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Abstract

The problem of constructing a nonlinear controller for
a biped robot optimal with respect to a minimal en-
ergy performance criteria is considered. The solution of
this difficult, highly nonlinear problem is facilitated by
the conjunction of several new developments in numer-
ical optimal control and constrained recursive dynamic
models for robotic systems. A 5-link biped model is
used with the full dynamics and a uniform distribu-
tion of mass at each link. Contacts are modeled as
inelastic, and the full dynamics together with the con-
tact and collision forces are calculated efficiently using
a recursive symbolic representation of the dynamics.
The flexibility and modularity of our dynamics algo-
rithms allows one to construct reduced unconstrained
models which do not suffer from integration difficul-
ties. The numerical optimal control software used is
powerful and quick enough to handle high dimensional
nonlinear systems. The result of our experiment is a
walking controller which is optimal with respect to a
type of minimum energy performance.

1 Introduction

The problem of controlling the walking motion of a
biped robot has intrigued and challenged researchers
for many years [2, 4, 6, 7, 8, 10]. This problem presents
many obstacles which often can be difficult to avoid
without making very compromising simplifying model-
ing assumptions. Even a simple 5-link biped robot with
all rotational joints and full motion degrees of freedom
will have a 16 dimensional state space when represented
with respect to generalized coordinates. The high di-
mensionality is additionally compounded with impul-
sive and one-sided contact forces as a result of collision
and contact with the environment.

In order to handle the complexity of the problem, some
researchers have made large simplifying assumptions
such as modeling the biped as an inverted pendulum
[7]. Others have used accurate dynamical models, yet
joint trajectories were estimated and linear feedback
was used to stabilize them [10]. Our experiments have
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shown that many walking trajectories naively chosen
to approximate walking motion can require a huge in-
crease in the needed power over that of the optimally
calculated minimum energy trajectory. For this reason,
we take the approach found in the work of McGeer [8]
and later with Goswami et al. [4] in that we seek to
generate natural walking. The minimal energy path is
desirable for it exhibits stabilizing, attractive proper-
ties.

During approximately 10%-15% of the human walk-
ing step, both feet are in contact with the ground
and a closed-chain system exists [2]. Closed-chain sys-
tems can be difficult to handle as they are high or-
der differential-algebraic systems, yet the influence of
ground collisions and double contact forces is impor-
tant, and we choose not to neglect them.

In this paper, we will briefly present our reduced dy-
namics algorithm. Using a symbolic representation of
the dynamics, we efficiently calculate the full contact
dynamics which we then use in conjunction with the
numerical optimal control package DIRCOL [11, 12].
The reduced dynamics algorithm allows DIRCOL to
work with a model of reduced dimension where the
contact constraints have been exploited. The result
is an optimal open-loop control law which generates a
periodic walking motion.

2 Model and Dynamics

In numerical nonlinear control, one normally requires
the generalized accelerations # which are the time
derivative of the state. This involves evaluating the
forward dynamics equation

=M1 (u+Jlf.—C-G). (1)

In equation (1), M is the square, positive-definite
mass-inertia matrix, C is the vector of Coriolis and cen-
trifugal forces, G is a vector of gravitational forces, u
are the applied torques at the links, .J.. is the constraint
Jacobian, and f. is the constraint force.

A 5-link biped robot with motion only allowed in the
sagittal plane, the plane of forward motion which bi-



sects the robot, has already 7 degrees of freedom. Al-
ready in this case, recursive symbolic dynamical models
are more efficient for calculating the forward dynamics
than other procedures which require constructing and
inverting the entire mass-inertia matrix M. O(N) re-
cursive algorithms, where A is the number of degrees
of freedom of the system, are advantageous not only for
increased efficiency with more degrees of freedom. Due
to the symbolic nature of the algorithm, changes to the
kinematic or dynamical parameters are easily made.

The modeling approach used here is that found in
[9, 1, 5]. Most of the recursive symbolic algorithms
found in the literature use the same principles in their
algorithms. The one described in [9] and [1], and fi-
nally in [5] is already a mature one since many as-
pects of robot dynamics and control have been stud-
ied and developed including contact and collision dy-
namics, tree structured systems, and multiple degree
of freedom joints.

We give now a brief summary of the Contact and
Collision Algorithms. If the tip contact constraint
(free foot touching the ground) is given holonomically
as ¢(f) = 0, then by taking time derivatives we also
obtain

Jb = 0 (2)
Jh+ J.0 0. (3)

where J. = 0c/d6. Multiplying (1) by J. and substi-
tuting for J.0 using (3), one obtains an operator ex-
pression for f..

fo = (MYIDU-IM u-C-G)—Jb]
—Q_I(Jcéf + Jce) s
= —Q7QV. (4)

Q1 = (J.M71JT)~! is a square matrix of dimension
equal to the number of constraints, and it is a quantity
related to the Khatib operational space inertia. 8 ¢ are
the free generalized accelerations without the influence
of the contact force in the dynamics while the final
expression for f. includes the spatial acceleration V/,
the time derivative of V. The contact constraints of
a branch with the ground can be expressed in terms
of the spatial acceleration of the branch tip VN(z’)-‘,—l;
which contains its angular and linear acceleration in
inertial coordinates. The acceleration constraints (3)
may then be written together with a constant matrix
Q as QV =d/dt(J.0) = 0.

The true angle accelerations are the sum of §; and a
correction term 5 which results from the contact forces
propagating throughout the body. These correction ac-
celerations can be calculated from f. by the relation-
ship

bs = M~2ITS, . (5)

A very similar algorithm exists for calculating the
change in velocities due to an inelastic collision with

the ground. The change in the generalized velocities
will depend on the tip velocities at the moment of con-
tact with the ground. One solves for the impulse force
fz'mpa

fz'mp = _QilQV . (6)

One may solve for 85 in §5 = M~1JZ f;,,.., to obtain the
generalized velocities after collision 6, = 6_ + 5. The
Contact and Collision Algorithms are discussed at
greater length in [1].

3 Reduced Dynamics Algorithm

With the introduction of homonomic constraints, such
as the contact of feet with the ground, it is possible
to construct a set of reduced unconstrained dynamics
of dimension equal to the number of degrees of free-
dom minus the number of constraints. In this section,
we outline our approach to calculating the independent
generalized accelerations of the reduced set of dynam-
ics. The novelty of this approach is that it does not
require the explicit construction of the reduced dynam-
ics. It will be shown how one may extract the solution
of the reduced dynamics from the solution of the con-
tact algorithm and the solution of the forward dynam-
ics of the entire system. One main advantage of using
a reduced unconstrained dynamical model is that op-
timization programs which require integration of the
dynamics will encounter less numerical difficulties.

In order to satisfy the constraint condition (2), the gen-
eralized velocities 8 must belong to the null space of the
constraint Jacobian, N'(J,) C RN~™. If the columns
of X represents a basis for A'(J,), then there exists a
representation of 6 with respect to X denoted here by
&, 0 = X¢. Substituting § = X£ + X¢ into the dynam-
ical equations and multiplying on the left by X7 will
give us the reduced dynamics,

M€+ Ce + Ge = ug (7)

where Mg = XTMX, Cc = XTMX¢+ XTC, G =
XTG, and ug = XTu.

If 8 represents the generalized coordinates of the sys-
tem, then it is possible to choose N — m independent
coordinates ¢; and m dependent coordinates 6> such
that J; 1601 + Jc 202 = 0 may be used as an alternative
expression for (2). This approach was made in [10],
and it leads to an obvious choice for X,

. . I .
b=xe=xabi=| 4, Jo. @
c,2Y¢

An advantage of making this choice for the basis X
is that, as will be shown in the Reduced Dynamics
Algorithm, the reduced accelerations are simply rep-
resented as £ = f;. Our goal here is to show that the
solution of the contact algorithm may be used to ob-
tain a solution of the reduced forward dynamics prob-



lem. Then an optimization routine performing numer-
ical integration need only integrate on the independent
coordinates #;. We first give a lemma before the algo-
rithm is presented.

Lemma 1 Let X be a basis for the null space of the
constraint Jacobian, N (J.), and assume that at time
t = 0, the state (6,0) satisfies the constraint conditions
c(6(0)) =0, J.(0) = 0. Then the following statements
are equivalent:

(a) 6 and 8 satisfy J.0 + J.6 = 0.

(b) There exists an N —m dimensional vector § which
satisfies § = XE.

(¢c) Xé= 0 — X¢ is consistent and has a unique so-
lution .

Proof: (c¢) = (a) Since X is a basis for N'(J;), then
J.X¢ =0 and d/dt(J.X€) = 0. So,

JO+Jb0=JXE+(JX+J.X)E=0.

(a) = (b) Integrating (a) implies J.0 = 0 since
J.6(0) = 0 at time t = 0. J.0 = 0 further implies
that there exists a representation £ for 6 with respect
to X, 8 = X¢. (b) = (c¢) Differentiating § = X¢ and
observing that X is full rank gives the desired result.
]

Reduced Dynamics Algorithm

1. Beginning with an independent set of coordinates
& = 0y, solve via inverse kinematics for 6 from 6.
Similarly solve for 6, from 6, using the algebraic
relation 6y = —ch21 Jc,lél.

2. Given a set of torque inputs u, one may solve for
0 with the contact algorithm. Simple algebraic
manipulation shows that this solution satisfies (a)
of Lemma 1.

3. Using Eq. (8), it follows that £ = 6, and it sat-
isfies the reduced dynamics (7). .

This algorithm thus yields the reduced forward dynam-
ics mapping u — (&, §).

4 Numerical Optimal Control

Direct optimization methods for optimal control are
characterized by the minimization of a cost functional
which is a function of the system state and the control
input u. An example of such a method is the program
DIRCOL [11, 12], which can handle implicit or explicit
boundary conditions, arbitrary nonlinear equality and
inequality constraints on the state variables, and multi-
ple phases where each phase may contain a different set
of state equations. DIRCOL functions by packaging the
optimal control problem along with its constraints into
a constrained nonlinear minimization problem which
is solved by an SQP-based optimization code NPSOL
(Gill, Murray, Saunders, Wright [3]).

Our performance objective in this problem is a criteria
related to minimum energy or minimum power pro-
vided by the controller. We minimize the performance
equal to the integral of the squared magnitudes of the
torque inputs,

T
min [ || dt o)
0

DIRCOL discretizes the state and control variables in
time over the trajectory. The output of the numeri-
cal optimal control program will be the optimal open-
loop solution for the control u(t) and the corresponding
state trajectory z(t) at the choice of grid points in time.
With regards to the biped walking control problem, the
final values of u(t) and z(¢) at the end of a half step
will be symmetrically constrained to match the initial
values for u and z at the beginning of the step. This
produces an optimal periodic solution for the desired
walking trajectory.

After the optimal periodic trajectory is calculated, one
can solve the problem for initial states off the peri-
odic trajectory. This procedure can then be repeated
throughout a grid of initial states in a region surround-
ing the periodic trajectory such that a closed-loop con-
trol law can be closely approximated given any devia-
tions from the walking motion within this region.

5 Experiment

Our experiment was made with a 5-link biped robot.
The most restrictive assumption made is that we con-
sider only motion in the sagittal plane, the plane of
forward motion which bisects the robot. The links are
modeled with an elliptical shape and a uniform distri-
bution of mass.

The physical model of the biped walker used here, as
mentioned previously, contains five links. The physical
data corresponding to the model are found in Table
1. The experiment is conducted at a desired walking
speed of 0.5m/s.

Table 1: Model Physical Data

Link Mass Length Radius
Torso 20kg 0.72m 0.12m
Upper Leg  7kg 0.50m 0.07m

Lower Leg 4kg 0.50m 0.05m

The optimization in DIRCOL consisted of two phases.
The first phase was the swing phase of the leg and was
modeled by an unconstrained single-chain manipulator.
The second phase, which accounted for 15% of the to-
tal step time, was characterized by having both feet on
the ground with the torso continuing to move forward
until the time when the back leg was ready to leave the
ground. In this phase, we made use of the Reduced
Dynamics Algorithm. Finally, the boundary condi-
tions in between phases required the evaluation of the



Collision Algorithm which produced a discontinuous
jump in the generalized velocities and a corresponding
loss of kinetic energy as a result of the collision of the
foot with the ground. The only walking parameters
passed to DIRCOL were the length of stride, the dura-
tion of the half step, and the percentage of time in the
double support phase.

In our opinion, the experiment produced a very ‘natu-
ral’ walking motion of which some frames are shown in
Figure 1. If one takes the control inputs u necessary to
generate a particular walking step, then one can eval-
uate the cost of the step using the performance (9).
Remarkable was the extremely large drop in the cost
of making the optimal step calculated here compared
to other methods which attempt to estimate the best
trajectory purely from visual information.

6 Future Directions

Our recursive dynamics model gives one the flexibil-
ity to choose which link in the robot is to serve as the
base. For the experiment described in the last section,
the foot which is at all times in contact with the ground
during a half step was chosen as the base. This choice
made it possible to model the biped as a single-chain
manipulator. Presently, we are working on expand-
ing the modeling framework to allow for general tree-
structured systems. This approach will be necessary
when other motions and contact situations are investi-
gated such as running.

For the construction of the feedback controller, there
are many interesting new alternatives available. In par-
ticular, new evolutionary programming tools are being
investigated for constructing closed form algebraic ex-
pressions which approximate both the periodic optimal
walking trajectory and the optimal closed-loop control
inputs.

7 Conclusion

We solve numerically the problem of minimal energy
control of a biped walker. The overall method is ef-
ficient with the use of recursive dynamic algorithms
which easily allow changes to kinematic and dynamic
configurations. One of the main contributions of this
paper is a new algorithm for recursively calculating the
reduced set of dynamics corresponding to contact con-
straints with the environment. Previous results for re-
cursive symbolic dynamic modeling techniques and re-
cursive constraint projection algorithms are joined in
the Reduced Dynamics Algorithm. The synthesis of
these modeling tools with recently developed numerical
optimal control software allows us to tackle the chal-
lenging problem analyzing and optimizing the contact
equations of motion. The software efficiently calculates
optimal open-loop controls which generate trajectories
representing a ‘natural’ walking motion.
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Figure 1: Walking Motion
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