimensional systems. Making the
state observable only through delayed noisy feedback introduces sub-
stantial further complications.

Therefore, all simulation results in this paper are obtained within the
extensively studied linear-quadratic-Gaussian (LQG) framework28, which
has been used in motor control31,33,34. We adapted the LQG framework
to discrete-time linear dynamical systems subject to multiplicative noise:
xt+∆t = Axt + But + Σk

i=1Ciutεi,t. The controls ut—corresponding to the
neural signals driving the muscles—are low-pass filtered to generate force.
The task error is quadratic: xt

TQtxt. The state xt—which contains posi-
tions, velocities, muscle forces, and constants specifying the task—is not
observable directly, but only through delayed and noisy measurements
of position, velocity, and force. The optimal control law is in the form 
ut = –Ltx̂t, where x̂t is an internal state estimate obtained by a forward
model (a Kalman filter). We use one set of parameters for the telescopic
arm model and another set for all other simulations. For details of the
adapted LQG control methodology and the specific simulations, see Sup-
plementary Notes.

Experiments 1 and 3. Subjects moved an LED pointer (tracked with
an Optotrak 3020, 120 Hz) on a horizontal table through sequences
of circular targets projected on the table. After the LED was positioned
at the starting target, the remaining targets were displayed, and the
subject was free to move when ready. After each trial, all missed tar-
gets were highlighted. If trial duration (time from leaving a 2 cm diam-
eter start region to when hand velocity fell below 1 cm/s) was outside
a specified time window, a “Speed up” or “Slow down” message
appeared. Methods were similar to42. The data from all trials were ana-
lyzed. Within-subject positional variance was computed from a set of
trajectories as follows. First, all trajectories from one subject and con-
dition were resampled at 100 equally spaced points along the path.
Second, the average trajectory was computed. Third, for each average
point, the nearest point from each trial was found. Fourth, the sum of
the x and y variances of these nearest points was averaged over sub-
jects and expressed as a function of path length (eliminating 5% of the
path at each end to avoid artifacts of realignment). In experiment 1,
subjects executed 40 consecutive movements per condition, 1.2–1.5 s
time window, 1 cm target diameter. The extra targets in condition B
were specified using the average trajectory measured from 3 pilot sub-
jects in condition A. In experiment 3, subjects executed 15 consecu-
tive trials per condition, 1.2–1.4 s time window; target diameter was
1.6 cm, except for the smaller target (first or second, depending on the
condition), which was 0.8 cm.

Experiment 5. Five subjects manipulated a square (20 × 20 cm) sheet
of paper to turn it into a paper ball, as quickly as possible (∼ 1.5 s move-
ment duration), using their dominant right hand. After 10 practice tri-
als, 20 hand joint angles were recorded in 40 trials (Cyberglove, 100 Hz
sampling). An effort was made to position the hand and the paper in
the same initial configuration. To ensure that variability did not arise
from the recording equipment or data analysis methods, 40 trials were
recorded from one subject grasping a cylinder (3 cm diameter). Each
joint angle for each subject was separately normalized, so that its vari-
ance over the entire experiment was 1. All trials were aligned on move-
ment onset. The time axis for each trial was scaled linearly to optimize
the fit to the subject-specific average trajectory. Each joint angle was
linearly detrended to eliminate possible drift over trials. ‘Relative vari-
ance’ was defined by computing the trial-to-trial variance separately
for each subject, joint angle and time point. The results were then aver-
aged over subjects and joint angles.

Note: Supplementary information is available on the Nature Neuroscience

website.
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Optimal feedback control as a theory of motor coordination: 

Supplementary Notes 

 

Emanuel Todorov, Michael I. Jordan 

 

1. Optimal control of modified Linear-Quadratic-Gaussian (LQG) systems 

All simulations described in the main text are instances of the following general model: 

 

1 ,1
Dynamics
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where the ,i tε  terms are independent standard normal random variables, and iC  are constant matrices. The sensory 

noise terms tω  are independent multivariate normal random variables with mean 0 and covariance matrix Ωω . The 

initial state 1x  has multivariate normal distribution with mean 1x̂  and covariance 1Σ . The optimal control problem 

is the following: given 1 1 1, , ,... , , , , , ,...k TA B C C H R Q QΣ Ωω , find the control law 

( )1 1 1 1 1ˆ , ,... , ,... ,t t t t− −=u π x u u y y  which minimizes the expected cumulative cost 

( ), 1

T T T
t t t t tt

E Q R
=

+∑ε ω x x u u  over the time interval [1; T]. Time is expressed in units of 10msec, which is the 

discrete time step we use. 

When the system noise in Eq 1 is additive rather than multiplicative, the LQG problem has a well-known 

solution1, which involves recursive linear state estimation (Kalman filtering) and linear mapping from estimated 

states ˆ tx  to optimal control signals tu . In the case of multiplicative noise, we have derived2 the following iterative 

algorithm for solving this problem. The state estimate is updated using a modified Kalman filter which takes into 

account the multiplicative noise. For a given control law tL , the corresponding Kalman filter is: 
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The matrices ˆ, ,t t tK Σ Σe x  correspond to the Kalman gain, the expected estimation error covariance, and the non-

centered covariance of the state estimate. Note that computing the unknown matrices in Eq 2 requires a single 

forward pass through time. 

For a given Kalman filter tK , the optimal control law is: 
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The matrix tL  is the time-varying feedback gain, and ,t tS Se x  are the parameters specifying the optimal cost-to-go 

function (see2 for details). Computing the unknown matrices in Eq 2 requires a single backward pass through time. 

To obtain the Kalman filter and control law optimal with respect to each other, we iterate Eq 2 and 3 until 

convergence. We have found numerically2 that the iteration always converges exponentially, and to the same answer 

(regardless of initialization). If the multiplicative noise in Eq 1 is removed, the algorithm converges after one 

iteration and becomes identical to the classic LQG solution1. 

Note that the above formulation implies a sensory-motor delay of one time step, because the sensory 

feedback is received after control signal has been generated. It is straightforward to modify the problem 

specification so as to include an additional delay of d time steps. This was done by using an augmented state 

[ ]1; ;t t t d tH H− −x x x x  and transforming all matrices accordingly. In particular, the new observation matrix 

H  extracts the component t dH −x  of tx , and new dynamics matrix A  removes t dH −x , shifts the remaining 

sensory readings, and includes tHx  in the next state 1t+x . 
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2. Application to a 2D via-point task 

We now illustrate how the above general framework can be specialized for a via-point task, and explain the 

parameters settings used in the simulations. Consider a 2D point mass 1kgm =  with position ( ) ( ),x yp t p t , 

driven by a pair of actuators that produce forces ( ) ( ),x yf t f t  along the x and y axes respectively (each actuator 

can both pull and push). The force output ( )/x yf t  of each actuator is obtained by applying a first-order linear filter  

( 40msecτ = ) to the corresponding neural control signal ( )/x yu t , polluted with multiplicative noise. In Sim 1-6 

we actually used second-order linear muscle filters3, with time constants 1 2 40msecτ τ= = .  

The task is to pass through a specified via-point ( ) ( )* */ 2 , / 2x yp T p T  in the middle of the movement, 

and then end the movement at a specified end-point ( ) ( )* *,x yp T p T . Therefore the task error will be defined as: 

( ) ( )( ) ( )( ) ( )( )
2 22

, / 2, , ,

1 *
4 i i v i f i

i x y t T T i x y i x y
p t p t w p T w f T

= = = =

 
− + + 

 
∑ ∑ ∑ ∑  

The first term enforces passing through the targets, while the last two terms enforce stopping (i.e. zero velocity and 

force) at time T. The scale factor 1/4 corresponds to the fact that we have 4 task constraints (two positional, one 

velocity, and one force). In simulations with P positional constraints, this scale factor becomes 1/(P+2). The weights 

0.1, 0.01v fw w= =  define the relative importance of stopping; their magnitudes are constant in all simulations, 

and based on the fact that for the tasks of interest, velocities are an order of magnitude larger than displacements, 

and forces are an order of magnitude larger than velocities (expressed in compatible units of m, m/s, N). 

The effort penalty is: 

( ) ( )2 2

1

T

x y
t

r u t u t
T =

 + 
 
∑  

The scalar r  sets the tradeoff between task error and effort. When r  is made too large, the optimal strategy is not to 

move at all. Therefore we set r  to a value that is not large enough to cause unrealistic negative biases, but still has 

some effect on the simulations. In Sim 1-6 we used 0.002r = ; in the telescopic arm model (Sim 7-10) we had to 
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decrease that parameter to 0.00002r =  because the large mass, gravity, and actuator visco-elasticity required 

much larger control signals. 

We discretize time at 10msect∆ = , and represent the system state with the 10-dimensional column 

vector: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *; ; ; ; ; ; / 2 ; / 2 ; ;t x y x y x y x y x yp t p t p t p t f t f t p T p T p T p T =   
x  

Since we are dealing with an inertial system, the state has to include position and velocity; force is included because 

the linear filters describing the force actuators have their own state (for a second-order filter we need two state 

variables per actuator); the target positions are included (and propagated through time) so that the task error can be 

defined as a function of the state. As explained above, the initial state 1x  is distributed as ( )1 1ˆ ;N Σx . The mean  

1x̂  contains the average initial position, velocity, and force, as well as the target positions. The covariance 1Σ  

encodes the uncertainty of the initial state. In all our simulations the target positions are known exactly (and 

therefore not included in the sensory feedback); however, one could model them as being uncertain, and include 

(noisy) sensory feedback that allows the controller to improve the initial estimate of target positions. The initial state 

was variable (and therefore uncertain) in Sim 5 and 6; everywhere else we used a constant initial state ( 1 0Σ = ). 

The noisy sensory feedback carries information about position, velocity, and force: 

( ) ( ) ( ) ( ) ( ) ( ); ; ; ; ;t x y x y x y tp t p t p t p t f t f t = + y ω  

In Sim 1-6, the feedback was delayed by 4 time steps (in addition to the one-step implicit delay – see Section 1) 

resulting in 50msec delay. In Sim 7-10 no extra delay was introduced. 

The sensory noise terms in the vector ω  are independent 0-mean Gaussians, with standard deviations  

[ ]0.01m; 0.01m; 0.1m/s; 0.1m/s;1N;1Nsσ  

The relative magnitudes of the standard deviations are determined using the above order-of-magnitude reasoning. 

The overall sensory noise magnitude is 0.4sσ =  in Sim 1-6, and 0.5sσ =  in Sim 7-10. 

The control signal is: 

( ) ( );t x yu t u t =  u  

and the multiplicative noise added to the control signal is: 
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1 2

2 1
t t

u t
t t

ε ε
σ

ε ε
 
 − 

u  

Multiplying tu  by the above stochastic matrix produces 2D Gaussian noise with circular covariance, whose 

standard deviation is equal to the length of the vector tu . In Sim 1-6 the scale factor was set to 0.4uσ = , while in 

Sim 7-10 its value was 0.5uσ = . As explained in the main text, the two parameters sσ  and uσ  were adjusted so 

that the overall variability generated by the optimal control law roughly matched all experimental observations we 

model. The noise magnitudes in Sim 1-6 were smaller, because in those simulations we included a sensory-motor 

delay which effectively increases the noise. 

 The discrete-time dynamics of the above system is given by: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
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/ / /
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which is transformed in the form of Eq 1 by the matrices: 
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The sensory feedback matrix is [ ]6 6 6 4I 0x xH = . 

The effort penalty matrix is 2 2I x
rR
T

= . 
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The matrices tQ  specifying the task constraints are 0 for all  / 2,t T T≠ . The task error at the via-point is encoded 

by: 

/ 2

1 . . . . . 1 . . .1 ;
. 1 . . . . . 1 . .4

T
T via via viaQ D D D

− 
= =  − 

 

The task error at the end-point is encoded by: 

1 . . . . . . . 1 .
. 1 . . . . . . . 1
. . . . . . . . .1 ;
. . . . . . . . .4
. . . . . . . . .
. . . . . . . . .

vT
T end end end

v

f

f

w
Q D D D

w
w

w

− 
 − 
 

= =  
 
 
 
  

 

To encode a trajectory-tracking task we would specify targets at many points in time (e.g. P points). In that case, 

keeping all target positions in the state vector is inefficient. Instead, we append the constant 1 to the state vector, and 

enforce the spatial constraints using matrices of the form: 

( )
( )

*1 .1 ;
*2 . 1

xT
t t t t

y

p t
Q D D D

P p t

 − = =
 + − 

 

Note that this approach makes it impossible to model target uncertainty (which we do not model here). 

3. Simulations 

We now describe each of the 10 simulations illustrated in the main text. The matrix notation will no longer be 

shown, but it is straightforward to adapt the above example to each specific model. Note that the parameters 

common to all models were already described; here we only list the task-specific parameters. 

Sim 1. A 2D point mass (1kg) was initialized at position (0.2m; 0.2m), and required to make a movement 

that ends in 50 time steps (stopping as described above). The point mass was driven with two force actuators 

modelled as second-order linear filters. The task error term specified that the movement has to end on the line 

passing through the origin and oriented at -20º: ( ) ( ) ( )( )2
tan 20 50 50x yp p− − . 
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Sim 2. Two 1D points masses (1kg each) were simulated, each driven with one second-order force actuator. 

Initial positions were ( ) ( )1 21 0.1m; 1 0.1mp p= − = . The movement had to stop after 50 time steps (stopping 

enforced as before). The task error term specified that the two points have to end the movement at identical 

locations: ( ) ( )( )2
1 250 50p p− . 

Sim 3. This simulation was identical to the via-point task described in detail above, except that the number 

of via points was varied. Target locations are given in Fig 3A in the main text. In the 5 target condition A we set the 

movement duration to 1520msec as observed experimentally. Then we found numerically the intermediate-target 

passage times that minimized the total expected cost. The optimal passage times (460msec, 750msec, 1050msec) 

were close to the experimental measurements (400msec, 720msec, 1040msec). The passage times for the 21 target 

condition B were set to the times when the average trajectory from condition A passed nearest to each target (i.e. we 

modeled conditions A and B with identical timing).  

Note that the time-window allowed in the experiment (1.2sec - 1.5sec) was measured from the time when 

the hand left a 2 cm diameter start region – at which point hand velocity was already substantial. In the data analysis, 

we defined movement onset as the point in time when hand velocity first exceeded 1cm/sec – and so the measured 

durations appear longer than allowed. 

Sim 4. This simulation was also identical to the above via-point task, except that the spatial error at the 

smaller target was scaled by a factor of 2 – corresponding to the fact that the smaller target diameter was 50% of the 

diameter of the remaining targets. Target locations are given in Fig 3B in the main text. The predefined target 

passage times (550msec, 950msec, 1400msec) were in the observed range. 

Sim 5. A 1kg 2D point mass (the “hand”) started moving from average position (1m, 0.3m), sampled from 

a circular 2D Gaussian with standard deviation 0.04m. The task error term specified a positional constraint (release 

region) at time 750msec and location (0.7m; 0m). The movement had to stop (stopping enforced as before) at time 

900msec and unspecified location. Throwing was modelled by initializing the “ball” with the position and velocity 

of the hand observed at time 750msec. The task error term specified that the ball has to be at the target (2.2m, 0m) 

after flying with constant velocity for 500msec. The locations, times, and initial position variability roughly matched 

those observed experimentally. 
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Sim 6. The average trajectory of the task-optimal feedback controller from Sim 5 was used as a desired 

trajectory for an optimal trajectory-tracking controller. This was done by computing the average positions at 10 

points equally spaced in time, and using them as spatial targets to form the task error term. Stopping was not 

enforced explicitly. The optimal feedback controller for the new task error was then computed using the above 

method. 

Sim 7. The telescopic arm model used in Sim 7-10 is described in Figure 1. The 4-targets task required the 

end-effector to pass through targets (P+0.3m; P+0.3m; P-0.3m; Pm) at times (250msec; 500msec; 750msec; 

1000msec), where P is the initial position of the end-effector (P = M x 0.3m as explained in the figure). Stopping at 

the final target was not required. This task was simulated for mechanical systems with different number (M) of point 

masses. 

Sim 8. The task-optimal controller described in Sim 7 was constructed, and its average trajectory computed 

on several levels of description: end-effector, individual joint “angles”, individual actuator forces, and individual 

control signals. These average trajectories were then used to form optimal trajectory-tracking controllers. The 

control-signal tracking controller was simply an open-loop controller producing the average time-varying control 

signals of the task-optimal controller. For the remaining tracking controllers, the task error specified a target at each 

time step. 

Sim 9. The end-effector of the M=2 system was required to track a specified sinusoid, with modulation +/- 

0.1m, centered at the initial 0.6m position. An end-effector positional target was specified at each time step, for a 

total of 500 time steps. Stopping was not required. A different optimal controller was constructed for each 

oscillation frequency in the range 1.5Hz – 4Hz, at 0.1Hz increments. In the perturbation experiment, an independent 

random number sampled from N(0; 302) was added to each signal, for 1 time step. 

Sim 10. The postural task required the end-effector of the M=2 system to remain at the initial 0.6m position 

indefinitely. The stationary feedback control law was initialized to an open-loop control law, and gradually 

improved using the nonlinear simplex method in Matlab. The cost of each control law was evaluated using a Monte 

Carlo method (100 trials, 2 sec each, first 1 sec discarded). To speed up learning, the seed of the random number 

generator was reset before each evaluation4. Learning was interrupted after 5000 evaluations. Average results from 5 

runs with different seeds are shown in the main text. 

4. Additional analysis of Experiment 1 
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As stated in the main text, the average behavior in Experiment 1 was different between the 5-target condition A and 

the 21-target condition B. Here we test the possibility that the desired trajectory hypothesis can explain the observed 

difference in variability, given the difference in average behavior. For each condition, we built an optimal trajectory-

tracking controller that reproduced the experimentally observed average path, speed profile, and duration. This was 

done by extracting from the average trajectory the locations and passage times of 21 equally spaced (in time) points, 

and building the optimal feedback controller for the resulting tracking task. Then we iteratively adjusted the 

specified target locations, until the average trajectory of the optimal controller matched the observed average 

trajectory. The latter was done iteratively, by adding to each (adjustable) target the vector connecting the data-

extracted target with the nearest point on the average trajectory. The procedure converged in a couple of iterations; 

the resulting average trajectory of the optimal tracking controller was indistinguishable from the average 

experimental trajectory. The paths and speed profiles for each subject, the tracking controllers, and the 5-target 

optimal controller from the main text, are compared in Figure 2A,B. 

 In Figure 2C we plot the positional variance predicted by the two tracking controllers, and the variance 

predicted by the model in the main text. The variability predicted by the tracking controller for condition A is larger 

than the variability of the condition B controller – because the movement in condition A was faster, and therefore 

the multiplicative noise was larger. The difference, however, is a uniform offset rather than a change in modulation. 

In the main text we showed that the variability observed in conditions A and B differs in modulation, i.e. it increases 

at the intermediate targets and decreases at the midpoints between them. Thus the desired trajectory hypothesis 

cannot explain our results. 

5. Analysis of Experiment 2 

The change-in-modulation effect predicted by our model and observed in Experiment 1 was also confirmed by 

reanalazing data from the previously published5 Experiment 2. In that experiment, 8 subjects were asked to move 

through sequences of 6 targets (condition A) or trace smooth curves projected on the table (condition B). Since our 

earlier experimental design pursued different goals, the stimuli were not adjusted so that the average trajectories in 

conditions A and B would match. Therefore the test here is less direct than in Experiment 1. The advantage of 

Experiment 2 is that we presented 6 different target configurations and 8 different smooth curves (in blocks of 10 
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consequtive trials each) – and so any effects due to the specific geometric shape of the movement trajectory should 

average out. 

For each subject and block of trials, we computed the positional variance along the path as described in the 

main text. Then we defined a modulation index, which was the difference between the maximum and minimum 

variance, divided by the mean variance (all computed over the middle 60% of the path). This index of variance 

modulation was larger (p<0.01) in the multiple target condition (2.10 ± 0.11) compared to the curve-tracing 

condition (1.43 ± 0.08). Thus, again, we see that moving through a small number of targets is accomplished by 

allowing increased variability between those targets. 

6. Motor Adaptation 

Optimal feedback control requires optimal state estimation, which in turn reposes on the ability to calibrate the 

internal models underlying the state estimation process.  To account for motor adaptation we therefore consider the 

following natural extension of our theory: suppose that the internal model of the sensory-motor apparatus is 

continuously calibrated, and the feedback control law changes accordingly so as to remain optimal with respect to 

the current set of calibration parameters. What kinds of predictions does this extension make regarding adaptation? 

Unfortunately, in our framework it is difficult to answer such questions in the abstract – we need to specify a 

detailed quantitative model of both the dynamic and kinematic effects of perturbations, including the adaptive 

response of the nervous system to such perturbations. Indeed, in our approach: 1) the relationship between plant 

dynamics and optimal behavior is nonlinear and generally quite complex, such that changes to the dynamics can 

yield non-intuitive changes to optimal behavior; 2) the adapted behavior is optimal with respect to the peripheral 

changes that the nervous system believes to have taken place – which can be quite different from the experimental 

perturbations as conceived of by the experimenter, especially when the latter are ecologically implausible and 

experienced only briefly. 

As an illustration of these issues, and the complexities that they introduce into the interpretation of 

experimental data, consider a nonlinear visual perturbation that makes straight reaching movements appear curved, 

but does not affect the perceived endpoint position6. In this setting subjects show partial (approximately 25%) 

adaptation of the trajectory.  One might think that our theory predicts no adaptation, because our cost function only 

specifies a desired final state and not a desired trajectory. But in fact there are a variety of equally plausible 
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assumptions about the response of the nervous system to this visual perturbation that yield quite different predictions 

in this case, and the proper interpretation of the experiment is far from clear. Let us carefully consider the events that 

take place – not from the experimenter's point of view, but from the point of view of the subject's visuo-motor 

system. A systematic discrepancy is detected between the expected and received visual feedback, and therefore an 

internal model needs to be calibrated in order to account for this oddity. But which model? Is it the generative model 

of how sensory data reflects the system state, or is it the dynamic model of how the system state evolves as a 

function of the control signals? From the point of view of the experimenter, the correct interpretation is to adapt the 

generative model alone, in which case the nervous system should believe that the physical movement proceeds as 

normal, predicting a lack of adaptation under any hypothesis of motor control. But the visual distortion introduced 

in6 is extremely unlikely to occur in the real world. Indeed, the fact that there is partial adaptation of the trajectory 

shows that the discrepancy is at least partially interpreted as a dynamic change. That is, the nervous system believes 

that the same control signals now cause different physical movements. 

Is the optimal control law for the inferred dynamics different from baseline? It probably is. Even if the 

inferred dynamical change does not cause endpoint bias under the baseline control law, it may lead to suboptimal 

endpoint variance as well as suboptimal energy consumption – both of which are penalized by our cost function. 

Indeed, in unpublished preliminary work we have designed two different force fields that (in conjunction with the 

baseline optimal feedback controller) can qualitatively explain the perceived curvature in6. Both of these force fields 

lead to changes in the optimal feedback controller, and both yield partial adaptation in accordance with the 

experimental results. Of course there may exist other force fields that are consistent with the visual perturbation and 

do not cause adaptation. Evaluating these possibilities will require the development of a detailed quantitative model, 

comparison to a range of experimental data, and great care in teasing apart the complex interactions between 

estimation, control and adaptation. 
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Figure 1. M point masses (1kg each) were sliding up and down a frictionless vertical pole in the presence of gravity 
(9.8 m/sec2). Points 0:1, 1:2, … M-1:M (0 being the immovable base) were connected with “single joint” linear 
actuators that could both pull and push. The lengths X1, X2, …XM  of the single-joint actuators correspond to joint 
“angles”. Points 0:2, … M-2:M are connected with “double-joint” actuators. The last point mass (heavy outline), at 
position X1 + X2 + … + XM, was defined as the end-effector. The 2 M - 1  actuators had built-in viscosity (10 
Nsec/m) and elasticity (50 N/m), with resting lengths of 0.3m for the single-joint actuators and 0.6m for the double-
joint actuators. The system was always initialized at the resting lengths of all actuators; note however that the 
presence of gravity required control signals in order to maintain that configuration. All actuators were modelled as 
first-order linear filters (40msec time constant), each polluted with independent multiplicative noise (50% of the 
control signal). The noisy feedback included the length, velocity, and force output of each actuator. The effort 
penalty term was 0.00002r =  as explained above. 
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Figure 2. 
A– The average trajectory for each subject in each condition (conditon A – top, condition B – bottom) is shown in 
grey. Circles mark the target locations that the subjects saw during the experiment. Red-dotted and green-dashed 
lines are the average trajectories of the two trajectory-tracking controllers designed to reproduce the average 
behavior of the subjects (see text). Black is the average trajectory for the optimal controller in condition A described 
in the main text.  B– Average speed profiles for each subject and each simulation. Average movement duration 
(determined using a 1cm/sec velocity threshold for start and stop) was 1520msec in condition A, and 1660msec in 
condition B; the movement duration for each subject was scaled to match the average duration in the corresponding 
condition. C– Positional variance along the path for each model (variance was computed as described in the main 
text). 
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We often take for granted the ease with
which we move our bodies. Yet, how our
motor system performs even a simple task
such as picking up a coffee mug remains
a challenging problem scientifically. We
move with considerable trial-to-trial vari-
ability, yet we successfully perform such
tasks with speed and grace. In contrast,
robots possess greater precision and con-
sistency in their motions, but are nothing
short of clumsy and awkward when pick-
ing up objects. Why are body movements
that are so variable consistently success-
ful? In this issue, Todorov and Jordan1

provide a new theory for motor coordi-
nation based on optimal feedback control
that may be a major step forward in devel-
oping a single, cohesive framework for
interpreting motor function.

One important feature captured by
this theory is that motor commands are
corrupted by noise, and that this signal-
dependent noise increases with signal
size2,3. Harris and Wolpert4 recently
demonstrated the importance of consid-
ering noise in control of eye and limb
movements. They were able to predict the
bell-shaped velocity profiles and relative-
ly straight hand trajectories that are
observed experimentally5,6 by using a
model that minimizes noise.

A second key feature in the Todorov and
Jordan1 theory is the idea that the motor
system can be modeled based on the prin-
ciples of optimal feedback control (Fig. 1).
The most important feature of this
approach is that optimization techniques
are used to find the feedback control law
that minimizes errors in task performance.
This control law is specific for each motor
task, so that the CNS must select the appro-
priate control law for each task. If the goal

should depend on fluctuations in both sig-
nals. If both control signals equal 1.1
(assuming no noise in the sensory signals),
then the optimal strategy is that both con-
trol signals should be reduced toward 1. In
contrast, if one control signal is 1.1 and the
other is 0.9, then the optimal strategy is to
not intervene because the goal of the task,
that their sum equals 2, has been attained.
The byproduct of the optimal control
scheme is that the variability of the indi-
vidual control signals becomes greater than
the variability of their sum.

Reducing task variability at the expense
of variability elsewhere in the system is also
a key feature of human and animal motor
coordination. For example, there are many
different arm configurations that a given
subject can use to maintain a steady aim
at a target with a hand-held laser pistol. In
such tasks, variability among these task-
invariant arm configurations over time is
very large compared to variability in joint
configurations that interfere with point-
ing the laser7. That is, variability is toler-
ated as long as it does not interfere with
task performance. The key proposal of
Todorov and Jordan1 is that this differen-
tial management of variability during
motor behavior occurs because it is the
optimal solution for the task.

If the motor system puts such a premi-
um on managing the position of the hand
over the position of the joints during pos-
tural tasks like pistol shooting, it seems rea-
sonable to believe that in a task such as
reaching, the motor system will attempt to
control hand trajectory. Although many
hypotheses assume that the trajectory is
explicitly controlled5,8, such models fail to
capture another important feature of

is to maintain the hand at one location in
space, feedback signals on the state of the
system (joint position, velocity and force)
for motor corrections are optimized specif-
ically to maintain a constant hand position,
and these control laws reflect the physical
properties of the motor periphery. The
authors capture this feature of optimal feed-
back control by using what they call the
minimum intervention principle, which
postulates that deviations from an average
hand trajectory (or position) are only cor-
rected if they interfere with task perfor-
mance. By correcting only task-relevant
errors, the model minimizes the potential
effects of noise.

Todorov and Jordan1 illustrate the
notion of optimal feedback control with a
very simple example, a task whose goal is
that the sum of two control signals equals
two. The nominal strategy to minimize sig-
nal size is to set each signal to one. How-
ever, each of these signals can be corrupted
by noise. A crucial question is how should
the control law respond to such errors? The
optimal strategy is that its adjustments
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Fig. 1. Diagram for implementing optimal feedback control as proposed by Todorov and Jordan1.
The optimal feedback control law is selected by the CNS based on the specific task. An optimal
estimate of the state of the system (positions, velocities and forces) is based on sensory feedback
(which is delayed and noisy), efference copy of prior controls signals and forward internal models
of the limb12. Noise is introduced to both motor and sensory signals.
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reaching movements, the considerable
trial-to-trial variability in hand trajectory9.
Todorov and Jordan1 capture this hand
path variability for a throwing task using a
model based on optimal feedback control.
Such variability in hand trajectory is toler-
ated because it does not interfere with task
performance, but it is inconsistent with
explicit trajectory planning. Optimal feed-
back control does not plan the hand tra-
jectory, which instead simply emerges from
the optimal control law for the task. What
has often been interpreted as a sign of slop-
py control by the brain may actually reflect
the optimal strategy for controlling body
movements.

In effect, Todorov and Jordan argue that
the feedback control law is not fixed, but is
malleable and can be set based on the motor
task. If this is true, a major question
becomes how the motor system can learn
these optimal control laws for myriad motor
behaviors performed by an individual.

The new article1 provides a cohesive
framework for interpreting motor coordi-
nation and provides interesting examples
of how optimal feedback control can
explain many observations on coordinated
movement. However, use of stochastic opti-
mal feedback control as a model of motor
control comes with a large computational
price, requiring challenging mathematical

be entirely optimized for each individual
task. Instead, certain features of the cir-
cuit may be optimal only when the com-
plete motor repertoire of humans is
considered, much like the conclusion that
the distribution of muscle spindles may
be optimal only by considering the com-
plete behavioral repertoire of the animal11.
However, optimizing for such global cost
functions is likely to be quite a challenge.
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contortions to solve even the simplest of lin-
ear control problems. As a result, the mus-
culoskeletal system in some cases must be
modeled as point masses providing only
motion along a single direction. It seems a
bit ironic that a theory illustrating the
importance of considering the properties
of the musculoskeletal system for motor
control must use incredibly simplistic mod-
els of the motor periphery! This should not
be seen as a downside of the theory pro-
posed by Todorov and Jordan1. Rather, this
limitation simply reflects the lack of exist-
ing mathematical tools to apply optimal
feedback control to complex non-linear sys-
tems, like our motor system. However, the
intuitive value of the many examples pre-
sented in this paper cannot be ignored.

Although it may be comforting to
assume that emergent patterns of motor
behavior reflect the optimal strategy for a
given task, that conclusion may not apply
to all cases. The neural circuits to control
movement are very distributed and com-
plex, and they presumably are based in
part on evolutionary baggage. The Todor-
ov and Jordan optimal control theory
tends to ignore this inherent hierarchical
organization10. It seems reasonable to
believe that motor circuitry itself can
influence strategies for a given task, per-
haps because the motor circuitry cannot
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Experience can alter the brain. The dark
side of this truism is that adverse experi-
ence can damage it. Perhaps one of the
most unsettling examples of this idea is
post-traumatic stress disorder (PTSD), a
psychiatric disorder with symptoms
including flashbacks, nightmares and
sleep problems, emotional numbness or
outbursts, loss of pleasure, an inappro-
priate startle reflex, and problems with

memory and concentration. Many stud-
ies indicate that PTSD arising from com-
bat trauma or prolonged childhood abuse
is associated with atrophy of the hip-
pocampus. This finding is striking because
glucocorticoids, the adrenal hormones
secreted during stress, can damage the
hippocampus of experimental animals
through a number of mechanisms1,2. In
combination, these results gave rise to a
perception that the hippocampal atrophy
in PTSD was stress related3,4.

Much discussion has ensued as to how
this might occur2. Is it the trauma or the
post-traumatic period that gives rise to the
atrophy? Are glucocorticoids responsible?

(This question is contentious, insofar as
reports differ as to whether glucocorticoid
levels in PTSD are above or below nor-
mal). Is the atrophy due to death of neu-
rons and/or glia, shrinkage of cells, or
failure of new ones to be born? The mech-
anism that explains trauma-related hip-
pocampal atrophy must also explain why
such shrinkage only occurs in a subset of
individuals. Amid these debates, an alter-
native idea has occasionally been aired,
namely that the hippocampal atrophy is
not a consequence of either the trauma or
the post-traumatic period5. Instead, per-
haps a small hippocampus precedes trau-
ma and predisposes an individual toward
developing PTSD. In this issue, Gilbertson
and colleagues6 provide powerful data
supporting this possibility.

The authors studied 40 pairs of iden-
tical twins in which one member of each
pair went to Vietnam and experienced
combat, while the other stayed home. Of
those in combat, 42% developed PTSD.
Using magnetic resonance imaging, the
authors found that those with PTSD had
smaller hippocampi than combat veter-
ans without PTSD when expressed as a
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