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The case for and against muscle synergies
Matthew C Tresch1,2,3 and Anthony Jarc1
A long standing goal in motor control is to determine the

fundamental output controlled by the CNS: does the CNS

control the activation of individual motor units, individual

muscles, groups of muscles, kinematic or dynamic features of

movement, or does it simply care about accomplishing a task?

Of course, the output controlled by the CNS might not be

exclusive but instead multiple outputs might be controlled in

parallel or hierarchically. In this review we examine one

particular hypothesized level of control: that the CNS produces

movement through the flexible combination of groups of

muscles, or muscle synergies. Several recent studies have

examined this hypothesis, providing evidence both in support

and in opposition to it. We discuss these results and the current

state of the muscle synergy hypothesis.
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Introduction
Dating at least back to the work of Sherrington, several

researchers have proposed that the CNS produces

movement by combining small groups of muscles

[1–13]. This hypothesis has been formulated in several

different ways, but has been most recently expressed in

terms of a group of muscles, also referred to as a muscle

synergy, activated in a fixed balance (Figure 1). In this

hypothesis, behavior results from the simple (usually

linear in current formulations) combination of these

synergies. In addition, these synergies come in a few

different flavors [14]. In ‘synchronous synergies’, no

temporal delay is allowed between different

muscles — if a synergy is activated at a given time,

all muscles within that synergy are active. In ‘time-

varying synergies’, there is both a spatial component —

the balance of activations across the muscles — and a

temporal component. Each muscle in a time-varying
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synergy has a fixed temporal profile which allows for

delays between muscles within the same synergy.

There are several usual motivations and interpretations

given for this hypothesis. Commonly, muscle synergies

are suggested as a solution to the degrees of freedom

problem faced in motor control: instead of having to

control many thousands of motor units or dozens of

muscles, using muscle synergies the CNS can produce

behavior by the control of a much smaller number of

variables [15–17,11]. Related to this interpretation, others

have suggested that muscle synergies provide a way for

the CNS to bootstrap complex problems of optimal con-

trol; by identifying a task relevant subspace of control

variables, the potentially difficult problems of optimiz-

ation would be minimized [8,19–21]. Another interpret-

ation of muscle synergies is that they provide a translation

between task level goals (e.g. stabilizing the center of

mass) and execution level commands (e.g. activation of

individual muscles) that are necessary to accomplish

those goals [4]. In this interpretation, synergies identify

the relevant muscle groupings that, when activated

together, allow for simplified control of particular biome-

chanical features of the limb (such as the global limb

angle or orientation). This interpretation places muscle

synergies as part of a hierarchical control strategy [22,23],

providing a means of organizing both complex motor

control variables and sensory feedback so that they can

be controlled and interpreted in a task relevant manner.

Finally, a different explanation for muscle synergies is

that they reflect a relatively primitive solution to motor

coordination implemented by phylogenetically ‘older’

neural systems, such as those in the spinal cord

[8,24,10]. These solutions might be re-expressed when

these systems are isolated (e.g. following stroke [25,26])

or when the behavioral demands faced by the intact CNS

are directly addressed by these more primitive solutions.

In other cases the CNS might work to suppress these

more primitive solutions, breaking apart their coordina-

tive structures or bypassing them in order to express more

precisely adaptive behaviors [24,27,10].

Evidence for and against muscle synergies
There has been a great deal of recent research examining

this hypothesis, often based on using statistical analyses

of EMGs during behavior. The basic approach in these

experiments has been to firstly, measure EMGs from a

large number of muscles during a complex behavior (or

more than one behavior); secondly, use a computational

analysis such as non-negative matrix factorization or

independent components analysis to identify a set of

synergies from the recorded EMGs; thirdly, evaluate
es, Curr Opin Neurobiol (2009), doi:10.1016/j.conb.2009.09.002
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Figure 1

Schematic representation describing the muscle synergy hypothesis. (a) A schematic representation for synchronous synergies. Two synergies (w) are

scaled (c) and summed to produce the observed pattern of muscle activations (m). These synchronous synergies are fully described by the balance of

activation across the muscles in each synergy: any temporal structure is specified by the scaling coefficients (c). (b) A schematic illustrating time-

varying synergies. Two time-varying synergies (w) are shown. Each synergy specifies a weighting coefficient for one of the three muscles, indicated by

the color of the bar and a temporal profile for these weightings. An observed pattern of muscle activations is created by scaling each synergy (c),

temporally shifting them (t), then adding them together linearly, as indicated in the right of the figure. The purple and green waveforms indicate the

contribution from each of the original synergies to the observed response. (b) is adapted by permission from Macmillan Publishers Ltd: Nature

Neuroscience [17], copyright 2003.
whether the observed EMGs can be well described as the

combination of these synergies; and fourthly, relate the

identified muscle synergies to task relevant variables.

Using such an approach, a wide range of motor behaviors

have been suggested to be produced using muscle syner-

gies [14–17,24,28–37]. Other studies have used a more

direct examination of muscle activations to identify and

analyze muscle synergies, thereby avoiding the more

indirect statistical analyses [38,39].

Key to this approach is examining EMGs recorded under

a rich enough range of behavioral conditions: the wider

the range of behavioral conditions that can be explained

by muscle synergies, the more support there is for such an

explanation. In fact, one of the main critiques of exper-

iments supporting the muscle synergy hypothesis is that

they reflect task constraints rather than reflecting a neural

control strategy [40��,41,42��]. In this critique, the ability

of muscle synergies to explain a behavior reflects the fact

that there are only a few ways that a task can be success-

fully performed, once all the task constraints are fully

accounted for. For instance, if one considers stability

requirements in addition to explicit task variables, the

apparent redundancy of muscle activation patterns is

reduced [43]. Similarly, if one considers additional poten-

tial demands placed on the CNS such as minimizing noise

or other optimization criteria, then control of individual

muscles could explain observed EMG patterns as well as

muscle synergies [41]. Finally, if one assumes smooth

recruitment of muscles across smooth changes in task

variables (e.g. across different directions of reaches or

forces), one would expect that muscle activations would
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lie upon a low-dimensional, albeit nonlinear, manifold

[42��]. Thus, it can be difficult to predict how truly

redundant a task is or how surprising it would be to

find a low-dimensional solution to the task.

Recent experiments have attempted to address this cri-

tique by demonstrating that an impressive range of beha-

viors such as human reaching [44�] and posture [45�],
primate grasping [46], and frog locomotion [47] and

nocifensive reflexes [48��] can be explained as combi-

nations of muscle synergies. In the study examining

human postural maintenance [45�], it was shown that

the long latency reflexes observed following phasic per-

turbations to the limb could be well explained by a few

coordination patterns, or muscle synergies. Moreover,

similar patterns were observed irrespective of whether

working in a stiff or compliant environment. This was an

unexpected result since previous work suggested that

there should be an increased involvement of multiarti-

cular muscles in the compliant environment. Another

notable study examined the nocifensive reflexes in the

spinalized frog [48��]. This work was especially compel-

ling since it did not rely on computational analyses but on

more direct observations of muscle activations evoked in

response to phasic stimulation of muscle afferents. The

study demonstrated that such stimulation caused collec-

tive modulation of the amplitude and timing of muscles

within a single putative muscle synergy, while leaving the

muscles in other synergies unaffected. Importantly, this

modulation did not alter the relative timings of the

muscles within that synergy, suggesting that synergies

produced by spinal circuitry in the frog were synchronous
es, Curr Opin Neurobiol (2009), doi:10.1016/j.conb.2009.09.002
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as opposed to time-varying synergies (see Figure 1).

Although the use of perturbation analyses in these studies

diminishes concerns about task constraints by increasing

the richness of behavioral conditions, such concerns are

not entirely alleviated; it is not clear a priori at what point

a task is ‘complex enough’ so that the muscle synergy

based explanation is surprising enough to be confirmed.

Indeed, two recent studies [40��,42��] have provided

evidence arguing against the existence of muscle syner-

gies. Both of these studies are based on analyses of

variability in motor patterns. One recent trend in studies

in motor control has been a re-examination of noise and

variability in task performance [49–52]. Rather than treat

this variability as reflecting ‘errors’ because of poor plan-

ning or control, these more recent studies consider this

variability as reflecting efficient control, with the CNS

only correcting for variability which prevents the accom-

plishment of task goals. Variability which does not affect

the task can be allowed without penalty since attempts to

correct such task irrelevant variability would be an

unnecessary waste of effort. This hypothesis, referred

to as the ‘uncontrolled manifold’ [51] or ‘minimum inter-

vention’ hypothesis [42��] and closely related to optimal

feedback control [49], in some ways stands in contrast to

the muscle synergy hypothesis. In the uncontrolled mani-

fold hypothesis, the problem for the CNS is not in

reducing the degrees of freedom, but in identifying those

degrees of freedom which are task relevant and those

which are not. Having excess degrees of freedom implies

that the CNS is more likely to be able to use degrees of

freedom which align well with the task demands than if

the degrees of freedom were restricted: that is redun-

dancy allows for flexibility. Although in many cases,

research on the uncontrolled manifold hypothesis invokes

structures which are identical to muscle synergies [53,54]

(referred to as ‘muscle-modes’ or ‘m-modes’ in that work),

these structures do not seem essential to their main

hypothesis that the CNS controls only task relevant

perturbations. Note also that in the uncontrolled manifold

work, the term ‘synergy’ is used to refer to the flexible

control of execution variables to regulate task relevant

variability, rather the grouping of muscle activations as

described in Figure 1 [50].

One recent study examined this minimum intervention

hypothesis directly at the level of individual muscles and

compared it to the muscle synergy hypothesis [42��]. This

study examined the structure of the within trial variability

of finger motor control in humans during a force regula-

tion task. The elegance of this study is that the exper-

imenters were able to record from nearly every muscle

which contributed to index finger force, thereby charac-

terizing an accurate mapping between muscle activation

and task performance. In support of the minimum inter-

vention hypothesis, they demonstrated that people

allowed for more variability in task irrelevant dimensions
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than in task relevant dimensions, providing a clear

demonstration of the minimum intervention principle

at the level of physiological variables. Further, they

demonstrated using either PCA or ICA that it was unli-

kely that the muscle coordination patterns could be well

explained as muscle synergies. Although the authors

allowed for a possible role for muscle synergies in plan-

ning versus in execution of movements, their results

suggest that the CNS can control online individual

degrees of freedom (i.e. muscles) as necessary in order

to achieve task goals.

Another recent paper also examined the variability in

human finger control during force production tasks [40��].
Using a clever analysis, they effectively demonstrated

that the patterns of variability observed during this task

were best explained as reflecting the control of individual

muscles, rather than muscle synergies. This was shown

both experimentally and in computational analyses. Both

of these studies provide strong challenges to the muscle

synergy hypothesis as an explanation for the neural con-

trol of these tasks.

Muscle synergies for control
Another aspect of the muscle synergy hypothesis con-

cerns its implications to the efficacy of control. As alluded

to above, the best performance that the CNS can achieve

is when it uses individual muscles: obviously, any move-

ment using muscle synergies can be equally produced

using individual muscles. Conversely, this also implies

that the use of muscle synergies can potentially limit the

efficacy of control by the CNS, since using muscle syner-

gies restricts the range of muscle activation patterns. This

issue of whether the potential simplification of control

brought about by synergies comes at the expense of

degraded control has remained central to this hypothesis.

Three recent studies [55�,56��,57�] have addressed the

efficacy of motor control based on muscle synergies.

These studies used biomechanical models to demon-

strate that complex behaviors could be produced effec-

tively using combinations of muscle synergies. The first

study [56��] initially identified muscle synergies from

humans during normal locomotion using the statistical

methods described previously, and then used these syner-

gies to activate the muscles in a complex biomechanical

model of human walking. They demonstrated that these

experimentally identified synergies were able to produce

realistic locomotion in their biomechanical model,

suggesting that synergies could be used effectively for

control. A similar conclusion was reached in another

recent study [55�]. This study postulated that muscle

synergies should be chosen as those that are most effec-

tive at controlling the significant task relevant dynamics

of the limb. Using this principle, a set of muscle synergies

was identified and it was found that these synergies could

then be used to produce effective motor control, albeit for
es, Curr Opin Neurobiol (2009), doi:10.1016/j.conb.2009.09.002
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a relatively simple task. Finally, a study in frogs [57�]
demonstrated that a relatively simple modulation of three

synergies could accomplish the range of trajectories

observed during natural frog hindlimb wiping behaviors

and proposed a simple scheme of their regulation. Each of

these studies provides evidence that a control scheme

based on muscle synergies might be an effective way for

the CNS to produce movement, similar to previous

studies [58,19,20].

However, one could look at these studies from a different

perspective. As has been suggested by others, when

techniques of optimal control are used to solve a motor

control task, a low-dimensional control space is naturally

identified, reflecting the task relevant dynamics of the

limb [18,19,49]. This control space, although in general a

nonlinear subspace, might nonetheless be approximately

spanned by a low-dimensional basis set, such as provided

by muscle synergies. The results described above show-

ing that synergies can be used for effective control there-

fore could be interpreted as using alternative ways (i.e.

examination of actual EMG patterns, identifying syner-

gies for controlling limb dynamics) to identify the low-

dimensional task relevant control space that optimal

control would have identified on its own. However, in

the case of the frog wiping study, considerable evidence

for the use of the same muscle synergies has come from

previous studies [38,48��,24].

Implementations of muscle synergies
There has been relatively little work directly examining

the muscle synergy hypothesis in terms of their neural

implementations and there are many possible ways they

might be implemented. For instance, the divergence of

individual corticospinal neurons across several different

motor pools might be interpreted in this context [4] and

such an explanation has been offered for corrective move-

ments during locomotion in cats [27] and reaching in

primates [59]. Similarly, the divergent projection patterns

of some spinal interneuronal systems [60,61] could be

interpreted as coordinating groups of muscles into muscle

synergies. Conversely, at the level of spinal interneurons,

muscle fields defined by spike triggered averaging in

awake behaving monkeys tend to consist of only one

or two muscles, which is smaller than might be expected

for the muscle synergy hypothesis [62]. One might con-

sider that cortical systems encode a large number of

muscle synergies, choosing to activate only those syner-

gies which were most appropriate for a particular task

[4,27]. This would result in a very sparse code for move-

ment, in which only those neurons coding the synergies

appropriate for a particular task would be activated. Note

that in this case, muscle synergies would not solve the

problem of redundancy at the neural level, since there are

likely to be many more neurally coded muscle combi-

nations than there are muscles. Such a possibility would

resemble the overcomplete basis sets, which have been
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used in the analysis of sensory systems [63–65]. It is clear

that additional experiments are necessary to evaluate the

potential neural implementations of these muscle syner-

gies, which would provide support or criticisms to the

muscle synergy hypothesis.

Future directions and perspectives
As evidenced by the experiments of the past few years,

evaluations of this muscle synergy hypothesis remain

ongoing. Although there is considerable evidence sup-

porting this hypothesis, it is clear that much of this

evidence remains circumstantial and the recent exper-

iments contradicting it are challenges to it. There is

therefore a need for experiments which are able to more

critically evaluate this hypothesis.

Indeed, one of the main difficulties with this hypothesis is

that it is difficult to falsify. It is clear that neural circuitry

does allow for the possible activation of single muscles,

single motor units, or individual neurons and that, with

training, the CNS can learn to control even these indi-

viduated degrees of freedom [66]. Recent work demon-

strating operant conditioning of motor cortical neuron

populations for BMI applications makes this point especi-

ally clear [67,68]. So even if synergies contributed to

movement, their effects might be obscured by other

pathways controlling individual muscles. Further, one

could also say that the lack of synergy structure found

in the recent studies examining finger control reflects the

high degree of specialization and flexibility inherent in

this system (even though synergies have been used to

explain hand movements [12,46,69]). In this way, it is

always possible to claim that any deviations from the

muscle synergy hypothesis reflect these differences and

therefore do not necessarily falsify this hypothesis.

We see at least three directions of future experiments

which might provide more direct evidence either sup-

porting or falsifying the muscle synergy hypothesis. First,

analyses such as that performed by Valero-Cuevas et al.
[42��] and Kutch et al. [40��] should be done across many

different behaviors and a wider range of behavioral con-

ditions to evaluate whether the structure in the variability

of muscle activation patterns is consistent with the

muscle synergy hypothesis. Although the analyses used

in those experiments exploit some ideal features of finger

control, similar experiments should be possible in other

behaviors and would help address concerns about syner-

gies arising from task constraints. Second, it should be

possible to use synergies to explain suboptimal perform-

ance of the CNS [70]. If the CNS has access to a limited

set of synergies at a particular time based on the tasks that

it currently is able to accomplish, this should suggest that

some new tasks should be easier to perform than others

[44�]: if the muscle activation patterns required by the

new task lay within the space defined by existing muscle

synergies, learning the new task should be relatively easy.
es, Curr Opin Neurobiol (2009), doi:10.1016/j.conb.2009.09.002
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In contrast, if the required activations lay outside that

space, then the learning should be more difficult and

initial performance should be suboptimal. Designing such

tasks requires an accurate musculoskeletal model along

with knowledge of the existing muscle synergies which

would make it possible to predict which tasks would be

easy and which would be difficult to learn. Third, exper-

iments examining the properties of neurons in the spinal

cord or elsewhere can be done to evaluate their relation-

ship to synergy structures observed during behaviors. If

neurons’ activity patterns and/or effective connectivity to

the musculature were directly relatable to muscle synergy

structures, it would suggest strongly that the CNS does

encode and control movement using this control strategy.

Finally, we wish to propose an alternate interpretation of

muscle synergies that is related to previous proposals

[4,20,71]. Rather than considering muscle synergies as

reflecting a strategy for the simplification of control, we

suggest that synergies might be considered in the larger

context of the intimate interactions between the proper-

ties of the musculoskeletal system and neural control

strategies. In this context, muscle synergies could be

considered as reflecting the statistics of the external

world, acknowledging the fact that the external world

also consists of the musculoskeletal system itself [72��]. In

the same way that properties of natural scenes might

influence the structure of the visual system [63], we

suggest that statistics of the musculoskeletal system

and external world might influence the structure of motor

systems. The large number of neurons in motor cortex

and their many different patterns of influences on

muscles could be considered as providing an overcom-

plete representation that captures the rich statistics of the

limb and environment. In this context, regular patterns of

muscle coordination might be analogous to the Gestalt

principles of vision, reflecting heuristic strategies

employed by the nervous system to control the limb

[4]. In the same way that the statistics of the visual scene

imply that visual images near one another might belong to

the same object, one might argue that muscles which

produce a complementary action to one another or which

are commonly activated (e.g. by stretches [73]) might also

be expected to be activated together. Such ‘expectations’

would not fundamentally limit the control exerted by the

CNS: although nearby visual patches with similar charac-

teristics are often part of the same object, we are still able

to perceive them as separate if necessary. But these

expectations might guide control, providing a useful

default behavior which, based on regular properties in

the periphery and environment, can be expected to be

adaptive more times than not. In this context, it becomes

important to try to predict situations where these

expected regularities lead to errors in motor control,

analogous to the ‘illusions’ observed in vision and which

would be related to the motor learning predictions

described previously. This broader issue of how the
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statistics of the musculoskeletal system influence neural

representations and control strategies is a potentially

interesting focus in motor control research which has

received attention in recent years [72��]. Note also that

considering these issues for motor control is highly inte-

grative, emphasizing the nature of both the motor and the

sensory statistics, because of the tight connections be-

tween estimation and control when producing a task. It

will be interesting to explore the potential role of muscle

synergies in considering these issues.
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