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Data analysis

A neuron was considered selective to a stimulus group if: (1) the ®ring rate during stimulus
presentation was different from the preceding baseline (Wilcoxon test, , 0.05), (2) an
analysis of variance and pairwise comparisons (Wilcoxon test) addressing whether there
were differences among the stimulus groups yielded P , 0.05 and (3) an ANOVA
(parametric and non-parametric) comparing the variability to distinct stimuli within the
selective category to the variability to repeated presentations of the same stimulus showed
P.0.05. We observed neurons selective to faces, objects, spatial layouts and other stimuli.

If the across-groups comparisons were not signi®cant but the activity was different from
baseline, the neuron was de®ned as responsive but non-selective. To take into account any
effects due to the different intervals we also compared the responses in a 600-ms window
centred on the peak ®ring rate. The peak, latency and duration were estimated from the
spike density function15. For the selective neurons we computed the probability of error,
Pe, for classifying the stimulus as belonging to the preferred stimulus category or not15,16.
We did not observe any difference between the right and left hemisphere neurons.
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Signals derived from the rat motor cortex can be used for
controlling one-dimensional movements of a robot arm1. It
remains unknown, however, whether real-time processing of
cortical signals can be employed to reproduce, in a robotic
device, the kind of complex arm movements used by primates
to reach objects in space. Here we recorded the simultaneous
activity of large populations of neurons, distributed in the pre-
motor, primary motor and posterior parietal cortical areas, as
non-human primates performed two distinct motor tasks. Accu-
rate real-time predictions of one- and three-dimensional arm
movement trajectories were obtained by applying both linear and
nonlinear algorithms to cortical neuronal ensemble activity
recorded from each animal. In addition, cortically derived signals
were successfully used for real-time control of robotic devices,
both locally and through the Internet. These results suggest that
long-term control of complex prosthetic robot arm movements
can be achieved by simple real-time transformations of neuronal
population signals derived from multiple cortical areas in
primates.

Several interconnected cortical areas in the frontal and parietal
lobes are involved in the selection of motor commands for produc-
ing reaching movements in primates2±8. The involvement of these
areas in many aspects of motor control has been documented
extensively by serial single-neuron recordings of primate
behaviour2,3,8,9, and evidence for distributed representations of
motor information has been found in most of these studies10±13,
but little is known about how these cortical areas collectively
in¯uence the generation of arm movements in real time. The
advent of multi-site neural ensemble recordings in primates14 has
allowed simultaneous monitoring of the activity of large popula-
tions of neurons, distributed across multiple cortical areas, as
animals are trained in motor tasks15. Here we used this technique
to investigate whether real-time transformations of signals gener-
ated by populations of single cortical neurons can be used to mimic
in a robotic device the complex arm movements used by primates to
reach for objects in space.

Microwire arrays were implanted in multiple cortical areas of two
owl monkeys (Aotus trivirgatus)14±16. In the ®rst monkey, 96 micro-
wires were implanted in the left dorsal premotor cortex (PMd, 16
wires), left primary motor cortex (MI, 16 wires)17,18, left posterior
parietal cortex (PP, 16 wires), right PMd and MI (32 wires), and
right PP cortex (16 wires). In the second monkey, 32 microwires
were implanted in the left PMd (16 wires) and in the left MI (16
wires). Recordings of cortical neural ensembles began 1±2 weeks
after the implantation surgery and continued for 12 months in
monkey 1, and 24 months in monkey 2. During this period, the
monkeys were trained in two distinct motor tasks. In task 1, animals
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Figure 2 Real-time control of 1D hand movements. a, b, Coherence analysis reveals that

most cortical neurons are signi®cantly coupled with different frequency components of the

movements. c, d, Observed (black) and real-time predicted 1D hand movements using

linear (red) and ANN (blue) models in monkey 1 (c) and 2 (d). e, f, Correlation coef®cient

variation for predicted hand movements, using linear (red) and ANN (black) models, in one

recording session in monkey 1 (e) and 2 (f). g, Real-time 1D movements of a local (blue)

and remote (red) robot arm obtained in monkey 1 by using the linear model.
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made one-dimensional hand movements to displace a manipulan-
dum in one of two directions (left or right) following a visual cue. In
task 2, the monkeys made three-dimensional hand movements to
reach for small pieces of food randomly placed at four different
positions on a tray. Cortical recordings were obtained while the two
subjects were trained and tested on both tasks (Fig. 1a).

Figure 1b and c illustrate samples of the raw neuronal data
obtained while the animals performed task 1. In both monkeys,
coherence analysis19±21revealed that the activity of most single
neurons from each of the simultaneously recorded cortical areas
was signi®cantly correlated with both one-dimensional (Fig. 2a and
b) and three-dimensional hand trajectories, although the degree
and frequency range of these correlations varied considerably
within and between cortical areas. We then investigated whether
both linear19±21 and arti®cial neural network (ANN)22,23 algorithms
could be used to predict hand position in real time. For one-
dimensional movements, we observed that both algorithms yielded
highly signi®cant real-time predictions in both monkeys (Fig. 2c
and d). These results were obtained in spite of the fact that the
trajectories were quite complex, involving different starting posi-
tions, as well as movements at different velocities. For example, in
the session represented in Fig. 2c, the activity of 27 PMd, 26 MI, 28
PP, and 19 ipsilateral MI/PMd neurons in monkey 1 allowed us to
achieve an average correlation coef®cient of 0.61 between the
observed and predicted hand position (60-minute session, range
0.50±0.71, linear model; 0.45±0.73, ANN; P ,0.00119±21). Figure
2d illustrates similar real-time results obtained by using a smaller
sample of neurons (8 PMd and 27 MI) in monkey 2 (average
r = 0.72, range 0.47±0.79, linear model; average r = 0.66, range
0.42±0.71, ANN, P , 0.001). No large differences in ®tting accuracy
were observed between linear and ANN algorithms in either animal

(Fig. 2c and d, linear prediction shown as green line, ANN as red
line). As shown in Fig. 2e (monkey 1) and Fig. 2f (monkey 2), the
performance of both algorithms improved in the ®rst few minutes
of recordings and then reached an asymptotic level that was
maintained throughout the experiment. In both monkeys, highly
signi®cant predictions of hand movement trajectories were
obtained for several months.

To reduce the in¯uence of dynamic changes in the coupling
between neuronal activity and movements and other non-station-
ary in¯uences in our real-time predictions, both linear and ANN
models were continuously updated throughout the recording ses-
sions. This approach signi®cantly improved the prediction of hand
trajectories. For example, when predicting the last 10 minutes of
50±100-minute sessions, the adaptive algorithm performed 55%
(20 sessions, median) better than a ®xed model based on the initial
10 minutes, or 20% better than a model based on the 30±40-minute
segment of the session.

Because accurate hand trajectory predictions were achieved
early on in each recording session and remained stable for long
periods of time, we were able to use brain-derived signals to
control the movements of robotic devices (Phantom, SensAble
Technologies)24 in real time (Fig. 2g). In addition, we were able to
broadcast these motor control signals to multiple computer
clients by using a regular Internet communication protocol
(TCP/IP, Fig 1a) and control two distinct robots simultaneously:
one at Duke University (Fig. 2g, blue line) and one at MIT (Fig. 2g,
red line).

Next, we investigated whether the same cortical ensemble activity
and models could be used to predict the complex sequences of
three-dimensional hand movements used by primates in a food-
reaching task (task 2). These movements involved four phases:
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reaching for the food, grasping the food, bringing the food to the
mouth and returning to the start position (Fig. 3a and b). Because
these animals were not overtrained, their movement trajectories
were highly variable. For example, in the session represented in Fig.
3a (monkey 1) the dispersion of hand trajectories was 7.0 by 7.5 by
6.0 cm (or 315 cm3); in Fig. 3b (monkey 2) the dispersion was even
bigger, 11.5 by 10.5 by 10.0 cm (or 1,207.5 cm3). Nonetheless, in
both animals, the same linear and ANN models described above
provided accurate predictions of three-dimensional hand trajec-
tories in four different directions during 25±60-minute experimen-
tal sessions (60±208 trials). Figures 3d and e illustrate several
examples of observed (black lines) and predicted (red lines)
sequences of three-dimensional movements produced by monkey
1 (Fig. 3d) and 2 (Fig. 3e). After initial improvements, the predic-
tions of three-dimensional hand trajectories reached asymptotic
levels that were maintained throughout the experiments (Fig. 3f and
g). The three-dimensional predictions were comparable to those
obtained for one-dimensional movements (monkey 1: r = 0.74,
0.72 and 0.56 for the x-, y- and z-dimensions, respectively; monkey
2: r = 0.70, 0.54 and 0.77; 20-minute averages).

Further demonstration of the robustness of our real-time
approach was obtained by investigating how well model parameters
obtained for one set of hand movements could be used to predict
hand trajectories to other directions. For example, by training our
linear model only with hand movements directed to targets on the
right (targets 1 and 2) we were able to predict accurately hand
trajectories to targets on the left (targets 3 and 4). The same was true
for the reverse case, that is, using parameters derived from left

movements to predict movements to the right (monkey 1, r = 0.80,
0.70 and 0.67 for the x-, y- and z- dimensions; monkey 2, r = 0.68,
0.53 and 0.81; averages for both conditions). Predictions of distal
(targets 2 and 4) movements by training the model only with
proximal (targets 3 and 1) hand trajectories and vice versa were
comparably accurate (monkey 1, r = 0.81, 0.71 and 0.74 for the x-, y-
and z-dimensions; monkey 2, r = 0.69, 0.63 and 0.79; averages).

We next analysed how each of the 2±4 different cortical areas
contributed to the prediction of one-dimensional movements by
calculating the average effect of removing individual neurons, one at
a time, from the neuronal population used in each real-time session.
This neuron-dropping analysis was carried out independently for
each of the cortical areas, as well as for the combination of all of
them. We found that hyperbolic functions could ®t (r range 0.996±
0.9996) all curves that resulted from the neuron-dropping analysis,
using both the linear and ANN models in both animals. Figure 4a±e
illustrates typical neuron-dropping curves and the corresponding
hyperbolic ®ts. Extrapolations of the hyperbolic curves (Fig. 4f)
revealed that 90% correct real-time prediction of one-dimensional
movements could be theoretically achieved by applying the linear
model to either 480 6 65.7 PMd neurons, 666 6 83.0 M1, 629 6
64.2 PP or 1,195 6 142 ipsilateral MI/PMd neurons in monkey 1
(average and s.e.m., 10 sessions). In monkey 2, the same level of
accuracy would require either 376 6 42.3 PMd neurons or 869 6
127.4 MI neurons (Fig. 4g). Thus, in both monkeys signi®cantly
fewer PMd (red) neurons would theoretically be required to achieve
the same level (90%) of one-dimensional hand movement predic-
tion accuracy (P , 0.001, Wilcoxon), that is, on average, PMd
neurons provided the highest contribution to the predictions. MI
(light blue) and PP (dark blue) ensembles provided comparably
lower contributions, whereas neurons located in the ipsilateral MI
cortex accounted for the lowest amount of variance (yellow line).
When all recorded cortical neurons were combined, the extrapola-
tion of the hyperbolic functions produced identical theoretical
estimates for 90% prediction accuracy in both monkeys (monkey
1, 625 6 64 neurons; monkey 2, 619 6 73 neurons, average and
s.e.m.; P = 0.70, Wilcoxon, not signi®cant).

These results are consistent with the hypothesis that motor
control signals for arm movements appear concurrently in large
areas of the frontal and parietal cortices5,6, and that, in theory, each
of these cortical areas individually could be used to generate hand
trajectory signals in real time. However, the differences in estimated
neuronal sample required to predict hand trajectories using a single
cortical area probably re¯ect the functional specializations of these
regions. Thus, the differences observed here are consistent with
previous observations that PP and MI activity are in¯uenced by
motor parameters other than hand position (for example, visual
information in the case of PP8,25, or information related to the
motor periphery in the case of MI26,27). The relative contributions of
these cortical areas may possibly also change according to such
factors as the demands of the particular motor task, training level or
previous motor experience9,15.

In conclusion, we demonstrated that simultaneously recorded
neural ensemble activity, derived from multiple cortical areas, can
be used for the generation of both one-dimensional and three-
dimensional signals to control robot movements in real time.
Contrary to previous off-line algorithms5,11,12, our real-time
approach did not make any a priori assumptions about either the
physiological properties (for example, shape of the tuning curve) of
the single neurons, or the homogeneity of the neuronal population
sample. Instead, by using random samples of cortical neurons, we
obtained accurate real-time predictions of both one-dimensional
and three-dimensional arm movements. In this context, our ®nd-
ings support the notion that motor signals derived from ensembles
of cortical neurons could be used for long-term control of prosthetic
limb movements28,29. We have shown that chronically implanted
microwires can yield reliable recordings in primates for at least 24
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months; this suggests that a combination of denser multi-wire
arrays with implantable integrated circuits, designed to handle all
real-time signal processing and mathematical analysis, could one
day form the basis of a brain±machine interface for allowing
paralysed patients to control voluntarily the movements of
prosthetic limbs30. M

Methods
For more detailed methods see Supplementary Information.

Electrophysiological recordings and behavioural tasks

Multiple microelectrode arrays (NBLABS, Dennison) containing 16±32 50-mm diameter
microwires were chronically implanted in different cortical areas14±16 in two owl
monkeys. Stereotaxic coordinates, published microstimulation maps17,18 and intra-
operative neural mapping were used to locate the premotor, primary motor and
posterior parietal cortical areas. A many-neuron acquisition processor (MNAP, Plexon)
was used to acquire and distinguish activity from single neurons16. Both monkeys were
trained and tested on two behavioural tasks. In the ®rst task, the subjects were trained to
centre a manipulandum for a variable time and then to move it either to left or right
targets in response to a visual cue in order to receive a juice reward. The position of the
manipulandum was recorded continuously with a potentiometer. In the second task, the
monkeys were trained to place their right hands on a small platform, located waist high
and next to their bodies. When an opaque barrier was lifted, the monkeys reached out
and grabbed a small piece of fruit from one of four ®xed target locations on a tray
mounted in front of the platform. In both tasks, the location and orientation of the wrist
in three-dimensional space was continuously recorded using a plastic strip containing
multiple ®bre optic sensors (Shape Tape, Measurand) attached to the right arms of the
monkeys. Analogue signals from the strip were sampled at 200 Hz. All sessions were also
videotaped.

Data analysis

Predictions of hand position based on simultaneous neural ensemble ®ring were obtained
by applying both a linear model and ANNs to these data. In the linear model, the
relationship between the neuronal discharges in the matrix X(t), and hand position (1D or
3D) in Y(t) is

Y�t� � b � ^
n

u�2 m

a�u�X�t 2 u� � e�t�

where b are the Y-intercepts in the regression, and a is a set of impulse response functions
describing the weights required for the ®tting as function of time lag u. e(t) are the residual
errors. Hence, in this model the series in X (that is, neuronal ®ring in time) are convolved
with the weight functions a so that the sum of these convolutions plus b approximates Y
(hand trajectory)19±21. Of¯ine analysis was ®rst performed to test the validity of this model.
Y-intercepts and impulse response functions with a resolution of 5 ms were calculated
using a frequency-domain approach19,21. Real-time prediction was achieved by using a
slightly modi®ed linear model. Neural data representing potential feedback information
from movements were not included in the model. Each neuron's discharges were counted
in 100-ms bins. Y-intercepts and weights were calculated using standard linear regression
techniques19. The performance of this simpli®ed real-time model was only very slightly
inferior to the complete model outlined above.

Our strategy for applying ANNs is described elsewhere14,23. Here, we employed the same
data structure described for the linear model. Several feed-forward ANNs were evaluated
of¯ine. The best results were obtained using one hidden layer with 15±20 units, linear
output units, the Powell-Beale conjugate gradient training algorithm22, and an early
stopping rule. Predictions obtained with ANNs were comparable to those for the linear
algorithm.

During real-time prediction of hand position, up to 10 minutes of data were ®rst
collected to ®t the linear and ANN models. The resulting models were then sent back to the
data acquisition computer for instantaneous and continuous prediction of hand position
using the neuronal ensemble data acquired in real time. During the remainder of the
experimental session, both models continued to be calculated repeatedly, using the most
recently recorded 10 minutes of data. All calculations were performed by software
designed in MATLAB (The Mathworks, Natick, Massachusetts, USA).

Real-time control of robot arms

Predictions of hand positions were broadcasted by a TCP/IP server to one or more
computer clients. One of these clients controlled the movements of a robot arm (Phantom
model A1.0; Phantom, SensAble Technologies)24 locally at Duke University, and another
client was used to control simultaneously the movements of a remote robot arm (Phantom
DeskTop) at MIT using the Internet. Signals describing the position of the robot arm in
space were recorded on each client machine.

Neuron-dropping analysis

The relation between ensemble size and the goodness of ®t for our models was analysed
of¯ine by randomly removing single neurons, one at a time, and ®tting the models again
using the remaining population until only one neuron was left. This procedure was
repeated 25±30 times for each ensemble, so that an average curve was obtained to describe

R2 as a function of ensemble size. Neuron-dropping curves were obtained for all cortical
areas (separately or combined) in each monkey, and simple hyperbolic functions were
used to ®t them with very high accuracy. Next, we used these functions to estimate the
ensemble size that would theoretically be required to attain a R2 of 0.9.
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