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Abstract. In this paper, we study trajectory planning 
and control in voluntary, human arm movements. 
When a hand is moved to a target, the central nervous 
system must select one specific trajectory among an 
infinite number of possible trajectories that lead to the 
target position. First, we discuss what criterion is 
adopted for trajectory determination. Several resear- 
chers measured the hand trajectories of skilled move- 
ments and found common invariant features. For  
example, when moving the hand between a pair of 
targets, subjects tended to generate roughly straight 
hand paths with bell-shaped speed profiles. On the 
basis of these observations and dynamic optimization 
theory, we propose a mathematical model which 
accounts for formation of hand trajectories. This 
model is formulated by defining an objective function, 
a measure of performance for any possible movement: 
square of the rate of change of torque integrated over 
the entire movement. That is, the objective function C T 
is defined as follows: 

Cr= 2 i= t \ dt ] dt , 

where z i is the torque generated by the i-th actuator 
(muslce) out of n actuators, and t: is the movement 
time. Since this objective function critically depends on 
the complex nonlinear dynamics of the musculo- 
skeletal system, it is very difficult to determine the 
unique trajectory which yields the best performance. 
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We overcome this difficult by developing an iterative 
scheme, with which the optimal trajectory and the 
associated motor command are simultaneously com- 
puted. To evaluate our model, human hand trajec- 
tories were experimentally measured under various 
behavioral situations. These results supported the idea 
that the human hand trajectory is planned and con- 
trolled in accordance with the minimum torque- 
change criterion. 

I Introduction 

In order to control voluntary movements, the central 
nervous system (CNS) must perform complex inform- 
ation processing. We propose a computational model 
of voluntary movement as shown in Fig. 1, which 
accounts for Marr's (1982) first level for understanding 
complex information processing systems, i.e., comput- 
ational theory. The model proposes that the following 
three computational problems are solved at different 
levels in the CNS: (1) determination of a desired 
trajectory, (2) transformation of visual coordinates of 
the desired trajectory to body coordinates and (3) 
generation of motor commands (e.g. torques) to realize 
the desired trajectory. 

Consider a thirsty person reaching for a glass of 
water on a table. The goal of the movement is moving 
the arm toward the glass to reduce thirst. First, one 
desirable trajectory in the task-oriented coordinates 
must be selected from out of an infinite number of 
possible trajectories, which lead to the glass whose 
spatial coordinates are provided by the visual system 
(step 1 in Fig. 1). Second, the spatial coordinates of the 
desired trajectory must be reinterpreted in terms of a 
corresponding set of body coordinate, such as joint 
angles or muscle lengths (step 2 in Fig. 1). Finally, 
motor commands, that is muscle torque, must be 
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Fig. 1. A computational model 
for voluntary movement 

generated to coordinate the activity of many muscles 
so that the desired trajectory is realized (step 3 in 
Fig. 1). It must be noted that we do not adhere to the 
hypothesis of the step-by-step information processing 
(i.e. step 1 ~ 2 ~ 3 )  shown by the bottom line of this 
figure. Rather, our model indicates that there are other 
information processings (step 4 and step 5 in Fig. 1) 
which realize the desired trajectory. In step 4, the 
motor command can be obtained directly from the 
desired trajectory represented in the task-oriented 
coordinates: that is, the two problems (coordinate 
transformation and generation of motor command) 
are simultaneously solved. Further, in step 5, the 
motor command is calculated directly from the goal of 
movement: that is, the three problems (trajectory 
formation, coordinate transformation and generation 
of motor command) are simultaneously solved. 

We will mainly discuss the first problem (trajectory 
determination) out of the three computational pro- 
blems and develop an algorithm that corresponds to 
step 5 in Fig. 1. The other two problems (coordinates 
transformation and generation of motor command) 
have been discussed in earlier papers (Kawato et al. 
1987, 1988a, b). 

In this paper, the term "trajectory" refers to path 
and speed of movement: the path is a sequence of 
positions that the hand follows in space, and the speed 
is a time sequence of movement velocity along the 
path. 

Early studies of the motor control have concen- 
trated on single-joint arm movements (e.g. Polite and 
Bizzi 1979; Bizzi et al. 1984). Whereas, recently, several 
studies have been reported regarding the kinematic 
and dynamic aspects of multijoint arm movements. 
For multijoint arm movements, there exist new control 
problems that do not exist in the single-joint case 
(Hollerbach and Flash 1982). Even a two-joint move- 
ment is vastly more complicated than a single-joint 
movement because of the presence of interactional 
forces (e.g. Colioris forces, reaction foces and centrip- 

etal forces). When the hand of the multijoint arm is 
moved from one position to another, there are an 
infinite number of possible paths which lead to the final 
position. What strategy does the CNS use to determine 
a desired trajectory? In what coordinates frame is the 
trajectory planned? 

Morasso (1981) provided experimental data which 
suggests that the desired treajectory is first planned at 
the task-oriented (visual) coordinates. He measured 
human two-joint arm movements restricted to an 
horizontal plane, and found the following common 
invariant kinematic features. When a subject was 
instructed merely to move his hand from one visual 
target to another, his hand usually moved along a 
roughly straight path with a bell-shaped speed profile. 
Morasso also reported that, in contrast to the simple 
hand profile, the angular positions and velocity pro- 
files of the two joints (shoulder and elbow) were widely 
different according to the parts of the work-space in 
which movements were performed. These results pro- 
vide strong support for the hypothesis that arm 
movements are planned in terms of the hand kinema- 
tics at the task-oriented coordinates rather than joint 
rotations at the body coordinates. 

Abend et al. (1982) investigated not only straight 
paths but also curved paths. When a subject was asked 
merely to move his hand from one target to another, 
his hand path was roughly straight and the associated 
speed had a single-peaked profile, that was entirely 
consistent with Morasso's experiment. In contrast to 
the point-to-point movements, when the subject was 
instructed to move his hand while avoiding an obstacle 
or along a self-generated curved path, the hand path 
appeared to be composed of a series of gently curved 
segments and the speed profile had often several peaks. 
In this case, the curved path usually contained distinct 
curvature peaks which were temporally associated 
with valleys in the hand speed profile. 

In order to account for these kinematic features, 
Flash and Hogan (1985) proposed a mathematical 
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model, "minimum jerk model". The minimum jerk 
model is formulated by defining the following objective 
function, a measure of performance for any possible 
movement: square of the jerk (rate of change of 
acceleration) of the hand position integrated over the 
entire movement. Flash and Hogan showed that the 
unique trajectory which yields the best performance 
was in good agreement with experimental data in some 
region of the work-space. Their analysis was based 
solely on the kinematics of movement and independent 
of the dynamics of the musculoskeletal system. 

On the other hand, considering the dynamics of the 
arm, a few researchers proposed several performance 
indices for trajectory formation, though their studies 
were restricted to single-joint movements. Nelson 
(1983) computed the trajectories which minimized 
various measures of physical cost (for example, move- 
ment time, maximum force, impulse, energy etc.), and 
compared the resulting trajectories with each other. 
Hasan (1986) gave a criterion function which was the 
time integral of the product of muscle stiffness and 
square of the time differential of the equilibrium 
trajectory. But it is not clear whether their analyses can 
be applied to multijoint arm movements. 

Presuming that the objective function must be 
related to the dynamics, we (Uno et al. 1987) proposed 
the following measure of a performance index: sum of 
square of the rate of change of torque integrated over 
the entire movement. Here, let us call this model 
"minimum torque-change model". Regarding the move- 
ments which were examined by Morasso (1981) and 
Abend et al. (1982), the hand trajectories predicted by 
the minimum torque-change model are in fairly good 
agreement with those of the minimum jerk model. 
However, under several behavioral situations, the 
predictions of these two models are quite different. 
These two models are investigated in detail and 
compared with each other on the basis of our experi- 
mental data about human planar arm movements. 

2 Minimum Torque-Change Model 

Skilled movements are in general extremely smooth 
and graceful. Hogan (1984) proposed a single organiz- 
ing principle to predict the qualitative and quantitative 
features of single-joint forearm movements, assuming 
that maximizing smoothness may be equivalent to 
minimizing the mean-square jerk. Here, jerk is math- 
ematically defined as the rate of change of acceleration. 

Flash and Hogan (1985) generalized this organiz- 
ing principle to multijoint motion, using dynamic 
optimization theory. Dynamic optimization requires 
the definition of a objective function (criterion func- 
tion), which is generally expressed as a time integral of 

a performance index. Taking account of the kinematic 
features of the motion and the suggestion that move- 
ments are planned in terms of hand trajectories rather 
than joint rotations, Flash and Hogan adopted the 
Cartesian jerk of the hand as the performance index. In 
moving from an initial to a final position in a given 
time ts, the criterion function to be minimized is 
expressed as follows: 

Cd= 1 t f ~(d3x~2 (d3y~2~ 
2 o [ k d ~ - /  + k, d f ~ / J  dt. (2.1) 

Here, (x, y) is the Cartesian coordinates of the hand 
position. 

The criterion function determines the form of the 
movement trajectory. The methods of variational 
calculus and optimal control theory (Bryson and Ho 
1975) were applied to find mathematical expressions 
for x(t) and y(t), which minimize the criterion function 
Cs. If the boundary conditions at the onset and 
termination of the movement are given, the criterion 
function Cs determines the form of the hand trajectory 
completely. Assuming the movement to start and end 
with zero velocity and acceleration, the following 
expression for hand trajectory are obtained: 

x(t) = Xo + (Xo - xy) (15z 4 - 6z s - 10z 3) 
(2.2) 

y(t) = Yo + (Yo -- Yl) (15z 4 -  6z 5 - -  1 0 z 3 ) ,  

where z = t/ty, (xo, Yo) is the initial hand position at 
t=0,  and (xy, yy) is the final hand position at t - - t y  
(Flash and Hogan 1985). 

One can easily see that the path derived from (2.2) is 
a straight line between the initial and the final positions 
and the associated speed profile is bell-shaped. This 
model predicted and reproduced the qualitative fea- 
tures and the quantitative details of the human hand 
trajectories between two targets which are located 
approximately in front of the body (Flash and Hogan 
1985; Fig. 3). Furthermore, the minimum jerk model 
successfully reproduced a curved movement through a 
certain via-point as well as a stright movement be- 
tween two points (Flash and Hogan 1985: Figs. 5-7). 

Since x(t) and y(t) depend only on the initial and 
final positions of the hand and movement time, the 
optimal trajectory is determined only by the kinema- 
tics of the hand in the task-oriented coordinates and is 
independent of the physical system which generates the 
motion. In this way, the minimum jerk model is 
consistent with the hypothesis that the desired trajec- 
tory is first planned at the task-oriented (visual) 
coordinates. However, it seems very strange that the 
optimal trajectory of our voluntary movement is 
determined perfectly independent of the dynamical 
quantities such as arm length, payload, motor com- 
mand, torque or external force etc. 
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On the basis of the idea that the criterion function 
must be related to some physical variables concerning 
the dynamics of the controlled object, we examined a 
few kinds of performance indices (e.g. energy, torque, 
movement time etc.). As a result of these investigations, 
we propose the minimum torque-change model, which 
is formulated by the following performance index: 

CT= ,~1 dt.  (2.3) 

Here, z i is the motor command (torque) fed to the i-th 
actuator (muscle) out of n actuators. The criterion 
function C w is the sum of square of the rate of change of 
torque integrated over the entire movement. One can 
easily see that the two objective functions C s and CT 
are closely related, because acceleration is locally 
proportional to torque at zero speed. 

3 Predictions of Minimum Torque-Change Model 

To compute the optimal trajectory predicted by the 
minimum-torque-change model, the dynamics equa- 
tion of the musculoskeletal system must first be 
specified, because the criterion function CT depends on 
the dynamics of the controlled object. But, it is very 
difficult to describe the musculoskeletal system exactly 
because it is an extremely complex system. Hence, for 
simplicity, we use the following dynamics equation of a 
two-joint robotic manipulator illustrated in Fig. 2 
instead of the real musculoskeletal system. 

Z 1 = (11 + 12 + 2M2L1S 2 cos  0 2 q- M2(11)2)0.1 

+(12 + M2L1S2 C O S 0 2 ) 0 . 2  

- MEL1S2(201 + 02)02 sin0z + b101 
(3.1) 

Z 2 ~--" (12 + M2LIS 2 cos  02)0.1 -t- 120" 2 

+ M2L1S2(O1) 2 sin02 + b202. 

Here, M i, .Li, S i, and I i represent the mass, the length, 
the distance from the center of mass to joint, and the 
rotary inertia of the link i around the joint, respec- 
tively, bi and z i represent the coefficients of viscosity 
and the actuated torque of the joint i. The joint angle 01 
and 02 are defined as indicated in Fig. 2. The links 1 
and 2 correspond to the upper arm and the forearm, 
and the joints 1 and 2 correspond to the shoulder and 
the elbow. The joint 1 (shoulder) was located at the 
origin of the X -  Y coordinates. 

The values of these physical parameters are given in 
Table 1. The values of Mi, Li, and S~ were estimated 
from measurement of the human arm. The value of 12 
was assumed to be 0.1 kg- m 2 which was a typical value 
for human forearm rotation about the elbow joint 
(Cannon and Zahalak 1982), and 11 was estimated 
taking account of the geometrical feature of the upper 
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Fig. 2. A two-joint robotic manipulator which moves within a 
horizontal plane. The origin of the X - Y coordinates represents 
the location of the joint 1 (shoulder). X and Y axes represent the 
side direction and the front direction of the body. T1 ~ T8 are the 
target positions. See Table 1 for values of the physical parameters 
of the manipulator 

Table 1. Values of physical parameters of the two-joint manipu- 
lator shown in Fig. 2 

Parameter Link 1 Link 2 

Mi (kg) 0.9 1.1 
Li (m) 0.25 0.35 
Si (m) 0.11 0.15 
Ii (kg. m 2) 0.065 0.100 
bi (kg. mZ/s) 0.08 0.08 

arm. The value of b i was assumed as 0.08 kg. mZ/s, 
which was in the range 0.02,-~ 0.2 kg. ma/s estimated 
for monkeys (Hogan 1984). We confirmed that the 
calculated trajectories were basically the same for the 
range of b i from 0.02 to 0.2 kg. m2/s. 

Since the dynamics of the multijoint robotic mani- 
pulator is nonlinear as shown in (3.1), the problem to 
find the unique trajectory which minimizes CT is a 
nonlinear optimization problem. Owing to the non- 
linearity, it is much more difficult to calculate the 
unique trajectory which minimizes CT than Ca. Con- 
sequently, it seems impossible to obtain the analytical 
expression for the solution of this problem, such as 
solution (2.2) in the minimum jerk model. However, 
using an iterative learning scheme, we can compute the 
optimal trajectory for the minimum torque-change 
model; mathematically, the iterative learning scheme 
can be regarded as a Newton-like method in functional 
space. The details of this iterative method are given in 
Sect. 5. 

We will describe the trajectories derived from the 
minimum torque-change model for various move- 
ments, while comparing them with the predictions of 
the minimum jerk model. 
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Fig. 3A and B. Free movements between two targets located 
approximately in front of the body. A Hand trajectories predicted 
by the minimum torque-change model, a shows the five hand 
paths(h: T3--* T6, e: T2--* T6, d: T1 ~ T 3 , e :  T4~T1 ,  f: T4-* T6). 
The origin represents the location of the joint 1 (shoulder). Figure 
h ~ f  shows the corresponding hand tangential speed profiles 
along the paths. B Hand trajectories observed in human arm 
movements. Four trials are depicted for each movement. The 
figure format is the same as A. a shows the hand paths and Fig. 
h ~ f shows the corresponding speed profiles 

When the starting posture was stretching an arm in 
the side direction and the final position was approxi- 
mately in front of the body, the hand paths of the two 
models were quite different, while the hand speed 
profiles were similar. In the minimum jerk model, the 
hand path is always straight, because the hand trajec- 
tory is determined only by the hand kinematics and its 
shape is invariant with respect to the region of the 
work-space. On the other hand, in the minimum 
torque-change model, the hand path was a gently 
convex curve as shown in Fig. 4A-a. As seen from 
comparison of roughyl straight paths in Fig. 3A-a with 
a curved path in Fig. 4A-a, the shape of the path 
derived from the minimum torque-change model 
changed in accordance with the region of the work- 
space where the movement was executed. In the large 
movement from the starting posture with a stretched 
arm, the start point is on the boundary of the work- 
space, where the dynamics of the arm is very different 
from that in front of the body. This is the main reason 
why the shape of the path shown in Fig. 4A-a differs 
from the shapes of the paths shown in Fig. 3A-a. 
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For unconstrained horizontal movements between 
two targets located approximately in front of the body, 
the minimum torque-change model predicted roughly 
straight hand paths as shown in Fig. 3A-a, though they 
were always not completely straight (for example, the 
hand path leading from the target T 2 to T 6 was slightly 
convex); the associated speed profiles were single- 
peaked and bell-shaped as shown in Fig. 3A-b to A-f. 
These predicted trajectories were in good agreement 
with the experimental data reported by Morasso (1981 ) 
and Abend et al. (1982), and hence coincided with the 
predictions of the minimum jerk model. 

However, the trajectories derived from the mini- 
mum torque-change model were quite different from 
those of the minimum jerk model under the following 
behavioral situations, some of which had not been 
examined in past experiments. 
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Fig. 4A and B. Large free movements between two targets 
(T7--*T8); the starting posture is stretching an arm in the side 
direction and the end point is approximately in front of the body. 
A Hand trajectory predicted by the minimum torque-change 
model, a shows the path and h shows the corresponding speed 
profile. B Observed hand trajectories for the seven subjects, a 
shows the paths and h shows the corresponding speed profiles 
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For horizontal arm movements which had to travel 
between two targets passing through a specified point 
(a via-point), both the models predicted curved hand 
paths with single-peaked or double-peaked speed 
profiles. It depended on the location of the via-point 
whether the hand speed profile had a single peak or 
two peaks. In both the models, if the via-point was 
located near to the line connecting the initial and the 
final targets, the hand speed profiles were single 
peaked; on the other hand, if the via-point was located 
further away from the line connecting two targets, 
highly curved movements were produced and the hand 
speed profiles were double-peaked. Furthermore, ac- 
cording as the curvature of hand path became larger, 
the valley in the double-peaked speed profile tended to 
be deeper. In this case, the peak in the path curvature 
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Fig. 5A and B. Free movements passing through a via-point, P1 
or P2. P1 and P2 are located symmetrically with respect to the 
line connecting T3 and T5. A Hand trajectories predicted by the 
minimum torque-change model, a shows the convex path (b: T3 

P I ~ T5) and the concave path (e: T3 ~ P 2 ~  T5). Figures b and 
e show the corresponding speed profiles (dotted curves) and 
curvature profiles (solid curves). B Hand trajectories observed in 
human arm movements. Four trials are depicted for each 
movement, a shows the hand paths, and figures b and e show the 
corresponding speed profiles (dotted curves) and curvature 
profiles (solid curves) 

was temporally associated with the valley in the speed 
profile (see Fig. 5A-c). 

However, when the via-point was located at a 
certain distance from the line connecting two targets, 
the two models predicted quite different trajectories. 
Consider two subcases, with identical start and end 
points, but with mirror-image via-points (see 
Fig. 5A-a). That is, the start point T3 and the end point 
T5 are the same for these two subcases, but the two via- 
points P1 and P2 are located symmetrically with 
respect to the line connecting the common start and 
end points. Here, the via-point P1 is located further 
away from the body than the line T3 T5 and the via- 
point P2 is located nearer to the body than the line 
T3T5 as shown in Fig. 5A-a. If one notices invariance 
of the criterion function Cs under translation, rotation 
and turning up, it is easy to see that the minimum jerk 
model predicts identical paths (with respect to turning 
up) and identical speed profiles for the two subcases. 
On the other hand, the minimum torque-change model 
predicted two different shapes of trajectories corre- 
sponding to the two subcases; for the movement 
passing through the via-point P1, a convex curved 
path was formed and the associated speed profile had 
only one peak (Fig. 5A-b); in contrast, for the move- 
ment passing through the via-point P2, a concave path 
was formed and the associated speed profile had two 
peaks (Fig. 5A-c). Furthermore, the convex path (T3 
~P1 ~ T5) and the concave path (T3 ~ P 2 ~  T5) were 
not symmetric with respect to the line T3T5. 

In short, the trajectory derived from the minimum 
jerk model is determined only by the geometric 
relation among the initial, final and intermediate 
points, whereas, the trajectory derived from the mini- 
mum torque-change model depends not only on the 
relation among these three points but also on the arm 
posture (in other words, the relative location of the 
shoulder for the three points). 

We found the difference between the predictions of 
the two models not only for the above free movements 
but also for the constrained movements in which an 
external force acted on the arm. Consider that a subject 
is told to move his hand between two targets while 
resisting against the force of a spring, one end of which 
is attached to his hand and the other end is fixed at 
some position. The minimum jerk model always 
predicts a straight path and a bell-shaped speed profile 
regardless of the external force, because the minimum 
jerk trajectory is determined independent of the dy- 
namics of the controlled object. On the other hand, in 
the minimum torque-change model, the trajectory was 
influenced by the external force. Figure 6A shows the 
predicted trajectories for the free movement (b) and for 
the movement constrained by the spring with 70 N/m 
spring constant (c). While the path was straight and the 
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Fig. 6A and B. Free movements between two targets (b: T4--. T6) 
and constrained movements in which a spring force acts on the 
hand (e: T4-*T6). A Hand trajectories predicted by the mini- 
mum torque-change model, a shows the hand path of the free 
movement b and the hand path of the movement influenced by 
the spring e. Figure b and e shows the corresponding speed 
profiles, B Hand trajectories observed in human arm movements. 
Four trials are depicted for each movement, a shows the hand 
paths and, b and e show the corresponding speed profiles 

speed profile was bell-shaped for the free movement 
(Fig. 6A-b), the path was curved and the speed profile 
was not necessarily bell-shaped for the constrained 
movement (Fig. 6A-c). The magnitude of spring force 
which acted on the hand changed with the location of 
the hand; for the movement shown in Fig. 6A-c, the 
maximum of the spring force was 10.4N and the 
minimum of that was 3.3 N. This magnitude of spring 
force was much smaller than the limit value of the real 
musculoskeletal system which was observed experi- 
mentally by Cannon and Zahalak (1982). Consequent- 
ly, the external force did not give overload to the 
musculoskeletal system. 

Furthermore, for the movements executed between 
two targets in a vertical plane under the effect of 
gravity, the minimum jerk model predicts straight 
hand paths with bell-shaped speed profiles, which is 
the same result as the model predicted for the point-to- 
point movements in a horizontal plane. This is because 

target 
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i I 
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' 500msec' 
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path speed 
Fig. 7. Movements between two targets within a vertical plane. 
The left figure shows the hand paths and the right figure shows 
the corresponding speed profiles. The origin O of the X - - Y  
coordinates represents the location of the joint 1 (shoulder). X 
and Y axes represent the horizontal direction and the downward 
direction. The minimum torque-change model predicts the 
curved path for the large, up and down movement a and the 
roughly straight path for the small, front and rear movements b 

the minimum jerk model determines trajectories irre- 
spectively of the gravity. On the other hand, the 
minimum torque-change model predicted curved 
paths for large, up and down movements (Fig. 7-a), 
while it predicted roughly straight paths for small, 
front and rear movements (Fig. 7-b); the speed profiles 
were bell-shaped for both of the movements. 

Why does the minimum torque-change model 
predict the curved path as shown in Fig. 7-a? One 
reason for the curved path may be sought in the fact 
that the dynamics of vertical arm movement is affected 
by the gravitational force and the minimum torque- 
change trajectory depends on the dynamics. Another 
reason may be the complicated dynamics of the arm 
that arises from the large movement; this is the same 
reason as for the large horizontal free movement 
between two targets. Although we do not show 
simulation results, we examine large downward move- 
ment for which the start and the end points were 
exchanged from those of Fig. 7-a. The predicted path 
was close to the upward path shown in Fig. 7-a. We 
also studied up and down movement with grasped 
payload of order of several hundreds gram. The path 
was again consistently but slightly different from the 
path without payload. These simulation results suggest 
the above second reason for the curved path of large up 
and down movement. 

Although the shape of the path was significantly 
affected by the external force exerted by a spring as 
shown in Fig. 6, it was not so severly distorted by the 
direction of the up and down movement or by the 
amount of payload. This might be understood that the 
gravitational force did not change so much for different 
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postures although the spring force drastically changed 
with the posture. The spring force had more dramatic 
effect on the dynamics of manipulator and the environ- 
ment, so its strongly affected the shape of the path. 

From the above results, we can summarize the 
differences between the two models as follows. The 
trajectories derived from the minimum jerk model are 
invariant with respect to the region of the work-space 
and independent of the external forces. On the other 
hand, the trajectories of the minimum torque-change 
model depend on the region of the work-space and are 
affected by the external forces. 

4 Experimental Results 
of Human Arm Movements 

We examined human arm trajectories under the vari- 
ous situations for which the minimum jerk model and 
the minimum torque-change model contradicted. Re- 
ferring the apparatus designed by N. Hogan, we made 
an apparatus shown in Fig. 8. Our apparatus was 
larger and the fulcrum position was different from the 
original manipulandum so that larger movements can 
be measured. The procedure of our experiment was 
after those of Abend and Bizzi (1982) and Flash and 
Hogan (1985). The subject was seated and held the end 
of a two-link mechanical manipulandum. The subject 
was instructed to move his hand according to illumin- 
ation of light emitting diode (LED) targets mounted on 
a horizontal plexiglass panel. Since the subject's wrist 
was braced and his arm motion was restricted to an 
horizontal plane, his arm had only two degrees of 
freedom (i.e. shoulder and elbow motion). The joint 
angles of the manipulandum were monitored by two 

P2 

T8 

F x,y) U 

Fig. 8. Experimental apparatus for measuring arm trajectories in 
a horizontal plane. The subject was instructed to move the handle 
of the two-link manipulandum, and its movement was measured 
by means of the potentiometers, P1 and P2. T1 ~ T8 are the LED 
targets. The fulcrum of the manipulandum was set at the F1 for 
the free large movement shown in Fig. 4, whereas it was set at F2 
for all the other movements 

potentiometers, and then the subject's hand position 
was computed from the potentiometer voltage signals. 
Visual information about the arm location was 
eliminated by darkening the room or by covering the 
plexiglass panel with an opaque black paper. 

Results of our experiments under the four para- 
digms discussed in the previous section are shown in 
Figs. 3B, 4B, 5B, 6B. 

First, for the free movements between two targets 
located approximately in front of the body, the subjects 
usually generated roughly straight paths with single- 
peaked and bell-shaped speed profiles as shown in 
Fig. 3B. These trajectories were in good agreement 
with the experimental data reported by Morasso 
(1981), Abend et al. (1982) and Flash and Hogan 
(1985), and further coincided with predictions of the 
minimum torque-change model as seen from Fig. 3A 
and B. 

Second, the large horizontal free movements be- 
tween two targets were examined. Sixteen subjects 
participated in this experiment. When the starting 
posture was stretching an arm in the side direction and 
the end point was in front of the body, almost all hand 
paths were gently curved and tangential velocity 
profiles were bell-shaped. Figure4B shows seven 
subject's trajectories among them. Although a few 
subjects sometimes generated rather straight paths, 
these paths were always slightly convex and there was 
no concave path. In this paradigm, the arm movements 
were affected by the complicated kinematics and 
dynamics of the real musculoskeletal system, because 
the start point was on the boundary of the work space. 
As a result of such complicated dynamics, the shapes of 
the hand paths shown in Fig. 4B were different from 
those of the hand paths shown in Fig. 3B. From the 
comparison of Fig. 3B with Fig. 4B, it is clear that the 
shape of the hand path depended on the region of the 
work-space where the movement was executed. The 
minimum torque-change model can predict such dif- 
ferent trajectory shapes according to the region of the 
work-space where the hands moved. This is because 
the minimum torque-change model was formulated on 
the basis of the dynamics. 

Third, free movements passing through a via-point 
were examined. When subjects were instructed to 
move their hands between two targets passing through 
a via-point, they usually produced gently curved paths 
with single-peaked or double-peaked speed profiles; if 
the via-point was located near to the line connecting 
the start and the end points, the speed profiles of 
subject's hands were single peaked; if the via-point was 
located further away from the line connecting the end 
points, their speed profiles were double peaked. Fur- 
thermore, when the subjects produced the highly 
curved movements with double-peaked speed profiles, 
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the speed valley corresponded temporally to the 
curvature peak. These qualitative features were in 
consistent with the experimental data reported by 
Abend et al. (1982), although the via-point was not 
specified in their experiments while it was specified in 
our experiment. The above experimental features were 
consistent with the predictions of the minimum jerk 
model and those of the minimum torque-change 
model. However, when the start, the end and the via 
points were located at the same positions as in the 
simulation shown in Fig. 5A, the experimental results 
did not support the minimum jerk model but support 
the minimum torque-change model as follows. 

Specifying via-points PI and P2 as shown in 
Fig. 5B. We measured via-point movements, T 3 ~ P 1  

T5 and T3 ~ P 2 ~  T5. The convex path movements 
( T 3 ~ P I ~ T 5 )  were quite different from the concave 
path movements ( T 3 ~ P 2 ~ T 5 ) .  In particular, the 
speed profiles of the former were single-peaked as 
shown in Fig. 5B-b, while those of the latter were 
double-peaked as shown in Fig. 5B-c. These experi- 
mental results were consistent with the predictions of 
the minimum torque-change model. 

Fourth, we measured constrained arm movements 
in which spring forces acted on the hands. Here the 
spring constant was 70 N/m, which was the same value 
that was specified in the predictions of the model. As 
shown in Fig. 6B, one end of the spring was attached to 
the subject's hand and the other end was fixed to the 
same position as in the simulation shown in Fig. 6A. 
The subject was asked to move his hand from initial 
target T4 to final target T6 while resisting against the 
spring force. In several trials for such movements, the 
subject usually generated trajectories of various 
shapes. However, as the subject got accustomed to the 
movements by repeating similar movements, he came 
to generate almost same trajectories for every trial. 
Figure 6B shows the free movement (b) and the 
constrained movement (c) in which the hand was 
moved from target T4 to T6. As seen from Fig. 6A and 
B, the measured hand trajectories were similar to the 
trajectory predicted by the minimum torque-change 
model. 

Our experimental apparatus can not be utilized to 
measure arm movements within a vertical plane. 
Recently, Atkeson and Hollerbach (1985) measured 
human arm movements in three dimensional space 
using the "selspot system" and found that the hand 
paths were roughly straight or gently curved according 
to the region of the work-space. These experimental 
results qualitatively coincided with the predictions of 
the minimum torque-change model described in the 
previous section (Fig. 7). 

From the experimental data in the present section 
and the computer simulations in the previous section, 

we concluded that the minimum torque-change model 
could reproduce and predict multijoint arm move- 
ments under various conditions. 

5 Iterative Learning Scheme 
for Optimal Trajectory Formation 

In this section, we describe the method to compute the 
optimal trajectory based on the minimum torque- 
change model The trajectories shown in Sect. 3 were 
computed using the algorithm described here. 

For moving the hand of a manipulator from one 
position to another between time to and ts, we give the 
method to compute the trajectory which minimizes the 
criterion function CT defined in Sect. 2. To obtain the 
control which minimizes CT, we must solve an optimiz- 
ation problem subject to the constraint imposed by the 
dynamics of the controlled system: i.e., manipulator. 
The dynamics of a n-joint manipulator is generally 
expressed as follows: 

dx /d t=  y , 

dy/dt = hi(x, y) + h2(x)z. 

Here, x, y, and z are 

(5.1) 

n-dimensional vector and 
represent the position, the velocity and the torque, 
respectively, hi(x, y) and ha(x) are nonlinear functions. 
It is clear that (3.1) can be transformed into (5.1) by 
setting x = 0, y = 0. For simplicity of notation, we define 
a state variable X and a control variable u: 

X r = (x r, yr, zT), U = dz/dt .  (5.2) 

In this section, T denotes the transpose of vector or 
matrix. Note that x, y, z, and u are n-dimensional 
vectors, and X is a 3n-dimensional vector. Combining 
equations (5.1) and (5.2), and then representing the 
right-hand sides of them by a nonlinear function 
f ( X ,  u), we have 

dX/d t  = f ( X ,  u). (5.3) 

Let X 0 and Xy stand for values of the state variable X 
at the start point and the end point, respectively. That 
is, the boundary conditions are given as follows: 

X(to) = Xo,  X(ty) = Xy .  (5.4) 

Furthermore, the criterion function CT defined as (2.3) 
is rewritten with the control variable u: 

1 tf T 
C T  = - -  ~ U udt. (5.5) 

2 to 

We can summarize the optimization problem con- 
sidered as follows; our problem is to find u(t) which 
minimizes CT given as (5.5) under the conditions (5.3) 
and (5.4). Using the method of variational calculus and 
dynamic optimization theory, we can get a set of 
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nonlinear differential equations which is a necessary 
condition for a minimum to exist. 

dX/dt = f (X,  u), 

d~0/dt = --(df/~x)T~p, (5.6) 

U----/pz , 

where ~0 denotes the Lagrange-multiplier vector with 
3n-components, and ~Pz represents its n-dimensional 
part which corresponds to z. If the third equation for u 
is substituted into the first equation, (5.6) becomes an 
autonomous nonlinear differential equation with re- 
spect to X and ~p. In this way, our optimization 
problem results in a two-point boundary-value pro- 
blem. That is, the set of nonlinear ordinary differential 
Eq. (5.6) must be solved for the two-point boundary 
conditions (5.4). 

Although it is in general very difficult to solve the 
multipoint boundary-value problems for the nonlinear 
differential equations, Ojika and Kasue (1979) and 
Mitsui (1981) showed that a kind of quasilinearization 
technique is applicable to these problems. Their techni- 
que named "initial-value adjusting method" is regarded 
as a Newton-like method in a function space. We 
develop an iterative scheme to solve our two-point 
boundary-value problem, which is based on a Newton- 
like method. 

Although an initial value of X is specified (i.e. 
X(to) = Xo), an initial value oflp is unknown. Therefore, 
when we assume a certain initial value of ~0 and solve 
the initial-value problem for the differential Eq. (5.6), 
the final value X(ty) does not always reach to the target 
value Xf.  We define a residual error at the termination 
as follows: 

E = X f - -  X(ty). (5.7) 

Let a be an initial value of ~p: 

~( to )  = ~ .  (5.8) 

Since X(tl) depends on the initial value of W, the 
residual error E is regarded as a function of a. Finding 
the solution which satisfies the boundary conditions is 
equivalent to obtaining a* such that E(a*) = 0. It can be 
solved by the Newton method: 

o~k + 1 = o~k - -  (SE(a)/OcO - 1 E(~k), ( 5 . 9 )  

where ak is the initial value of lp at the k-th iteration. 
However, this scheme can not be realized because it is 
impossible to compute 8E/Bet analytically. Hence, we 
modify the iterative scheme (5.9) as follows. 

We first define a positive perturbation parameter 
e. By solving differential equation (5.6) for ~p(to) 
= a +eei  and X(to)=Xo, we can obtain the residual 
error E(~+eej). Here, e; is a unit vector whose j-th 
component  is 1, but the others are all 0. We carry out 

the above procedure for j = 1, 2,. . . ,  3n, respectively, 
and then compute the following 3n x 3n matrix, S(a, Q: 

S(~, 5) = [{E(a + eel)-  E(~)}/e, {E(~ + ee2) -- E(cO}/e, 

.... {E(a + 8e3, ) -  E(c0}/e ] . (5.10) 

It should be noticed that S(a, t) is a difference appro- 
ximation of 8E/Sa, if e is small enough. Finally, we can 
get the following iterative scheme regarded as a 
Newton-like method instead of the scheme (5.9): 

a k  + 1 = a k  - -  S(o~k,  I~) - 1 E(o~k)  . (5. l 1) 

In this iterative scheme, the solution can be ob- 
tained numerically because the two-point boundary- 
value problem for the nonlinear differential equation 
was transformed into an initial-value problem of the 
same equation. It must be emphasized that this 
iterative scheme can be used irrespectively of whether 
the target position is expressed in the task-oriented 
coordinates or in the joint-angle coordinates. 

There is no guarantee for the iterative scheme (5.11) 
to converge for an arbitrary starting point al. In 
general, as the nonlinearity of the controlled object is 
stronger, iteration tends to diverge. For  example, when 
the manipulator shown in Fig. 2 was chosen as the 
controlled object with the physical parameters of 
Table 1, the dynamics of the system is strongly non- 
linear and the iteration diverged for the starting point 
al = 0. However, in that case, it was possible to modify 
the scheme so that iteration converges by decreasing 
speed of changing a; that is, the modification term (the 
second term in (5.11)) is multiplied by a slowdown 
factor 7, (0<7 < 1). Figure 9 shows the results of the 
computer simulation for the above iterative scheme 
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Fig. 9. Simulation results of iterative learning control, which can 
be regarded as a Newton-like method. In order to calculate the 
minimum torque-change trajectory for the free point-to-point 
movement (T3---}T6), ten iterations were carried out. The left 
figure shows the ten hand paths and the right figure shows the 
corresponding speed profiles. The number attached to these 
curves represents the iteration number 
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setting 7 = 0.4. In this case, the optimal trajectory was 
almost perfectly realized by the tenth iteration. 

The above iterative scheme is applicable to the 
trajectory planning and control of industrial manipu- 
lators. In this application, it is an essential problem 
how to solve the complex nonlinear differential 
Eq. (5.6). As shown in appendix, its approximate 
solution can be obtained only by moving the manipu- 
lator and measuring the trajectories repetitively. In this 
iterative learning control, the optimum trajectory is 
directly calculated while neither explicity calculations 
of inverse kinematics (i.e. coordinates transformation) 
nor inverse dynamics is necessary. In other words, this 
algorithm corresponds to step 5 in Fig. 1, in which the 
three computational problems (trajectory determin- 
ation, coordinates transformation and generation of 
motor command) are simultaneously solved by this 
algorithm. Consequently, this method is very appeal- 
ing from an engineering point of view. 

6 Discussion 

We proposed the minimum torque-change model, in 
some sense, by expanding the minimum jerk model 
from the viewpoint emphasizing the dynamics of the 
controlled object. 

Recently, Flash (1987) proposed combination of 
the minimum jerk model with the "equilibrium trajec- 
tory hypothesis" which was based on the spring-like 
behavior of the human arm. According to the equilib- 
rium trajectory hypothesis, the CNS defines the time 
history of the hand equilibrium positions determined 
by the neuromuscular activity; hence, the sprink-like 
force is exerted on the arm according to the difference 
between the actual and equilibrium hand positions. 
Flash reported that the equilibrium trajectory hypo- 
thesis successfully captured both the qualitative fea- 
tures and the quantitative kinematic details of the 
measured movements. Flash further discussed that the 
minimum jerk description might fit the hand equilib- 
rium trajectories better than the actual trajectories. 

We now reconsider these mathematical models and 
hypothesis from the viewpoint of the computational 
theory shown in Fig. 1. If one accepts the minimum 
jerk model or the equilibrium trajectory hypothesis, it 
also implies that the three computational problems 
shown in Fig. 1 are solved step by step; that is, the 
desired trajectory is first planned in terms of the 
motion of the hand in extracorporal space (step 1), the 
hand motion is second transformed into the joint 
motion of the musculoskeletal system of the arm 
(step 2), and finally, corresponding torque and force 
are generated so as to realize the desired trajectory 
(step 3). On the other hand, in the minimum torque- 
change model, the three problems are simultaneously 

solved, and hence planning and execution processes 
cannot be explicitly separated; that is, the CNS 
calculates the optimal torque directly as indicated by 
step 5 in Fig. 1. 

In conclusion, the difference between these models 
is summarized as follows. The minimum jerk model 
and the equilibrium trajectory hypothesis imply that 
the motor system is divided between higher levels (e.g., 
the CNS) and lower levels (e.g., neuromuscular 
system); in the higher levels, the desired trajectory is 
planned independently of the musculoskeletal dy- 
namics; in the lower levels, the associated torque and 
force are generated. The minimum torque-change 
model implies that the optimal motor commands 
(torques and forces) are directly obtained from the 
dynamics of the musculoskeletal system. 

As seen from Fig. 3B, trajectories measured in the 
planar point-to-point movements were approximately 
straight but they were not completely straight. Further, 
hand trajectories were evidently curved for large 
planar point-to-point movements as shown in Fig. 4B. 
Two contrary interpretations are considered for these 
experimental results. One interpretation is that the 
planned trajectory is straight but the actual trajectory 
is not straight because of the incomplete control. 
Another interpretation is that the motion is planned 
and controlled in accordance with the dynamics of the 
musculoskeletal system; in other words, the planned 
trajectory is not straight originally. The equilibrium 
trajectory hypothesis is compatible with the former 
interpretation. Our minimum torque change model 
takes the standpoint of the latter interpretation. The 
fact that the minimum torque-change model depends 
heavily on the dynamics of the musculoskeletal system 
plays an important role to predict the trajectory for the 
movement affected by the external force (e.g., spring 
force). According to the minimum torque-change 
model, the planned trajectory which is the same as the 
realized trajectory was quite different from that of no 
load movement as shown in Fig. 6A. It may be possible 
to explain the constrained movement shown in Fig. 6B 
by means of the equilibrium trajectory hypothesis. 
However, it is doubtful whether the equilibrium trajec- 
tory hypothesis could reproduce the experimental 
features in the via-point movement shown in Fig. 5B. 

As described in previous sections, the minimum 
torque-change model succeeded in predicting and 
reproducing very skilled arm movements. However, 
we do not intend to totally deny the possibility that the 
CNS performs the step-by=step process (i.e. step 1 ~ 2  

3) for some kinds of voluntary arm movements. It is 
possible to suppose that the CNS performs several 
kinds of computational schemes (1 ~ 2 ~ 3 ,  1 ~4,  5 in 
Fig. 1) according to different types of voluntary move- 
ments. When a certain unskilled movement is intended 
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for the first time, the CNS determines the desired 
trajectory in the visual coordinates, transforms the 
coordinates and calculates the associated motor  com- 
mand; that is, the CNS performs the step-by-step 
process ( 1 ~ 2 ~ 3  in Fig. 1) at first. However, we 
suppose that in the course while the movements is 
repeatedly executed, a scheme based on the minimum 
torque-change criterion is gradually acquired. We will 
propose a neural network model, which learns the 
energy to be minimized, for this process in our next 
paper. This scheme corresponds to step 5 in Fig. 1. 
Hence, for skilled movements such as simple motion 
between two targets, the optimal trajectory and the 
associated torque are automatically calculated with- 
out step 1, 2, and 3, using the scheme acquired by the 
learning process. 

The minimum torque-change model successfully 
reproduces the observed trajectories under the various 
conditions (e.g. planar free movement, via-point move- 
ment and constrained movement under the external 
force) from the single criterion function Cr. We now 
consider physiological or physical advantages of mini- 
mizing C~.. One possible answer might be a mechanical 
reason. Since the control which minimizes change of 
torque generates the smooth torque and trajectory, 
such control reduces wear and tear on the musculo- 
skeletal system. Furthermore,  in that control, the 
consumption of energy is relatively low (though it is 
not minimum) because unnecessary force is avoided. 
Another explanation might be found in inherent 
dynamics of neural networks in the CNS. This expla- 
nation is closely related to our neural network model 
which produces the minimum torque-change trajec- 
tory, and it will be explained briefly. 

Though our iterative scheme is useful to calculate 
the optimal trajectory with a computer, the CNS does 
not seem to adopt such an iterative learning scheme 
based on a Newton-like method. We know that some 
neural networks can solve computationally difficult 
problems such as the traveling salesman problem or 
early visions, which can be regarded as nonlinear 
optimization problems with some constraints, by 
minimizing some cost function (energy) (Hopfield 
1982; Hopfield and Tank 1985; Poggio et al. 1985; 
Koch et al. 1986). Because of the success of the 
minimum torque-change model, the problem of tra- 
jectory formation for particular types of  movements 
can also be regarded as a nonlinear optimization 
problem with a constraint given as nonlinear dy- 
namics of the controlled object. 

We recently found a multi-layer neural network 
model which can generate the minimum torque- 
change trajectory. This network performs two kinds of 
parallel information processing: learning process and 
optimization process. In the learning process, an 

internal dynamics model of the controlled object (e.g. 
arm or manipulator) is acquired by adjusting weights 
of synaptic connections in the network. During this 
phase, in some sense, the network learns the energy to 
be minimized. In the optimization process, using the 
acquired internal dynamics model, the motor  com- 
mand which minimizes the cost function (energy) is 
calculated as a result of endogenous dynamics of the 
neural network. In this way, the minimum torque- 
change model, if it is reconsidered at the hardware level 
of Marr, might not so severely contradicts with the 
neural network model proposed by Bullock and 
Grossberg (1988), which does not explicitly compute 
any criterion function. 

The minimum torque-change model presented in 
this paper succeeded in predicting the trajectories of 
planar two-joint arm movements. It is our future work 
to investigate whether our model is applicable to other 
types of movements. In particular, redundant multi- 
joint movements and obstacle-avoidance movements 
are interesting. Fortunately, our iterative learning 
scheme is applicable to these movements. 
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Appendix 
In this appendix, we give the method to solve the Euler-Lagrange 
Eq. (5.6) indirectly by moving the manipulator and measuring its 
trajectory repetitively. Let us rewrite (5.6): 

dX/dt  = f(x,  u), (A. 1) 

d~0/dt = - (~ f / aX) r~ ,  (A.2) 

u=~pz. (A.3) 

The solution X(t) of differential Eq. (A.1) can be obtained from 
the measured trajectory by moving the manipulator under the 
control u(t). Furthermore, differential Eq. (A.2) can also be solved 
indirectly as follows. 

If we set 6u(t)- 0 (that is, u(t) is fixed), the variational equation 
of (A.1) is expressed as 

d(rX)/dt = (Of /dX)~SX. (A.4) 

Since (A.2) and (A.4) are adjoint with each other, it follows that 

dOprrX)/dt=O. (A.5) 

Consequently, 

~prbs = const. (A.6) 

Let gXJ(t) be the solution of variational Eq. (A.4) for JXJ(to) = ej 
where ej is the j-th unit vector. 6xJ(t) is approximately equal to 
the variation obtained by measuring the trajectory when only 
j-th component of X(to) is perturbed. Hence, ~)XJ(t) 
(j = 1, 2 .... ,3n) are obtained as follows. (Note that X and lp are 3n 
dimensional vectors, respectively). We first define positive per- 
turbation parameters e i, (0<ej< 1). X(t) is the trajectory for a 
given control u(t). Next, we change the initial value of X into 

X(to) + ejej, 
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and then we measure the trajectory XJ(t) for the same control u(t). 
Finally, we get 6XJ(t) from X(t)  and XJ(t) as follows; 

6X~( t )_~(XJ( t ) -  X(t ) ) /e j .  (A.7) 

Changing the perturbed component of X(to) and performing the 
above procedure, we get 3n different solutions of (A.4): 

6 X  l, (~X 2 . . . .  , f iX  an . 

Now, let us define 3n • 3n matrix, D x  as follows: 

DX = ( ~ X  1 , 6 X  2 . . . . .  (~xan). (A.8) 

D x  is regarded as a fundamental solution matrix of (A.4). From 
equation (A.6) and definition (A.8), we can easily see that 

lp(t)rDx(t) = ~P(to)rDx(to), (t o < t < t l ) .  (A.9) 

Furthermore, it is clear that 

Dx(to) = I ,  

where ! represents a unit matrix. Therefore, (A.9) turns out to be 

D x ( t f f ~ ( t )  = ~(to). (A. 10) 

As seen from the above discussion, when ~(to) is given, the 
solution of differential Eq. (A.2) can be obtained from (A.10). It 
should be noticed that we must move the manipulator and 
measure its trajectory 3n+ 1 times repetitively until we get the 
solution ~p(t) of (A.2). 
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